平面向量三角形四心(无详解)

合集下载

平面向量中的三角形中“四心问题”

平面向量中的三角形中“四心问题”

专题分析平面向量中的三角形“四心”江苏省启东中学 张 杰在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了学生分析问题、解决问题的能力。

现就“四心”作如下介绍:一.“四心”的概念与性质1.重心:三角形三条中线的交点叫重心。

它到三角形顶点距离与该点到对边中点距离之比为2:1;在向量表达形式中,设点G 是ABC ∆所在平面内的一点,则当点G 是ABC ∆的重心时,有0=++GC GB GA 或)(31++=(其中P 为平面内任意一点);反之,若0=++GC GB GA ,则点G 是ABC ∆的重心;在向量的坐标表示中,若G 、A 、B 、C 分别是三角形的重心和三个顶点,且分别为G ),(y x 、A ),(11y x 、B ),(22y x 、C ),(33y x ,则有3321x x x x ++=,3321y y y y ++=。

2.垂心:三角形三条高线的交点叫垂心。

它与顶点的连线垂直于对边;在向量表达形式中,若H 是ABC ∆的垂心,则⋅=⋅=⋅,或222222+=+=+,反之,若⋅=⋅=⋅,则H 是ABC ∆的垂心。

3.内心:三角形三条内角平分线的交点叫内心。

内心就是三角形内切圆的圆心,它到三角形三边的距离相等;在向量表达形式中,若点I 是ABC ∆的内心,则有 0||||||=⋅+⋅+⋅IC AB IB CA IA BC 或||||||AB AC BC ++(其中P 为平面内任意一点),反之,若||||||=⋅+⋅+⋅,则点I 是ABC ∆的内心。

4.外心:三角形三条中垂线的交点叫外心。

外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等;在向量表达形式中,若点O 是ABC ∆的外心,则0)()()(=⋅+=⋅+=⋅+或||||||==,反之,若||||||==,则点O 是ABC ∆的外心。

三角形“四心”在平面向量中的应用

三角形“四心”在平面向量中的应用

知识导航三角形“四心”在平面向量中的应用史平笔一、有关三角形“四心”的概述1.垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边. 2.内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等. 3.重心:三角形三条中线的交点叫重心.它到三角形顶点的距离与该点到对边中点距离之比为 2∶1. 4.外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等. 二、三角形“四心”与平面向量的关系设(,),则(GG GG )向量必平1.AB + AC λ∈0 +∞λGG GG 分,该向量必通过AB AC ∠BAC △ABC 的内心. GG GG 设(,),则()AB AC 2.λ∈0 +∞λAB GG cos B + AC GG cos C 向量必垂直于边BC ,该向量必通过△ABC 的垂心. GG GG GG 3.△ABC 中,AB +AC 一定过BC 的中点,通过△ABC 的重心. 4.点O 是△ABC 的外心GG 2 GG 2 GG 2 圳OA =OB =OC . 5.点O 是△ABC 的重心GG GG GG 軋圳OA +OB +OC =0. GG GG GG GG GG GG 6.点O 是△ABC 的垂心圳OA ·OB =OB ·OC =OC ·OA . GG GG GG 軋7.点O 是△ABC 的内心圳a ·OA +b ·OB +c ·OC =0 (其中 a 、b 、c 为△ABC 三边). 的外心、重心、垂心共线,即GG ∥GG . ABC O G H OG OH 三、探究教材内容,链接高考试题【题源】人教版 A 版《数学》必修四 B 组 P125 页第5 题:已知向量GG ,GG ,GG 满足条件GG +GG +GG = OP 1 OP 2 OP 3OP 1 OP 2 OP 3 0軋,GG OP 1 = GG OP 2 = GG OP 3 =1,求证:△P 1P 2P 3是正三角形.思路分析对于本题中的条件GG OP 1 = GG OP 2 = GG OP 3 =1,容易想到,点O 是△P 1P 2P 3的外心,而另一个条件GG GG GG 軋表明,点O 是△P 1P 2P 3 的重心故本OP 1 +OP 2 +OP 3 =0 .题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形证明由.可知,是GG = GG = GG =1 OP 1 OP 2 OP 3 O △P 1P 2P 3三角形的外心,由GG GG GG 軋可知O 是三角形的重心,OP 1 +OP 2 +OP 3 =0 △P 1P 2P 3 可知点 O 是正△P 1P 2P 3的中心,即△P 1P 2P 3是正三角形.(2016·四川高考理科·T10)在平面内,定点A ,B ,C ,D 满足DA GG = DB GG = DC GG GG GG GG GG GG ,DA ·DB =DB ·DC =DC ·GG =2 ,动点,满足GG =1 ,GG GG ,则GG 2 的数DA P M AP PM =MC BM 最大值是()学A. 43B. 49C. 37+6姨3D. 37+2姨33 篇44 4 4 解析由上例可知△ABC 是正三角形,且 D 是46 GG GG = GG GG cos ∠ADB= GG △ABC 的中心,DA ·DB DA DB DA。

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题三角形四心指的是三角形的垂心、重心、内心和外心,在高考中常常结合平面向量的知识进行考察,是高中数学的一个难点.很多学生对三角形四心总是产生混淆,面对与四心有关的问题也常常束手无策,为了解决广大学子的困扰,本文以四心的常见结论出发,借助几道经典的例题,对三角形四心问题进行系统梳理,希望能够为读者提供帮助.如果读者是在校高中生,则标注了星号的内容可作为拓展知识. 一、三角形的内心(1)定义:三角形内切圆的圆心,即三角形三条角平分线的交点(如图1). (2)向量表示:若O 为△ABC 的内心→→→→=⋅+⋅+⋅⇔0OC c OB b OA a . (注:本文中的边a ,b ,c 分别表示BC ,AC ,AB .角A ,B ,C 分别表示BAC ∠,ABC ∠,ACB ∠.)证明:→→→→→→→→→→=+⋅++⋅+⋅⇔=⋅+⋅+⋅0)()(0AC OA c AB OA b OA a OC c OB b OA a→→→→=⋅+⋅+⋅++⇔0)(AC c AB b OA c b a →→→⋅+⋅=⋅++⇔AC c AB b AO c b a )(||||||||)(→→→→→→→⋅⋅+⋅⋅=⋅++⇔AC AC AC c AB AB AB b AO c b a)||||()(→→→→→+⋅=⋅++⇔AC ACAB ABbc AO c b a)||||(→→→→→+⋅++=⇔AC ACAB AB c b a bc AO (图1)⇔点O 在角A 的角平分线上,同理点O 也在角B 、C 的角平分线上. ⇔O 为△ABC 的内心.(3)常用性质性质1:))(||||(R AC ACAB AB∈+⋅→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).证明:如图所示,||→→AB AB 表示→AB 上的单位向量,不妨记作→AD ,||→→AC AC 表示→AC 上的单位向量,不妨记作→AE .设→→→+=AE AD AP ,由平行四边形法则知,四边形ADPE 为菱形, 故直线AP 为A ∠的角平分线.))(||||(RAC ACAB AB∈+⋅∴→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).性质2:r c b a S ABC ⋅++=∆)(21(r △ABC 内切圆的半径). 证明:由等面积法易证.性质3:O 为△ABC 的内心c b a S S S OAB OAC OBC ::::=⇔∆∆∆. 证明:由面积公式易证. (4)典例剖析例1-1:在△ABC 中,O 为平面内一个定点,动点P 满足)||||(→→→→→→++=AC ACAB ABOA OP λ,),0(+∞∈λ.则动点P 的轨迹经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由性质1知,答案为A .例1-2:已知O 是△ABC 所在平面上的一点,若cb a PCc PB b PA a PO ++++=→→→→(其中P 是△ABC 所在平面内任意一点),则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题意知→→→→→→++=++PC c PB b PA a PO c PO b aPO ,即+-→→)(PO PA a→→→→→=-+-0)()(PO PC c PO PB b ,化简得→→→→=⋅+⋅+⋅0OC c OB b OA a .根据内心的向量表示知,O 是△ABC 的内心,答案为A .例1-3:已知O 是△ABC 内的一点,且满足0)||||(=-⋅→→→→→AC ACAB ABOA ,则OA 所在的直线一定经过三角形的( )A .内心B .外心C .垂心D .重心解析:||→→AB AB 表示→AB 上的单位向量,不妨记作→1e ,||→→AC AC 表示→AC 上的单位向量,不妨记作→2e .故0)(21=-⋅→→→e e OA ,即→→→→⋅=⋅21e OA e OA ,即>>=<<→→→→21,,e OA e OA .∴直线OA 与A ∠的角平分线重合,故OA 所在的直线一定经过三角形的内心,答案A .二、三角形的外心(1)定义:三角形外接圆的圆心,即三角形三边中垂线的交点(如图2). (2)向量表示:若O 为△ABC 的外心||||||→→→==⇔OC OB OA . (3)常用性质:奔驰定理*:已知O 为△ABC 内的一点(不一定为外心), 则→→∆→∆→∆=⋅+⋅+⋅0OC S OB S OA S OAB OAC OBC .(该定理反之也成立)证明:不妨延长AO 到D (如下图),则 (图2)=++===∆∆∆∆∆∆∆∆ACD ABD OAC OAB ACD OAC ABD OAB S S S S S S S S AD AO ABC OACOAB S S S ∆∆∆+, 即→∆∆∆→+=AD S S S AO ABCOAC OAB .且根据B ,D ,C 三点共线知,→∆∆∆→∆∆∆→+++=AB S S S AC S S S AD OAC OAB OACOAC OAB OAB ,故→∆∆→∆∆→+=AB S S AC S S AO ABC OAC ABC OAB ,即)()(→→∆∆→→∆∆→-+-=-OA OB S S OA OC S S OA ABCOAC ABC OAB . →→∆→∆→∆=⋅+⋅+⋅∴0OC S OB S OA S OAB OAC OBC (反之易证)性质1*:O 为△ABC 的外心C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆.证明:如图2所示,O 为△ABC 的外心A R BOC R S OBC 2sin 212sin 2122=∠=⇔∆,B R AOC R S OAC 2sin 212sin 2122=∠=∆,C R AOB R S OAB 2sin 212sin 2122=∠=∆ C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆(R 为△ABC 外接圆半径).性质2*:O 为△ABC 的外心→→→→=⋅+⋅+⋅⇔0)2(sin )2(sin )2(sin OC C OB B OA A . 证明:结合性质1与奔驰定理易证.(4)典例剖析例2-1:在△ABC 中,O 为平面内一个定点,动点P 满足++=→→→2OCOB OP )cos ||cos ||(CAC AC BAB AB →→→→+λ,),0(+∞∈λ.则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:设线段BC 的中点为D ,故)cos ||cos ||(C AC AC BAB AB OD OP →→→→→→++=λ,即)cos ||cos ||(CAC AC BAB AB DP →→→→→+=λ,而)cos ||cos ||(CAC BC AC BAB BC AB BC DP →→→→→→→→⋅+⋅=⋅λ,即)cos ||cos ||||cos ||)cos(||||(CAC CBC AC B AB B BC AB BC DP →→→→→→→→⋅+-⋅=⋅πλ0|)|||(=+-=→→BC BC λ 即→→⊥BC DP ,故点P 在线段BC 的垂直平分线上. ∴动点P 的轨迹一定经过△ABC 的外心,答案B .例2-2:在△ABC 中,动点O 满足→→→→⋅=-BC AO AB AC 222,则点O 一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:由题知→→→→→→⋅=+-BC AO AB AC AB AC 2))((,设D 为BC 的中点,则=⋅→→AD BC 2→→⋅BC AO 2,故0=⋅→→OD BC ,即→→⊥OD BC ,O ∴在BC 的垂直平分线上,故点O 一定经过△ABC 的外心,答案B .例2-3:已知O 为△ABC 所在平面内的一点,满足→→→→⋅=⋅BA OB AB OA ,=⋅→→BC OB→→⋅CB OC ,则O 为△ABC 的( )A .内心B .外心C .垂心D .重心解析:由→→→→⋅=⋅BA OB AB OA 知0)(=+⋅→→→OA OB AB ,即0)()(=+⋅-→→→→OA OB OA OB ,即||||→→=OA OB ,同理可得:||||→→=OC OB ,O ∴为△ABC 的外心,答案B .三、三角形的垂心(1)定义:三角形三条高的交点(如图3).(2)向量表示:若O 为△ABC 的垂心→→→→→→⋅=⋅=⋅⇔OC OB OC OA OB OA . 证明:→→→→→→→→→→→⊥⇔=⋅=-⋅⇔⋅=⋅BC OA BC OA OB OC OA OC OA OB OA 0)(.同理→→⊥AC OB ,O AB OC ⇔⊥→→为△ABC 的垂心.(3)常用性质性质1*:O 为锐角△ABC 的垂心⇔=∆∆∆OAB OAC OBC S S S ::C B A tan :tan :tan . (图3)证明:ACDOC b BCDOC a OF b OE a S S OAC OBC ∠⋅⋅∠⋅⋅=⋅⋅=∆∆sin sin ,且在直角△BCD 和直角△ACD 中有 B BCD cos sin =∠,A ACD cos sin =∠.故BAA B B A A b B a S S OAC OBC tan tan cos sin cos sin cos cos =⋅⋅=⋅⋅=∆∆. 同理,CBS S OAB OAC tan tan =∆∆. C B A S S S OAB OAC OBC tan :tan :tan ::=∴∆∆∆,反之易证.性质2*:当O 为锐角△ABC 的垂心→→→→=⋅+⋅+⋅⇔0tan tan tan C OC B OB A OA .证明:利用性质1和“奔驰定理”易证. (4)典例剖析例3-1:在△ABC 中,O 为平面内一个定点,动点P 满足)cos ||cos ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知)cos ||cos ||(CAC AC BAB AB AP →→→→→+=λ,得=⋅+-⋅=⋅+⋅=⋅→→→→→→→→→→→→→→)cos ||cos ||||cos ||)cos(||||()cos ||cos ||(CAC CBC AC B AB B BC AB CAC BC AC BAB BC AB BC AP πλλ0|)|||(=+-→→BC BC λ,即→→⊥BC AP .P ∴在BC 边上的高上,过垂心,答案C .例3-2:已知O 为△ABC 所在平面内的一点,且满足=+=+→→→→2222||||||||AC OB BC OA22||||→→+AB OC ,则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知2222||||||||→→→→-=-BC AC OB OA ,即=+⋅-→→→→)()(OB OA OB OA)()(→→→→+⋅-BC AC BC AC ,即0)()(=+⋅++⋅→→→→→→OB OA AB BC AC AB ,即02=⋅→→OC AB ,故→→⊥OC AB ,同理→→⊥OB AC ,→→⊥OA BC∴O 是△ABC 的垂心,答案C .例3-3:设O 是△ABC 的外心,点P 满足→→→→=++OP OC OB OA ,则P 是△ABC 的( )A .内心B .任意一点C .垂心D .重心 解析:由题知→→→→→=-=+CP OC OP OB OA ,由于O 是△ABC 的外心,故→→→=+OD OB OA 2(D 为线段AB 的中点)且→→⊥AB OD ,即→→=OD CP 2,→→⊥∴AB CP ,同理→→⊥AC BP ,→→⊥BC AP ,故P 是△ABC 的垂心,答案C .四、三角形的重心(1)定义:三角形三条中线的交点(如图4).(2)向量表示:若O 为△ABC 的重心→→→→=++⇔0OC OB OA . (3)常用性质 ( 图4 )性质1:若O 为△ABC 的重心ABC OBC OAC OAB S S S S ∆∆∆∆===⇔31性质2:若O 为△ABC 的重心→→=⇔AF AO 32,→→=BD BO 32,→→=CF CO 32性质3:已知),(11y x A ,),(22y x B ,),(33y x C .若O 为△ABC 的重心)3,3(321321y y y x x x O ++++⇔.(4)典例剖析例4-1:在△ABC 中,O 为平面内一个定点,动点P 满足)sin ||sin ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC的( )A .内心B .外心C .垂心D .重心 解析:由题知)sin ||sin ||(CAC AC BAB AB AP →→→→→+=λ,其中hC AC B AB ==→→sin ||sin ||(h 表示BC 边上的高),故)(hACh AB AP →→→+=λ→=AF h λ2(F 为线段BC 的中点). P ∴在BC 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-2:在△ABC 中,O 为平面内一个定点,动点P 满足])21()1()1[(31→→→→++-+-=OC OB OA OP λλλ,R ∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:设AB 的中点为D ,故])21()1(2[31→→→++-=OC OD OP λλ,由于+-3)1(2λ1321=+λ,即点P ,C ,D 三点共线. P ∴在AB 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-3:已知O 在△ABC 内,且满足→→→→=++0432OC OB OA ,现在到△ABC 内随机取一点,次点取自△OAB ,△OAC ,△OBC 的概率分别记为1P 、2P 、3P ,则( )A .321P P P ==B .123P P P >>C .321P P P >>D .312P P P >> 解析:法一:如图,延长OA ,OB ,OC 使得OA OD 2=,OB OE 3=,OC OF 4=, 故→→→→=++0OF OE OD ,即O 是△DEF 的重心,即△OED 、△ODF 、 △OEF 的面积相等,不妨令它们的面积都为1. 61=∴∆OAB S ,81=∆OAC S ,121=∆OBC S ,故321P P P >>,答案C . 法二:由“奔驰定理”知,k S OBC 2=∆,k S OAC 3=∆,kS OAB 4=∆(k 为比例系数),故321P P P >>,答案C .法三:根据三角形内心的向量表示,不妨设O 是以2k ,3k ,4k (k 为比例系数)为边长的三角形的内心,所以OBC OAC OAB S S S ∆∆∆>>,即321P P P >>,答案C .五、等腰(边)三角形的四心 (1)等腰三角形等腰三角形只有顶角的角平分线与中线、高三线重合,其余的线不重合.另外,等腰三角形的四心不重合. (2)等边三角形性质1:若△ABC 为等边三角形⇔△ABC 四心合一. 性质2:若△ABC 为等边三角形⇔△ABC 三线合一. 六、欧拉线*瑞士数学家欧拉(1707~1783)于1765年在他的著作《三角形 的几何学》中首次提出:(如图5)任意△ABC (非等边三角形)的垂心D 、重心E 、外心F 三点共线,即欧拉线. (图5)特别地,(如图6)当△ABC 为直角三角形时(A 为直角),垂心D 与A 重合,外心F 在BC 的中点上,欧拉线为直角△ABC 的外接圆半径(或BC 边上的中线).(图6)性质1:在任意三角形中,垂心与重心的距离是重心与外心距离的2倍,即EF DE 2=.。

平面向量痛点问题之三角形“四心”问题(解析版)

平面向量痛点问题之三角形“四心”问题(解析版)

微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0.(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC+CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB=PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD=DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=______.例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +ACACλ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB+cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yACx ,y ∈R ,则x +y 的最大值为( )A.23B.6-65C.7-76D.8-227题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN=公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公NC,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB=PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA⋅OB +OB ⋅OC +OC ⋅OA=( )A.4B.-4C.2D.-2例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO=( )A.-12B.12C.-1D.23题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平面内,则下列说法正确的是( )A.若OA =OB =OC,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC=0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC=0,则I 是△ABC 的垂心例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA+5HB+6HC =0 ,则cos ∠AHB =_____.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO=( )A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与AB AB cos B +ACACcos C 共线3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD,则3x +y =( )A.73B.2C.83D.34.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.15.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA+λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心B.内心C.重心D.垂心6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或357.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP=公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO =13AB +13AC,则∠BAC 等于( )A.30° B.45° C.60° D.90°11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC+OC ⋅AB的最大值为( )A.1B.32C.3D.7212.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO =λAB +μBC ,则λ+μ=( )A.23B.34C.56D.3513.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB=OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA,则点O ,P 依次是△ABC 的( )A.重心,垂心 B.重心,内心 C.外心,垂心 D.外心,内心二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =016.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =017.(2023秋·重庆渝北·高二重庆市两江育才中学校校考阶段练习)设O 为△ABC 的外心,且满足2OA+3OB +4OC =0 ,OA=1,则下列结论中正确的是( )A.OB ⋅OC =-78 B.AB =62C.∠A =2∠CD.sin ∠A =1418.(2023春·安徽淮北·高一淮北师范大学附属实验中学校考阶段练习)生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上.”这就是著名的欧拉线定理.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个选项中正确的是( )A.GH =2OGB.GA +GB +GC =0C.AH =2ODD.S △ABG =S △BCG =S △ACG19.(2023·全国·模拟预测)在△ABC 中,点D ,E 分别是BC ,AC 的中点,点O 为△ABC 内的一点,则下列结论正确的是( )A.若AO =OD ,则AO =12OB +OCB.若AO =2OD ,则OB =2EOC.若AO =3OD ,则OB =58AB +38ACD.若点O 为△ABC 的外心,BC =4,则OB ⋅BC=-420.(2023春·河北石家庄·高一统考期末)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,垂心为H ,重心为G ,且AB =3,AC =4,下列说法正确的是( )A.AH ⋅BC=0 B.AG ⋅BC =-73C.AO ⋅BC =72D.OH =OA +OB +OC三、填空题公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公21.(2023秋·上海长宁·高二上海市延安中学校考期中)已知△ABC 的顶点坐标A -6,2 、B 6,4 ,设G 2,0 是△ABC 的重心,则顶点C 的坐标为_________.22.(2023秋·山西吕梁·高三统考阶段练习)设O 为△ABC 的外心,且满足2OA +3OB +4OC =0,OA =1,下列结论中正确的序号为______.①OB ⋅OC =-78;②AB =2;③∠A =2∠C .23.(2023·河北·模拟预测)已知O 为△ABC 的外心,AC =3,BC =4,则OC ⋅AB =___________.24.(2023秋·上海嘉定·高二上海市嘉定区第一中学校考期中)已知A 、B 、C 为△ABC 的三个内角,有如下命题:①若△ABC 是钝角三角形,则tan A +tan B +tan C <0;②若△ABC 是锐角三角形,则cos A +cos B <sin A +sin B ;③若G 、H 分别为△ABC 的外心和垂心,且AB =1,AC =3,则HG ⋅BC =4;④在△ABC 中,若sin B =25,tan C =34,则A >C >B ,其中正确命题的序号是___________.25.(2023秋·天津南开·高三南开大学附属中学校考开学考试)在△ABC 中,AB =3,AC =5,点N 满足BN=2NC ,点O 为△ABC 的外心,则AN ⋅AO 的值为__________.26.(2023·全国·高三专题练习)已知G 为△ABC 的内心,且cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0,则∠A =___________.27.(2023·全国·高三专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为______.28.(2023·全国·高三专题练习)设I 为△ABC 的内心,若AB =2,BC =23,AC =4,则AI ⋅BC=___________公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0.(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC+CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB=PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心【答案】D【解析】因为GA +GB +GC =0 ,所以GA +GB =-GC =CG .以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG =GD ,所以GO =13CO ,CO 是AB 边上的中线,所以G 点是△ABC的重心.故选:D例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD=DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1【答案】A【解析】因为BD =DC,所以D 为BC 中点,又因为G 是△ABC 的重心,所以GD =13AD,又因为D 为BC 中点,所以AD =12AB +12AC ,所以GD =1312AB +12AC =16AB +16AC,所以x =y =16,所以x +y =13.故选:A例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175【答案】D公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【解析】依题意,作出图形,因为点G 是△ABC 的重心,所以M 是BC 的中点,故AM =12AB +AC,由已知得BC=a ,AC =b ,AB =c ,因为BG ⊥CG ,所以GM =12BC =12a ,又因为点G 是△ABC 的重心,所以GM =12GA ,则AM =12a +a =32a ,又因为AM 2=14AB +AC 2,所以94a 2=14c 2+b 2+2bc cos A ,则9a 2=c 2+b 2+2bc cos A ,又由余弦定理得a 2=c 2+b 2-2bc cos A ,所以9c 2+b 2-2bc cos A =c 2+b 2+2bc cos A ,整理得2c 2+2b 2-5bc cos A =0,因为5b =6c ,令b =6k k >0 ,则c =5k ,所以2×5k 2+2×6k 2-5×6k ×5k cos A =0,则cos A =122150=6175.故选:D .题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=______.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-372例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +ACACλ∈R ,则点P 的轨迹一定经过△ABC 的( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.重心B.外心C.内心D.垂心【答案】C【解析】因为AB AB 为AB 方向上的单位向量,ACAC为AC 方向上的单位向量,则AB |AB |+AC |AC |的方向与∠BAC 的角平分线一致,由OP =OA +λAB AB +AC AC ,可得OP -OA =λAB AB +ACAC,即AP =λAB AB +ACAC,所以点P 的轨迹为∠BAC 的角平分线所在直线,故点P 的轨迹一定经过△ABC 的内心.故选:C .例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB+cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心【答案】B【解析】因为IB =IA+AB ,IC =IA +AC ,所以aIA +bIB+cIC =aIA +b IA +AB +c IA +AC =a +b +c IA +bAB +cAC =0 ,所以(a +b +c )IA =-(b ⋅AB +c ⋅AC),所以IA =-(b ⋅AB +c ⋅AC)a +b +c =-b a +b +c ⋅AB +c a +b +cAC =-1a +b +c b ⋅AB +c ⋅AC =-bca +b +c AB c +AC b=-bca +b +c AB AB +AC AC,所以IA在角A 的平分线上,故点I 在∠BAC 的平分线上,同理可得,点I 在∠BCA 的平分线上,故点I 在△ABC 的内心,故选:B .例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yACx ,y ∈R ,则x +y 的最大值为( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.23B.6-65C.7-76D.8-227【答案】D【解析】如图:圆O 在边AB ,BC 上的切点分别为E ,F ,连接OE ,OF ,延长AO 交BC 于点D设∠OAB =θ,则cos A =cos2θ=1-2sin 2θ=34,则sin θ=24设AD =λAO =λxAB +λyAC∵B ,D ,C 三点共线,则λx +λy =1,即x +y =1λ1λ=AO AD =AO AO +OD ≤AO AO +OF =11+OF AO =11+OE AO=11+sin θ=11+24=8-227即x +y ≤8-227故选:D .题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN=NC,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94【答案】B【解析】因为BN =NC,则N 是BC 的中点,所以AN =12AB +12AC ,设外接圆的半径为r ,所以AO ⋅AN =AO ⋅12AC +12AB =12AO ⋅AC +12AO ⋅AB =12r ×3×cos ∠OAC +12r ×2×cos ∠OAB =12×3×32+12×2×1=134.故选:B .例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB =PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心【答案】A【解析】PA =PB=PC 表示P 到A ,B ,C 三点距离相等,P 为外心.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公故选:A .例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA ⋅OB +OB ⋅OC +OC ⋅OA=( )A.4B.-4C.2D.-2【答案】B【解析】∵直角△ABC 中,∠C =90°,AB =4,O 为△ABC 的外心,∴O 为AB 的中点,即OA =OB =2,∴OA +OB =0 且OA ⋅OB =|OA |⋅|OB|⋅cos180°=-4,∴OA ⋅OB +OB ⋅OC +OC ⋅OA =-4+OC ⋅(OA+OB )=-4+0=-4,故选:B .例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO=( )A.-12B.12C.-1D.23【答案】B【解析】因为点O 为△ABC 的外心,设AB 的中点为D ,连接OD ,则OD ⊥AB ,如图所以AB ⋅AO =AB ⋅(AD +DO )=AB ⋅AD +AB ⋅DO =12AB 2+0=12×12=12.故选:B .题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心【答案】D【解析】HA 2+BC 2=HB 2+CA 2⇒HA 2+BH +HC 2=HB 2+CH +HA2,得BH ⋅HC=CH ⋅HA ⇒HC ⋅BA =0,即HC ⊥BA ;HA 2+BC 2=HC 2+AB 2⇒HA 2+BH +HC 2=HC2+AH +HB 2,得BH ⋅HC =AH ⋅HB ⇒BH ⋅AC =0,即BH⊥AC ;HB 2+CA 2=HC 2+AB 2⇒HB 2+CH +HA 2=HC 2+AH +HB 2,CH ⋅HA =AH ⋅HB ⇒HA ⋅CB =0,即HA ⊥CB,所以H 为△ABC 的垂心.故选:D .例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公面内,则下列说法正确的是( )A.若OA =OB =OC,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC=0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC=0,则I 是△ABC 的垂心【答案】ABCD【解析】对A ,根据外心的定义,易知A 正确;对B ,PB ⋅PA -PC =PB ⋅CA =0⇒PB ⊥CA ,同理可得:PA ⊥CB ,PC ⊥AB ,所以P 是垂心,故B正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意NA +NB =2ND =-NC ,则|NC |=2|ND |,同理可得:|NA |=2|NE |,|NB |=2|NF |,则N 是重心,故C 正确;对D ,由题意,CB ⊥IA ,AC ⊥IB ,BA ⊥IC ,则I 是垂心,故D 正确故选:ABCD .例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA+5HB+6HC =0 ,则cos ∠AHB =_____.【答案】-2211【解析】∵H 是△ABC 的垂心,∴HA ⊥BC ,HA ⋅BC =HA ⋅HC -HB =0,∴HA ⋅HB =HC ⋅HA ,同理可得,HB ⋅HC =HC ⋅HA ,故HA ⋅HB =HB ⋅HC =HC ⋅HA ,∵4HA +5HB+6HC =0 ,∴4HA 2+5HA ⋅HB +6HA ⋅HC=0,∴HA ⋅HB =-411HA 2,同理可求得HA ⋅HB =-12HB 2,∴cos ∠AHB =HB ⋅HA HB HA =-411HA 2HB HA ,cos ∠AHB =HB ⋅HA HB HA =-12HB 2HB HA,∴cos 2∠AHB =211,即cos ∠AHB =-2211.故答案为:-2211.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO=( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC【答案】C【解析】设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO =23BE =23×AE -AB =23×12AC -AB =-23AB +13AC.故选:C .2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与AB AB cos B +ACACcos C 共线【答案】B【解析】如图,设AB 中点为M ,则OM ⊥AB ,∴AO cos ∠OAM =AM ,∴AO ·AB =AO AB cos ∠OAB =AB AO cos ∠OAB =AB ⋅AB2=12AB 2,故A 正确;OA ·OB =OA ·OC 等价于OA ·OB -OC=0等价于OA ·CB =0,即OA ⊥BC ,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直,故B 错误;设BC 的中点为D ,则AG =23AD =13AB +AC =131λAE +1μAF=13λAE +13μAF,∵E ,F ,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;AB ABcos B +AC AC cos C ⋅BC =AB ⋅BC AB cos B +AC ⋅BCAC cos C =AB BC cos π-B AB cos B +AC BC cos C ACcos C =-BC +BC =0,∴AB AB cos B +ACACcos C 与BC 垂直,又∵AH ⊥BC ,公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公∴AB AB cos B +ACACcos C与AH 共线,故D 正确.故选:B .3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD,则3x +y =( )A.73B.2C.83D.3【答案】C【解析】如图,设AC 与BD 相交于点O ,由G 为△BCD 的重心,可得O 为BD 的中点,CG =2GO ,则AG =AO +OG =AO +13OC =43AO =43×12AB +AD =23AB +23AD,可得x =y =23,故3x +y =83.故选:C .4.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.1【答案】B【解析】设△ABC 的重心为点G ,延长AG 交BC 于点M ,则M 为线段BC 的中点,因为D 、G 、E 三点共线,设DG =λDE,即AG -AD =λAE -AD ,所以,AG =1-λ AD +λAE =1-λ xAB +λyAC ,因为M 为BC 的中点,则AM =AB +BM =AB +12BC =AB+12AC -AB =12AB +12AC ,因为G 为△ABC 的重心,则AG =23AM =13AB +13AC,所以,1-λ x =λy =13,所以,1x +1y=31-λ +3λ=3.故选:B .5.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA+λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心 B.内心C.重心D.垂心【答案】C公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【解析】取线段BC 的中点E ,则AB +AC =2AE .动点P 满足:OP =OA+λ(AB +AC ),λ>0,则OP -OA=2λAE 则AP =2λAE .则直线AP 一定通过△ABC 的重心.故选:C .6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或35【答案】D【解析】当O 在AC 上,则O 为AC 的中点,x =0,y =12满足2x +10y =5,符合题意,∴AB ⊥BC ,则cos ∠BAC =AB AC=35;当O 不在AC 上,取AB ,AC 的中点D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥AC ,则AB ⋅AO =AB AO cos ∠OAD =AB ×AO ×ADAO =12AB 2=18,同理可得:AC ⋅AO =12AC 2=50∵AB ⋅AO =AB ⋅xAB +yAC =xAB 2+yAB ⋅AC=36x +60y cos ∠BAC =18,AC ⋅AO =AC ⋅xAB +yAC =xAC ⋅AB +yAC 2=60x cos ∠BAC +100y =50,联立可得36x +60y cos ∠BAC =1860x cos ∠BAC +100y =502x +10y =5,解得x =14y =920cos ∠BAC =13,故选:D .7.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心【答案】D【解析】因为PA ⋅PB=PB ⋅PC ,则PB ⋅PC -PA =PB ⋅AC=0,所以,PB ⊥AC ,同理可得PA ⊥BC ,PC ⊥AB ,故P 是△ABC 的垂心.故选:D .公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心【答案】A【解析】设AB 中点为D ,因为OA +OB +OC =0,所以OA +OB +OC =2OD +OC =0 ,即-2OD =OC ,因为OD ,OC有公共点O ,所以,O ,D ,C 三点共线,即O 在△ABC 的中线CD ,同理可得O 在△ABC 的三条中线上,即为△ABC 的重心;因为PA =PB=PC ,所以,点P 为△ABC 的外接圆圆心,即为△ABC 的外心综上,点O ,P 依次是△ABC 的重心,外心.故选:A9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP=OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】A【解析】根据题意,设BC 边的中点为D ,则AB +AC =2AD,因为点P 满足OP =OA+λAB +AC ,其中λ∈R所以,OP -OA=AP =λAB +AC =2λAD ,即AP =2λAD ,所以,点P 的轨迹为△ABC 的中线AD ,所以,点P 的轨迹一定经过△ABC 的重心.故选:A10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO=13AB +13AC,则∠BAC 等于( )A.30°B.45°C.60°D.90°【答案】C【解析】依题意,因为AO =13AB +13AC ,所以O 也是△ABC 的重心,又因为O 是△ABC 的外心,所以△ABC 是等边三角形,所以∠BAC =60°.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公故选:C .11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC+OC ⋅AB的最大值为( )A.1B.32C.3D.72【答案】C【解析】解:由题知,记△ABC 的三边为a ,b ,c ,因为O 是△ABC 的外心,记AB 中点为D ,则有OD ⊥AB ,所以OD ⋅AB =0且CD =12CA +CB ,所以AC ⋅BC +OC ⋅AB =CA ⋅CB +OD +DC ⋅AB =CA ⋅CB +OD ⋅AB +DC ⋅AB =CA ⋅CB -12CA +CB ⋅AB=CA ⋅CB -12CA +CB ⋅CB -CA=CA ⋅CB +12CA 2-CB 2=b ⋅a ⋅cos ∠ACB +12b 2-a 2=122ab +b 2-a 2 ①,在△ABC 中,由余弦定理得:cos ∠ACB =a 2+b 2-c 22ab=22,即a 2+b 2-c 2=2ab ,即a 2+b 2-2=2ab ,代入①中可得:AC ⋅BC +OC ⋅AB=b 2-1,在△ABC 中,由正弦定理得:a sin A=b sin B =csin C =222=2,所以b =2sin B ≤2,所以AC ⋅BC +OC ⋅AB=b 2-1≤3,当b =2,a =c =2,A =C =45∘,B =90∘时取等,故AC ⋅BC +OC ⋅AB的最大值为3.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公故选:C12.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO=λAB +μBC ,则λ+μ=( )A.23B.34C.56D.35【答案】C【解析】由AO =λAB +μBC 得AO =λOB -OA +μOC -OB,则1-λ OA +λ-μ OB +μOC =0,因为O 为△ABC 的内心,所以BC OA +AC OB +AB OC =0,从而1-λ :λ-μ :μ=5:4:3,解得λ=712,μ=14,所以λ+μ=56.故选:C .13.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心【答案】D【解析】因为|OA |=|OB |=|OC |,所以OA =OB =OC ,所以O 为△ABC 的外心;因为MA ⋅MB =MB ⋅MC=MC ⋅MA ,所以MB ⋅(MA-MC )=0,即MB ⋅CA=0,所以MB ⊥AC ,同理可得:MA ⊥BC ,MC ⊥AB ,所以M 为△ABC 的垂心;因为NA +NB +NC =0 ,所以NA +NB =-NC ,设AB 的中点D ,则NA +NB =2ND,所以-NC =2ND,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND ,所以N 为△ABC 的重心.故选:D .公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB =OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA ,则点O ,P 依次是△ABC 的( )A.重心,垂心 B.重心,内心C.外心,垂心D.外心,内心【答案】C【解析】由于OA =OB =OC ,所以O 是三角形ABC 的外心.由于PA ⋅PB =PB ⋅PC ,所以PA -PC ⋅PB =0,CA ⋅PB=0⇒CA ⊥PB ,同理可证得AB ⊥PC ,BC ⊥PA ,所以P 是三角形ABC 的垂心.故选:C二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =0【答案】BD【解析】对于A ,在△OAB 中,因为D 为AB 的中点,所以OD =12(OA +OB ),所以OA +OB =2OD ,所以A 正确,对于B ,因为△ABC 为正三角形,O 为△ABC 的重心,所以OA =OB =OC ,∠AOB =∠BOC =∠AOC =120°,设OA =OB =OC =a ,则OA ⋅OB +OB ⋅OC +OC ⋅OA =OA ⋅OB cos ∠AOB +OB ⋅OC cos ∠BOC +OC ⋅OAcos ∠AOC=a 2cos120°+a 2cos120°+a 2cos120°=-32a 2≠0,所以B 错误,对于C ,因为AO ⋅AB -AC =0,所以AO ⋅CB =0,所以AO ⊥CB,所以OA ⊥BC ,所以C 正确,对于D ,因为边AB ,BC ,CA 的中点分别为D ,E ,F ,公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公所以OD =12(OA +OB ),OE =12(OB +OC ),OF =12(OA +OC ),因为O 为△ABC 的重心,所以CO =2OD ,所以2OD =-OC,所以OD +OE +OF =12(OA +OB )+12(OC +OB )+12(OA+OC )=OA +OB +OC=2OD +OC=-OC +OC =0 ,所以D 错误,故选:BD16.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =0【答案】BCD【解析】对于A 选项,由题意可知,D 、E 、F 分别为BC 、AC 、AB 的中点,所以,AD =AB +12BC =AB +12AC -AB =12AB +AC ,同理可得BE =12BA +BC ,CF =12CA +CB,所以,AD +BE =12AB +AC +12BA +BC =12AC +BC =-CF ,A 错;对于B 选项,由重心的性质可知AD =32AO ,BE =32BO ,CF =32CO,由A 选项可知,AD +BE +CF =32AO +BO +CO =0,所以,MA +MB +MC =MO +OA +MO +OB +MO +OC =3MO -AO +BO +CO =3MO ,B 对;对于C 选项,由重心的性质可知OD =12AO,OE =12BO ,OF =12CO ,所以,MD +ME +MF=MO +OD +MO +OE +MO +OF =3MO +12AO +BO +CO=3MO ,C 对;对于D 选项,BC ⋅AD =12AC -AB ⋅AC +AB =12AC 2-AB 2,同理可得CA ⋅BE =12BA 2-BC 2 ,AB ⋅CF =12CB 2-CA 2,公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公。

运用平面向量判断三角形的四心公式

运用平面向量判断三角形的四心公式

运用平面向量判断三角形的四心公式三角形是数学中一个基本的概念,它具有丰富的性质及应用。

三角形的四心公式是三角形重要的性质之一,利用平面向量的知识可以简单地求得。

下面将详细介绍此公式,并给出实际问题的应用。

首先,我们需要了解什么是三角形的四心。

在三角形ABC中,围绕着三角形有四个中心,分别是:重心G、垂心H、外心O、内心I,它们的特点如下:重心G:三角形三个顶点到相对边之间连线的交点。

在等边三角形中,重心就是其唯一的交点;垂心H:三角形的三个顶点落垂线的交点之一;外心O:三角形外接圆的圆心,即三角形三边的垂直平分线的交点之一;内心I:内切圆的圆心,即三角形三条边所在直线的垂直平分线的交点之一。

接下来,我们来推导三角形的四心公式。

设三角形ABC的三个顶点分别为A(x1,y1)、B(x2,y2)、C(x3,y3)。

那么,三角形的重心坐标可以表示为:G = (1/3)*(A+B+C) = (x1+x2+x3)/3, (y1+y2+y3)/3垂心坐标不同于重心,但它们的横纵坐标可以表示为:tanA = |(y2-y1)/(x2-x1)|, tanB = |(y3-y2)/(x3-x2)|, tanC = |(y3-y1)/(x3-x1)|由于垂线斜率关于法线斜率取负倒数,所以垂线方程分别为:Hx = (y2-y1)/(x2-x1)*(y3-y2)/(x3-x2)*(y3-y1)/(x3-x1)*(y-y2)+x2;Hy = -(x2-x1)/(y2-y1)*(x3-x2)/(y3-y2)*(x3-x1)/(y3-y1)*(x-x2)+y2;外心坐标可以由三边中垂心的直线求出,考虑到三条中垂线相交于一点,所以求解直线交点即可。

该点重要的性质是与三角形顶点距离相等,于是有:OA = OB = OCOx = (a*x1+b*x2+c*x3)/(a+b+c), Oy =(a*y1+b*y2+c*y3)/(a+b+c) 其中,a = BC^2*(y1-y2)-AB^2*(y3-y2)+AC^2*(y3-y1) b = BC^2*(x2-x1)-AB^2*(x3-x1)+AC^2*(x3-x2) c = (y3-y2)*(x2-x1)-(y2-y1)*(x3-x2)最后,我们将探讨三角形的四心公式的实际应用。

【新整理】三角形“四心”向量形式的结论及证明(附练习答案).doc

【新整理】三角形“四心”向量形式的结论及证明(附练习答案).doc

三角形“四心 ”向量形式的充要条件应用在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有 关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下: 一. 知识点总结 1)O 是 ABC 的重心 OA OB OC 0 ;若 O 是 ABC 的重心,则S 1 BOCSSSAOCAOBBOCS SS3A BC故 OA OB OC 0 ;1()PG PA PB PC G 为 ABC 的重心.32)O 是 ABC 的垂心 OA OB OB OC OC OA ;若 O 是 ABC (非直角三角形 )的垂心,则 SS Stan A tan B tan CBOC: :: :AOCAOB故tan AOA tan BOB tan COC 03)O 是 ABC 的外心 |OA | | OB | | OC | (或若 O 是 ABC 的外心 222OAOBOC )则SS S sin BOC sin AOC sin AOB sin2A : sin2B : sin2CBOC: :: :AO CAO B故sin2AOA sin 2BOB sin2COC 04)O 是内心 ABC 的充要条件是 OA (|A B AB | A C AC ) OB (| B A BA | | B C BC ) | OC ( | C A CA | | C B CB ) |引进单位向量,使条件变得更简洁。

如果记 AB, BC,CA 的单位向量为e ,则刚才 O是 1 ,e ,e23ABC 内心的充要条件可以写成: O A (e e )O B (e e )O C (ee )131223O 是 ABC 内心的充要条件也可以是 aOA bOB cOC 0 若 O 是 ABC 的内心,则 S S S a b cBOC: : : : AOCAO BA故 aO A bOB cO C0或sinAOA sinBOB sinCOC 0;e1| AB | PC |BC | PA |CA| P B 0 P ABC 的内心;e2ABAC向量 ()(0)| AB | | AC |线所在直线 ) ;所在直线过 ABC 的内心( 是 BAC 的角平分BC二. 范例(一).将平面向量与三角形内心结合考查P例1.O 是平面上的一定点, A,B,C 是平面上不共线的三个点,动点PAB AC满足OP OA ( ) ,0, 则P点的轨迹一定通过ABC 的()AB AC(A)外心(B)内心(C)重心(D)垂心AB解析:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为AB e1和e ,又2OP OA AP ,则原式可化为AP (e1 e2) ,由菱形的基本性质知AP 平分BAC ,那么在ABC 中,AP 平分BAC ,则知选 B.AB点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?没见过!想想,一个非零AB向量除以它的模不就是单位向量?此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心 ”向量形式的充要条件应用在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下:一. 知识点总结 1)O 是 ABC 的重心OA OB OC 0 ;S BOC S AOC S AOB 1若 O 是 ABC 的重心,则 S ABCOC 0 ;3 故 OA OB PG 1 ( PA PB PC) G 为 ABC 的重心 .32)O 是 ABC 的垂心OA OBOB OCOC OA ;若 O 是 ABC (非直角三角形 )的垂心,则 S BOC : S AOC : S AOB : :tan A tan B tan C故 tan AOA tan BOBtan COC 0 3)O 是 ABC 的外心 2 OB 2 OC 2| OA | | OB | | OC | (或 OA )若 O 是 ABC 的外心: :: :sin2A : sin2B : sin2C则 S BOCSAOC SAOB sin BOC sin AOC sin AOB故 sin2AOA sin2BOB sin2COC 0 4)O 是内心 ABC 的充要条件是OA ( AB AC ) OB ( BA BC ) OC ( CA CB ) 0| AB | AC | BA | | BC | | CA | | CB |引进单位向量,使条件变得更简洁。

如果记AB, BC,CA 的单位向量为 e 1 , e 2 ,e3 ,则刚才 O 是 ABC 内心的充要条件可以写成: O A ( e 1 e 3 ) O B ( e 1 e 2 )O C (e 2 e 3 ) 0 O 是 ABC 内心的充要条件也可以是 aOAbOB cOC 0若 O 是 ABC 的内心,则S BOC :S AOC :S AOB a : b :cA 故 aOA bOB cOC 0或 sinAOAsinBOB sinCOC 0 ;e 1| AB | PC | BC | PA | CA | PB 0 P ABC 的内心 ;e 2向量 ( ABAC )(0) 所在直线过 ABC 的内心 ( 是 BAC 的角平分 | AB | | AC |C 线所在直线 ) ;B二. 范例 (一).将平面向量与三角形内心结合考查例 1. O 是平面上的一定点, A,B,C 是平面上不共线的三个点,动点PP 满足 OP OA ( AB AC ) ,0, 则 P 点的轨迹一定通过ABC 的()AB AC(A )外心( B)内心( C)重心( D)垂心解析:因为AB 是向量AB 的单位向量设AB与AC 方向上的单位向量分别为e1和e2,又ABOP OA AP ,则原式可化为AP ABC 中, AP 平分BAC ,则知选( e1B.e2 ) ,由菱形的基本性质知AP 平分BAC ,那么在点评:这道题给人的印象当然是“新颖、陌生”,首先AB 是什么?没见过!想想,一个非零AB向量除以它的模不就是单位向量?此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

平面向量与三角形四心问题

平面向量基本定理与三角形四心已知O是ABC 内的一点,BOC , AOC , AOB 的面积分别为S A ,S B ,S C ,求证:S A OA S B OB S C OC 0A如图 2 延长O A与B C边相交于点D 则OBDS A S S SBD BOD ABD BODSCB C DC S SACD COD SACDS C OD SB图1 OD D C OBB C B D OC BCAOSB SBSCOBSBSCSCOCB CDOD SBOD SCODSBODSCODSAOA SBOA SCOASBOASCOASBSC图2SAOD OASB SCSB SASCOASBSBSCOBSBSCSCOCS A OA S B OB S C OC 0推论O是ABC 内的一点,且x OA y OB z OC 0,则S BOC : S COA : S AOB x:y:z有此定理可得三角形四心向量式O是ABC的重心S BOC S S1:1:1OA OB OC0:COA AOB:O是ABC的内心S BOC:S COA:S AOB a:b:c a OA b OB c OC0O是ABC的外心S BOC:S COA:S AOB sin2A:sin2B:sin2Csin2A OA sin2B OB sin2C OC0O是ABC的垂心S BOC:S COA:S AOB tan A:tan B:tan Ctan A OA tan B OB tan C OC0COA D B证明:如图O为三角形的垂心,CD CDtan tan A:tan B DB:AD A,tan BAD DBS BOC:S DB:ADCOAS BOC:S COA tan A:tan B同理得S COA:S tan B:tanC,S BOC:S AOB tan A:tanCAOBS BOC:S COA:S AOB tan A:t an B:tan C奔驰定理是三角形四心向量式的完美统一4.2 三角形“四心”的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1;(2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等;(4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。

平面向量中的四心问题总结

平面向量中的四心问题总结平面向量中的四心问题是一个数学问题,涉及到平面上的四种特殊点,分别是三角形的重心、外心、内心和垂心。

这四个点在平面向量中有着特殊的性质和关系,对于研究平面向量和几何问题有着重要的意义。

首先,三角形的重心是由三角形的三个顶点所确定的三条中线的交点,它的坐标可以表示为三个顶点坐标的平均值。

重心在平面向量中有着重要的作用,它可以表示为三个顶点向量的和的1/3。

重心是三角形的一个重要特征点,具有平衡的作用,对于平面向量的运算和性质有着重要的影响。

其次,三角形的外心是三条外接圆的交点,它的坐标可以表示为三个顶点坐标的中点。

外心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和的一半。

外心是三角形外接圆的圆心,对于三角形的外接圆方程和性质有着重要的作用。

再次,三角形的内心是三条内切圆的交点,它的坐标可以表示为三个顶点坐标的加权平均。

内心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和,但需要根据三角形的边长进行加权。

内心是三角形内切圆的圆心,对于三角形的内切圆方程和性质有着重要的作用。

最后,三角形的垂心是三条高的交点,它的坐标可以表示为三个顶点坐标的加权平均。

垂心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和,但需要根据三角形的边长进行加权。

垂心是三角形的一个重要特征点,对于三角形的高、垂心连线等性质有着重要的影响。

综上所述,平面向量中的四心问题涉及到三角形的重心、外心、内心和垂心,它们在平面向量中有着特殊的性质和关系,对于研究平面向量和几何问题有着重要的意义。

这些特殊的点和它们的性质不仅在数学理论中有着重要的应用,也在实际问题中有着重要的意义。

平面向量与三角形四心问题

平面向量与三角形四心问题平面向量基本定理与三角形四心已知O是ABC内的一点,BOC, AOC, AOB的面积分别为S A,S B,S C,求证:S ?OA S B ?OB S C ?OC 0如图D则2延长OA与BC边相交于点BD DC S A BD S BOD S ABD S BODS ACD S COD S A CD S CODSCS图OCS C邑OBS B S C S B S COCOD —S B S C OAOD S BOD OA S BOAS CODS COAS BOD S COD S AS BOA S COA S B S C■ ■ ■ +S A ?OA S B ?OB S C ?OC 0推论O 是 ABC 内的一点,且 x ?oA y ?oB z ?oC 0 , 则S BOC : S COA : S AOB x: y: z有此定理可得三角形四心向量式 0是ABC 的重心S B0C : S COA : S AOB 1:1:1 0A O B O C 0是ABC 的内心- ------- -------- ► -KS BOC : S COA : S AOB a:b:ca ?0Ab ?0Bc ?0C 0是ABC 的外心S BS COAS BS BS COBS CS BS COCS BOC :S COA :S AOB sin 2A:sin 2B :sin 2C sin 2A ?OA sin 2B ?OB sin2C ?OC 0O是ABC 的垂心S BOC : S COA : S AOB tan A: tan B: tanC tan A ?OA tan B ?OB tanC ?OC 0S BOC : S COA tan A:tan B同理得SCOA : S AOBtan B :ta nCS BOC : S COA : S AOB tan A: tan B : tan C奔驰定理是三角形四心向量式的完美统一4.2三角形“四心”的相关向量问题如图O 为角形的垂心,tanA CD ,tanB C D tan A: tanB ADDBDB: ADS BOC :S COA DB : AD,SBOC : S AOBtan A: tanCB•知识梳理:2已知O是平面上一定点,的三个点,动点P满足O A B,C是平面上不共线uuu uuu uuurOA (AB AC),(0,),四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2: 1;(2)垂心:高线的交点,高线与对应边垂直;⑶内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等;⑷ 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档