第2章导数与微分

合集下载

第二章 导数与微分教案

第二章 导数与微分教案

M (x0 , f (x0 )) 处的切线方程为 y f (x0 ) f (x0 )( x x0 )
如 果 f (x0 ) 0 , 那 么 曲 线 y f (x) 在 点 M (x0 , f (x0 )) 处 的 法 线 方 程 为
y
f (x0 )
f
1 (x (x0 )
x0 )
3
例 4 求曲线 y x 2 的通过点(1,4)的切线方程.
《 数学基础 》教案
标题
2.1 导数的概念
【教学目的要求】掌握和理解导数的定义,可导与连续的关系,导数的几何意义
编号
【教学重点】可导与连续的关系,导数几何意义
【教学难点】导数的几何意义
【教学方法】讲授 实施步骤
【教学时数】 教学内容提要
时间
【课外作业】
1
教 学 内 容 (教 学 时 数: ) 一、 导数概念的引例
既然导数是比值 y 当 x 0 的极限,那么,下面两个极限 x
lim y lim f (x0 x) f (x0 ) , lim y lim f (x0 x) f (x0 )
x x0
x0
x
x x0
x0
x
分别叫做函数 y f (x) 在点 x0 处的左导数和右导数,且分别记为 f (x0 ) 和
8
sin 2 x 1 cos2 x
y
1 cos x
1 cos x 1 cos x
y (1 cosx) sin x
三、反函数求导法则 若函数 x ( y) 在某区间 I y 内可导、单调且( y) 0 ,则 它的反函数 y f (x) 在对应区间 I x 内也可导,且
f (x) 1 ( y)
备注:

《导数与微分》word版

《导数与微分》word版

第二章 导数与微分教学要求:正确理解导数概念及其几何意义.知道导数值与导数的联系与区别.熟练掌握求导方法,记住求导的基本公式及求导法那么(四那么运算法那么,反函数、复合函数、隐函数、参数式函数的求导法那么,对数求导法).知道利用定义求导数的方法,会求分段函数分界点处的导数.会计算较简单的导数应用题.会求曲线在某点的切线和法线方程;会求一些物理量的变化率;会计算一些简单的相关变化率问题.理解高阶导数的定义,熟练掌握求二阶导数的方法.会求一些简单的初等函数(如1,,sin ,ln ,ln(1)x e x x x x). 正确理解微分的定义及其与导数的关系.理解微分与函数增量的关系,会用微分近似计算函数改变量和函数值的近似值.理解一阶微分形式不变性.明确可微(可导)与连续之间的关系.教学重点:导数与微分的概念;导数的几何意义和作为变化率的各种实际意义及其应用;函数连续、可导、 可微相互之间的关系;各类函数的求导法那么与求导方法;基本初等函数的导数与微分公式. 教学难点:复合函数求导法那么与高阶导数求导方法的应用.数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:(1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.内容分布图示★ 引言★ 变速直线运动的瞬时速度★ 平面曲线的切线★ 导数的定义 ★ 关于导数的几点说明★利用定义求导数与求极限 ★例1★例2★ 例3★ 例4★ 例5 ★ 例6 ★ 例7★ 左右导数★ 例8 ★ 例9★ 导数的几何意义 ★ 例10 ★ 例11★ 导数的物理意义★ 可导与连续的关系★ 例12 ★ 例13 ★ 例14★ 内容小结★ 课堂练习★返回内容要点:一、引例: 引例1: 变速直线运动的瞬时速度; 引例2: 平面曲线的切线二、导数的定义:xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00000 注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值x y ∆∆是函数y 在以0x 和x x ∆+0为端点的区间上的平均变化率,而导数0|x x y ='那么是函数y 在点0x 处的变化率,它反映了函数随自变量变化而变化的快慢程度.根据导数的定义求导,一般包含以下三个步骤:1. 求函数的增量: );()(x f x x f y -∆+=∆2. 求两增量的比值:x x f x x f x y ∆-∆+=∆∆)()(; 3. 求极限 .lim0xy y x ∆∆='→∆ 三、左右导数定理1 函数)(x f y =在点0x 处可导的充要条件是:函数)(x f y =在点0x 处的左、右导数均存在且相等.四、用定义计算导数五、导数的几何意义六、函数的可导性与连续性的关系定理2 如果函数)(x f y =在点0x 处可导,那么它在0x 处连续.注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.例题选讲:导数概念的应用例1 求函数3x y =在1=x 处的导数)1(f '.例2试按导数定义求下列各极限(假设各极限均存在).(1);)2()2(lim ax a f x f a x --→ (2) ,)(lim 0xx f x → 其中.0)0(=f 用定义计算导数例3 求函数C x f =)((C 为常数)的导数.例4设函数,sin )(x x f = 求)(sin 'x 及4|)(sin π='x x . 例5 求函数n x y =(n 为正整数)的导数.例6 求函数)1,0()(≠>=a a a x f x 的导数.例7 求函数)1,0(log ≠>=a a x y a 的导数.左右导数例8 求函数⎩⎨⎧=,,sin )(x x x f 00≥<x x 在0=x 处的导数. 例9 设)(x f 为偶函数,且)0(f '存在. 证明.0)0(='f例10求等边双曲线x y 1=在点⎪⎭⎫ ⎝⎛2,21处的切线的斜率, 并写出在该点处的切线方程和法线方程. 例11 求曲线x y =在点)2,4(处的切线方程.例12 讨论函数||)(x x f =在0=x 处的连续性与可导性.例13 讨论⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x x x x f 在0=x 处的连续性与可导性. 例14设函数⎩⎨⎧<≤+<=,10,10,)(2x x x a x f 问a 取何值时,)(x f 为可导函数. 注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第十一章第一节的Koch 雪花曲线描述的函数),这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.课堂练习1. 函数)(x f 在某点0x 处的导数)(0x f '与导函数)(x f '有什么区别与联系?2. 设)(x ϕ在a x =处连续, )()()(22x a x x f ϕ-=, 求)(a f '.3. 求曲线32x x y -=上与x 轴平行的切线方程.莱布尼茨 (Friedrich , Leibniz ,1597~1652)-----博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一们博学多才的学者。

第2章 一元函数微分学

第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。

《高数数学(上)》-导数与微分

《高数数学(上)》-导数与微分
(2)设函数 u1(x),u2 (x),u3(x) un (x) 可导, f (x) u1(x)u2 (x) un (x),写出 f (x) 的求导公式.
解 (1)根据导数定义并运用极限的运算法则
u(x)v(x) lim u(x x)v(x x) u(x)v(x)
x0
x
u(x x)v(x x) u(x)v(x x) u(x)v(x x) u(x)v(x)
定理2.1
函数f (x)在x0 处可导的充要条件是左、右导数都存在
且相等.
7
一、 导数的定义
例 1 若函数f (x)在x=0 处连续,且 lim f (x) 存在, x0 x
证明f (x)在x=0 处可导.
证法一
设 lim f (x) A(A为常数),则 x0 x
lim f (x) lim x f (x) 0 A 0,
证 若函数y f (x)在x0 处可导,由导数的定义可得
lim
x x0
f (x) f (x0 ) x x0
f (x0 ),所以利用函数极限与无穷小之间的
关系可得
f (x) f (x0 ) x x0
f
( x0
)
,lim x x0
0,即
f (x) f (x0 ) f (x0 )(x x0 ) (x x0 )
x
所以k 1 时,f (x) 在 x 0 处可导. 2
12
本讲内容
01 导数的定义 02 导数的几何意义 03 可导与连续的关系
二、 导数的几何意义
几何意义
若函数 f (x)在x x0 处可导,f (x0 ) 是曲线 y f (x) 在点 (x0 , f (x0 )) 处切线的斜率.
x0

安徽专升本 高数讲义 第二章导数与微分第四讲

安徽专升本 高数讲义 第二章导数与微分第四讲


4

(2) y x e x x e x

e x xe x 1 x e x
y 1 x e x 1 x e x

e x (1 x )e x 2 x e x
(3) y arctan x
x

y e x sin( x y ) x

x x y e y e cos( x y ) x y 1

y e x y e x cos( x y) x y 1
y e x y e x cos( x y ) y cos( x y ) 1
1 1 x2 2 2 2 2 1 x (1 x ) (1 x 2 ) 2
2. 设
y a0 x n a1 x n 1 a2 x n 2 an , 求y ( n ) .
解 y' na0 x n 1 (n 1)a1 x n 2 (n 2)a2 x n 3 an 1 ,
y 0 2e0 cos0 2


一、计算下列各函数的二阶导数:
1. 2 x3 x 4 y x
2. y x arctan x
1 1 1 3. y x 3 3 3 1 3 x 3 3 x 3 9 x 二、计算下列各函数的n 阶导数:
可导,并且:
y f ( u( x )) f ( u) u( x )
隐含数求导法则:
( 1) 方程两边关于 x 求导,求导过程中把 y 看作
中间变量,得到一个关于 y的方程。
(2) 从上述方程中解出 y

高等数学2导数与微分3.

高等数学2导数与微分3.

《高等数学》上册教案第二章导数与微分第二章导数与微分§3、高阶导数教学目的:熟练初等函数的求导方法,了解高阶导数的概念,会求简单的n阶导数教学重点:高阶导数的求法教学难点:高阶导数的归纳方法变速直线运动的质点的路程函数为s=s(t),则速度为v(t)=s′(t)=lim加速度a(t)=lims(t+Δt)−s(t) Δt→0ΔtΔvv(t+Δt)−v(t),即a(t)=v′(t)=[s′(t)]′。

=limΔt→0ΔtΔt→0Δt定义、设函数y=f(x)在点x的邻域内一阶导数f′(x)存在,如果极限Δx→0limf′(x+Δx)−f′(x) Δx存在,称函数y=f(x)在点x二阶可导,并称极限值为y=f(x)在点x的二阶导数,记d2yd⎛dy⎞d2f作:2=⎜⎟,2,f′′(x)或y′′ 。

dxdx⎝dx⎠dx同理,如果将二阶导数f′′(x)作为函数,可以定义出三阶导数:d3yf′′(x+Δx)−f′′(x)=lim 3Δx→0dxΔxd3yd⎛d2y⎞d3fdn−1y⎟,3,y′′′或f′′′(x);一般利用函数y=f(x)的n−1阶导数n−1,记作:3=⎜2⎟⎜dxdxdx⎝dx⎠dxdnydnyf(n−1)(x+Δx)−f(n−1)(x)(n)可以定义出n阶导数:n=lim;并记为:y,n 等;称函数的Δx→0dxΔxdx二阶及其以上阶的导数为高阶导数。

通常记作:y′,y′′,y′′′,y(4),y(5),L,y(n),L。

d2s由此定义,质点的加速度可以写作:a(t)=s′′(t)=2。

dt例1.设函数y=sinx2,求y′′。

解:y′=2xcosx2,y′′=2xcosx2()′=2(cosx2+x−2xsinx2=2cosx2−4x2sinx2 ())《高等数学》上册教案第二章导数与微分例2.求函数y=ln(x++x2)的二阶导数。

解:y′=1x++x2⋅(1+12x2+x2=1+x32 −x122 y′′=(y′)′=( ′=−(1+x)⋅2x=−222+x(1+x)注:求二阶导数之前,应该将一阶导数作适当的化简、整理。

大一上学期《高等数学》知识整理-第二章 导数与微分

大一上学期《高等数学》知识整理-第二章导数与微分第二章导数与微分1.导数的定义。

对于一个在x0的某个邻域内有定义的函数,当自变量x在x0处取得增量Δx时,相应地函数y取得增量Δy=f(x0+Δx)-f(x0),如果当Δx→x0时Δy/Δx的极限存在,则称函数y=f(x)在x0点可导,并称这个极限为函数y=f(x)在x0处的导数。

通俗地讲,就是描述某个函数在某点增长或下降的瞬时速度,这个“速度”的单位为y每x,即每变化一个单位的x,y变化多少。

与物理学中定义米/秒是一个性质的。

把函数f(x)的导数看做是关于x的函数,即得到函数f(x)的导函数f'(x),简称导数。

(以上的“x0”中的“0”都是x 的下标,下同。

)导数也可以用微分的形式记作dy/dx,这个后面会提及。

2.在导数的定义中,如果Δx从左边趋向x0或从右边趋向x0,那么对应的导数被称为左导数和右导数。

只有f(x)在x0处的左导数和右导数相等,才能称f(x)在x0处可导。

举个例子,绝对值函数y=|x|,其在x=0处的左导数是-1(即x每增大1,y减小1),右导数是1,两者不相等,所以该函数在x=0处不可导。

如图所示。

绝对值函数y=|x|的导数是符号函数y=sgn(x),但是不包含x=0(单独的符号函数y=sgn(x),当x=0时,y=0)。

3.用定义法可以求初等函数的导数,本质上就是求极限。

比如说求y=x²在x=a处的导数,即就是求Δx→0时((a+Δx)²-a²)/Δx的极限。

求得结果为2a了解即可,还不如求导公式来得快。

下图为求该极限的过程,也就是用定义求y=x²的导数的过程。

4.函数的可导性与连续性的关系。

我们有定理:如果函数y=f(x)在点x0处可导,则f(x)在x0处必连续。

但反过来就不一定了。

归纳为一句话:连续不一定可导,可导一定连续。

y=|x|就是一个例子。

该函数在定义域内处处连续但是在x=0时不可导(因为左右极限不一样)。

《高等数学》第2章导数与微分2-4隐函数

第四节 隐函数及由参数方程所确 定的函数的导数 相关变化率
• 一、隐函数的导数 • 二、对数求导法 • 三、由参数方程所确定的函数的导数 • 四、相关变化率 • 五、小结 思考题
一、隐函数的导数
定义:由方程所确定的函数 y y( x)称为隐函数 .
y f ( x) 形式称为显函数 .
F(x, y) 0
发射炮弹, 其运动方程为
x v0t cos ,
y
v0t
sin
1 2
gt 2 ,

(1)炮弹在时刻
t
的运动方向
0
;
(2)炮弹在时刻
t
的速度大小
0
.

(1)

t
时刻的运动方向即
0
y v0
vy
v vx
轨迹在 t0时刻的切线方向,
可由切线的斜率来反映 . o
x
dy dx
(v0t sin (v0t cos
4 x3 y xy 4 y3 y 0
(1)
代入 x 0, y 1得
y
x0 y1
1; 4
将方程 (1)两边再对x求导得
12 x2 2 y xy 12 y2 ( y)2 4 y3 y 0
代入 x 0,
y 1,
y
x0 y1
1 4

y
x0 y1
1. 16
二、对数求导法
观察函数
y
(
ln y ln( x 1) 1 ln( x 1) 2 ln( x 4) x 3
上式两边对 x求导得
y y
1 x1
1 3( x 1)
x
2
4
1
y
( x 1)3 x ( x 4)2 e x

第二章 导数与微分 第二节 函数的和、差、积、商的求导法则


证明略证明略二例题分析的导数tan的导数cossincossincoscossincosseccossec的导数tanseccossincotcsc内容小结1和差积商的求导法则2重要结论cotcsctansec
函数的和、 第二节 函数的和、差、积、商的求导法则
一、和、差பைடு நூலகம்积、商的求导法则
定理2.1 如 函 u(x), v(x)在 x处 导 则 定理 果 数 点 可 , 它
u u′v − uv′ (3) ( )′ = . 2 v v
证明(略)
二、例题分析
求y = x 4 − cos x + 3 x + ln 5的导数 例1:
解:
y′ = ( x 4 )′ − (cos x)′ + (3 x )′ + (ln 5)′
= 4 x + sin x + 3 ln 3
3 x
例2: 求 y = 2 x sin x 的导数 . 解:
即 (tan x)′ = sec2 x.
同理可得
(cot x)′ = − csc2 x.
例4:求 y = sec x 的导数 . 解
1 y ′ = (sec x )′ = ( )′ cos x − (cos x )′ sin x = sec x tan x . = = 2 2 cos x cos x
(1) (u ± v)′ = u′ ± v′
证明(略) 此法则可推广到任意有限项的情形. 例如,
(2)
(uv)′ = u′v + u v′
证: 设 f (x) = u(x)v(x) , 则有
u(x + h)v(x + h) − u(x)v(x) f (x + h) − f (x) = lim f ′(x) = lim h→0 h→0 h h

第2章 导数与微分 题目

第二章导数与微分一、考试大纲考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。

当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 二、主要内容三、基础题1.如果()f x 为偶函数,且(0)f '存在,证明(0)0f '=. 2.求曲线cos y x =上点1(,)32π处的切线方程和法线方程.3.讨论下列函数在0x =处的连续性与可导性:(1) |sin |y x = ; (2)21sin ,00,0x x y xx ⎧≠⎪=⎨⎪=⎩. 4.已知sin ,0(),0x x f x x x <⎧=⎨≥⎩,求'()f x .5.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .6.以初速度0v 竖直上抛的物体,其上升高度s 与时间t 的关系是2012s v t gt =-,求: (1) 该物体的速度;(2) 该物体达到最高点的时刻.7.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数y =的导数.8.设()f x 可导,求下列函数y 的导数dy dx: (1)2()y f x =; (2) 22(sin )(cos )y f x f x =+.9.若()f x ''存在,求下列函数y 的二阶导数22d ydx:(1) 2()y f x = (2) ln[()]y f x =.10.求由下列方程所确定的隐函数的导数:dydx(1)+-=3330x y ax ; (2)=-1y y xe . 11.求下列参数方程所确定的函数的导数:(1) 23x aty bt⎧=⎪⎨=⎪⎩; (2)2223131at x t at t ⎧=⎪+⎪⎨⎪⎪+⎩. 12.求下列参数方程所确定的函数的二阶导数22d ydx:(1)cos sin x a ty b t =⎧⎨=⎩ (2)32t tx e y e-⎧=⎨=⎩ 13.求下列函数的微分:(1) =sin2y x x ; (2) 2ln (1)y x =-. 14.计算下列反三角函数值的近似值::(1) arcsin 0.5002; (2) arccos 0.4995.四、提高题1.试从1dx dy y ='导出: (1) 223"(')d x y dy y =-; (2) 32353(")''''(')d x y y y dy y -=. 2.求下列函数所指定的阶的导数:(1) cos ,x y e x =求 (4)y ; (2) ,y xshx =求(100)y ;(3) 2sin 2,y x x =求 (50)y . 3.求函数2sin y x =的n 阶导数的一般表达式.4.求曲线222333x y a +=在点)处的切线方程. 5.求下列方程所确定的隐函数y 的二阶导数22d ydx:(1) tan()y x y =+:(2)1yy xe =+.6.用对数求导法求下列函数的导数:(1);(2)1xx y y x ⎛⎫==⎪+⎝⎭7.求下列参数方程所确定的函数的三阶导数33d ydx:(1) 231,;x t y t t ⎧=-⎨=-⎩ (2) 2ln(1),arctan .x t y t t ⎧=+⎨=-⎩ 8.溶液自水深18cm 顶直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中,开始时漏斗中盛满了溶液,已知当溶液在漏斗中深为12cm 时,其表面下降的速率为1/min cm ,问此时圆柱形筒中溶液表面上升的速率为多少?9.设3,0()||0,0x x f x x x ⎧≠⎪=⎨⎪=⎩,求复合函数()[()]x f f x Φ=的导数,并讨论'()x Φ的连续性.三、考研题1.(01,3分) 设=(0)0f ,则()f x 在点0x =可导的充要条件为(A) 201lim (1cosh)h f h→-存在. (B) 01lim (1)h h f e h →-存在.(C) 201lim (1sinh)h f h→-存在. (D) 01lim [(2h)()]h f f h h →-存在.2.(04.4分)设函数()f x 连续,且'(0)0,f >则存在0δ>,使得(A )()f x 在(,0)δ-内单调增加. (B) ()f x 在(0,)δ内单调减少.(C) 对任意的(0,)x δ∈有()(0).f x f > (D) 对任意的(,0)x δ∈-有()(0).f x f >3.(02.3分)已知函数()y y x =由方程2610y e x y x ++-=确定,则(0)y ''= .4.(03.12分)设函数()y y x =在(,)-∞+∞内具有二阶导数,且'0,()y x x y ≠=是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程322(sin )0d xdx y x dy dy ⎛⎫++= ⎪⎝⎭变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件3(0)0,'(0)2y y ==的解. 5.(92.3分) 设22()3||f x x x x =+,则使()(0)n f 存在的最高阶数n 为(A) 0. (B) 1. (C) 2. (D) 3.6.(05.3分)设函数()lim n f x =()f x 在(,)-∞+∞内 ( )( A )处处可导 ( B )恰有一个不可导点. ( C ) 恰有两个不可导点 (D)至少有三个不可导点. 7.(06.3分)设函数()=y f x 具有二阶导数,且'''>>∆()0,()0,f x f x x 为自变量x 在点0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应增量与微分,若0x ∆>,则 ( )( A )0.dy y <<∆ ( B )0y dy <∆<. ( C )0y dy ∆<<. ( D ) 0.dy y <∆< 8.(98.3分)函数23()(2)||f x x x x x =---不可导点的个数是(A )3. (B ) 2 ( C ) 1 . ( D ) 0 9.(97.3分) 对数螺旋线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为.10.(04.3分) 曲线ln y x =上与直线1x y +=垂直的切线方程为 .四、测试题1.填空题(1).已知函数()y y x =由方程2610y e xy x ++-=确定,由''=(0)y . (2.)设函数()y y x =由方程2xy x y =+所确定,则0|x dy == .(3) 曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,上对应于6t π=点处的法线方程是 .(4). 设函数()y y x =由方程2cos()1x y e xy e +-=-所确定,则曲线()y f x =在点(1,0)处的法线方程为 .2.单项选择题(1).设函数()y y x =在任意点x 处的增量2,1y xy a x∆∆=++且当0x ∆→时,a 是x ∆的高阶无穷小,(0),y π=则(1)y 等于(A) 442.().().().B C e D e πππππ(2).()f x 在0x 处存在左、右导数,则()f x 在0x 点( A ) 可导 ( B ) 连续. ( C ) 不可导. ( D ) 不连续.(3).设''0lim ()lim ()x x f x f x a +-→→==,则(A) ()f x 在0x x =处必可导且'0().f x a = ( B ) ()f x 在0x x =处必连续,但未必可导. ( C ) ()f x 在0x x =处必E 有极限但未必连续. ( D ) 以上结论都不对. (4).设()f x 可导,且满足 0(1)(1)lim 1,2x f f x x→=-=-则曲线()y f x =在(1,(1))f 处的切线斜率为: ( A )2. ( B ) -2. (C )12. ( D ) -1.3.讨论2|2|,1(),1x x f x x x -≥⎧⎪=⎨<⎪⎩的可导性.4.求下列函数的导数:(1)0y a => (2) tan (tan )x x y x x =+(3)y =(4)|(3)|y x x x =-5.求下列隐函数的导数'y(1)y x x y = (2)2y x x y =6.求参数式函数的导数'y :2arctan 25tx ty ty e =⎧⎪⎨-+=⎪⎩ 7.求下列函数的微分:(1)(0)x y x x =>(2)21ln(12sin ),(2y x x θθ=-+为常数).8.设()f x 在[,)a +∞可导,lim ()x f x →+∞存在,→+∞'=lim ()x f x b ,求证:0b =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档