一元线性回归分析
一元线性回归分析案例

i=1
(2)当 r>0 时,称两个变量_正__相___关__;
当 r<0 时,称两个变量_负__相__关__;
当 r=0 时,称两个变量线性不相关.
【教材拓展】 1.相关关系与函数关系的异同 共同点:二者都是指两个变量间的关系; 不同点:函数关系是一种确定性关系,体现的是因果关系,而相关关系是一种非确 定性关系,体现的不一定是因果关系,也可能是伴随关系. 2.从散点图看相关性 正相关:样本点分布在从左下角到右上角的区域内; 负相关:样本点分布在从左上角到右下角的区域内. 3.回归直线 y=bx+a 必过样本点的中心.
答案:68
1.四名同学根据各自的样本数据研究变量 x,y 之间的相关关系,并求得回归直线方
程,分别得到以下四个结论:
①y 与 x 负相关且 y=2.347x-6.423;②y 与 x 负相关且 y=-3.476x+5.648;③y 与
x 正相关且 y=5.437x+8.493;④y 与 x 正相关且 y=-4.326x-4.578.
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合 y 与 x 的关系,请用相关
系数 r 加以说明;(系数精确到 0.001)
(2)建立 y 关于 x 的回归方程 y=bx+a(系数精确到 0.01);如果该公司计划在 9 月份
实现产品销量超 6 万件,预测至少需投入促销费用多少万元(结果精确到 0.01).
4.线性回归方程
假设样本点为(x1,y1),(x2,y2),…,(xn,yn),如果用x-表示x1+x2+n …+xn,用-y表
示y1+y2+n …+yn,则可以求得 b=
(x1-x-)(y1--y)+(x2-x-)(y2--y)+…+(xn-x-)(yn--y) (x1-x-)2+(x2-x-)2+…+(xn-x-)2
一元线性回归

12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。
通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。
一元回归分析是研究两个变量之间的相关关系的方法。
如果两个变量之间的关系是线性的,这就是一元线性回归问题。
一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。
(2)对经验公式的可信程度进行检验,判断经验公式是否可信。
(3)利用已建立的经验公式,进行预测和控制。
12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。
通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。
例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。
从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。
于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。
设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。
图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。
2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。
我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。
由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。
一元线性回归分析案例

统计检验通过后,最后是利用回归模型,根据自变量去估计、 预测因变量。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
案例1:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
x(0.01%) 104 180 190 177 147 134 150 191 204 121
y(min)
100 200 210 185 155 135 170 205 235 125
(1)y与x是否具有线性相关关系;
(2)如果具有线性相关关系,求回归直线方程;
(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
n
n
y bˆ
(xi
i1 n
x)(yi y) (xi x)2
xi
nx y
i
i1
n
xi2
n
2
x
,
i1
i1
aˆ y bˆx
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
2、由散点图知道身高和体重有比较 好的线性相关关系,因此可以用线性 回归方程刻画它们之间的关系。
课题:选修2-3 8.5 回归分析案例
分析:由于问题中 要求根据身高预报 体重,因此选取身 高为自变量,体重 为因变量.
1. 散点图;
再冷的石头,坐上三年也会暖 !
2.回归方程: yˆ 0.849x 85.172 身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
一元线性回归模型(教学设计)(人教A版2019选择性必修第三册)

8.2.1一元线性回归模型教学设计一、课时教学内容本节的主要内容是一元线性回归模型,它是线性回归分析的核心内容,也是后续研究两变量间的相关性有关问题的基础.通过散点图直观探究分析得出的直线拟合方式不同,拟合的效果就不同,它们与实际观测值均有一定的偏差.在经历用不同估算方法描述两个变量线性相关关系的过程中,解决用数学方法刻画从整体上看各观测点到拟合直线的距离最小的问题,让学生在此基础上了解更为科学的数据处理方式——最小二乘法,有助于他们更好地理解核心概念“经验回归直线”,并最终体现回归方法的应用价值.就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽.了解最小二乘法思想,将其与各种估算方法进行比较,体会它的相对科学性,既是统计学教学发展的需要,又是在体会此思想的过程中促进学生对核心概念进一步理解的需要.最小二乘法思想作为本节课的核心思想,由此得以体现,而回归思想和贯穿统计学科的随机思想,也是本节课需要渗透的.二、课时教学目标1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.三、教学重点、难点1.教学重点:一元线性回归模型的基本思想,经验回归方程,最小二乘法.2.难点:回归模型与函数模型的区别,随机误差产生的原因与影响.四、教学过程设计环节一创设情境,引入课题问题1如何求经验回归方程?提示:求经验回归方程的一般步骤如下:(1)画出散点图,依据问题所给的数据在平面直角坐标系中描点,观察点的分布是否呈条状分布,即是否在一条直线附近,从而判断两变量是否具有线性相关关系;(2)当两变量具有线性相关关系时,求系数的最小二乘估计书",写出经验回归方程;(3)进行残差分析,分析模型的拟合效果,不合适时,分析错因,予以纠正.【师生互动】教师让学生举手回答问题,并及时给予纠正.【设计意图】复习上节课所学知识,为本节课解决与线性回归分析有关的实际问题做好铺垫。
一元线性回归分析案例

求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
解:1、选取身高为自变量x,体重为因变量y,作散点图:
2、由散点图知道身高和体重有比较好的线性相 关关系,因此可以用线性回归方程刻画它们之间 的关系。
第17页/共39页
课题:选修2-3 8.5 回归分析案例
分析:由于问题中要求根 据身高预报体重,因此选 取身高为自变量,体重为 因变量.
再冷的石头,坐上三年也会暖 !
1. 散点图;
2.回归方程: yˆ 0.849x 85.172 身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
本例中, r=0.798>0.75.这表明体重与身高有很强的线性相关关系,从而也表明我们 建立的回归模型是有意义的。
xi2
2
nx
,......(2)
i 1
i 1
其中x
1 n
n i 1
xi ,
y
1 n
n i 1
yi .
(x, y) 称为样本点的中心。
第8页/共39页
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
然后,我们可以通过残差 e1, e2 , , en 来判断模型拟合的效果,
判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。
表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。
编号 1
2
3
4
5
一元线性回归分析与多元线性回归分析比较

多元线性回归分析 t检验
tj
ˆj j t(nk1) Vˆa( r ˆj)
T f t (n2) 2
P值
p
至少一个x j 对因变量
有影响。 P值
p
方程的显著性检验
一元线性回归分析
相关系数 r L xy L xx L yy
拟合优度
TSS=ESS+RSS
t (−0.62)(12.11) t (−5.27)(2.66)(4.88)
R R SE F R20 . 9, S1 . E.2 . 0, F41. 4 76 166 2 0 . 9 ,2 8 0 . 9, 7 . . 9 5 . 8 , 2. 7 6
输出结果的变量关系
Dependent Variable: Y Method: Least Squares Date: 10/25/11 Time: 21:03 Sample: 1 12 Included observations: 12
n k 1
F检验
F
ESS/k RSS/nk 1
输出结果表达式
一元线性回归分析
多元线性回归分析
y x x yˆ t 0.76 20. 940xt43 ˆ 2 . 0 0 5 6 . 41 0 1 . 6 72 4
S.E.(1.22)(0.03)
S.E.(3.80)(2.41)(3.61)
经典假设
ut
xt
uj
xi
参数经济意义
一元线性回归分析
1
反映了x影响y的程度, 包括大小和方向。
多元线性回归分析
1,2,,k
在其他解释变量 xj,i j 保持不变时,解释变量 x i 每变动一个单位对因变 量y均值的影响程度。
第二章 一元线性回归
n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value
•
是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值
•
它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型
一元线性回归分析实验报告
一元线性回归在公司加班制度中的应用院(系):专业班级:学号姓名:指导老师:成绩:完成时间:一元线性回归在公司加班制度中的应用一、实验目的掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境SPSS21.0 windows10.0 三、实验题目一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。
经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示y3.51.04.02.01.03.04.51.53.05.01. 画散点图。
2. x 与y 之间大致呈线性关系?3. 用最小二乘法估计求出回归方程。
4. 求出回归标准误差σ∧。
5. 给出0β∧与1β∧的置信度95%的区间估计。
6. 计算x 与y 的决定系数。
7. 对回归方程作方差分析。
8. 作回归系数1β∧的显著性检验。
9. 作回归系数的显著性检验。
10.对回归方程做残差图并作相应的分析。
11.该公司预测下一周签发新保单01000x =张,需要的加班时间是多少?12.给出0y的置信度为95%的精确预测区间。
13.给出()E y的置信度为95%的区间估计。
四、实验过程及分析1.画散点图如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。
2.最小二乘估计求回归方程用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下:0.1180.004y x =+3.求回归标准误差σ∧由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差:2=2SSEn σ∧-,2σ∧=0.48。
4.给出回归系数的置信度为95%的置信区间估计。
由回归系数显著性检验表可以看出,当置信度为95%时:0β∧的预测区间为[-0.701,0.937], 1β∧的预测区间为[0.003,0.005].0β∧的置信区间包含0,表示0β∧不拒绝为0的原假设。
一元线性回归
一元线性回归
一、回归分析的基本思想 二、一元线性回归的数学模型 三、可化为一元线性回归的问题 四、小结
一、回归分析的基本思想
确定性关系 变量之间的关系 相 关 关 系
S πr 2
身高和体重
确定性关系 相关关系
相关关系的特征是:变量之间的关系很难用一 种精确的方法表示出来.
确定性关系和相关关系的联系
n
xi x
2 ( x x ) j j 1 n
var( y ) i
2
2
2 ( x x ) j j 1 n
1 xi x ˆ 0 y 1 x ( x ) yi n lxx
1 xi x ˆ Var ( 0 ) x lxx n
由于存在测量误差等原因,确定性关系在实际 问题中往往通过相关关系表示出来;另一方面,当对 事物内部规律了解得更加深刻时,相关关系也有可 能转化为确定性关系. 回归分析——处理变量之间的相关关系的一 种数学方法,它是最常用的数理统计方法.
回 归 分 析
线性回归分析
非线性回归分析
一元线性回归分析
多元线性回归分析 β1 = Nhomakorabea(x
i=1 n
n
i
x )( yi y ) ,
2 ( x x ) i i=1
β0 = y β1 x,
1 n 1 n 其中 x xi , y yi . n i 1 n i 1
记
l xx = ( xi x )2 ,
i=1
n
l yy = ( yi y )2 ,
2 x x x 2 2 i ˆ ˆ ˆ cov(y , 1 ) x cov(1 , 1 ) x nlxx l xx l xx
一元线性回归,方差分析,显著性分析(1)
一元线性回归分析及方差分析与显著性检验某位移传感器的位移x 与输出电压y 的一组观测值如下:(单位略)设x 无误差,求y 对x 的线性关系式,并进行方差分析与显著性检验。
(附:F 0。
10(1,4)=,F 0。
05(1,4)=,F 0。
01(1,4)=)回归分析是研究变量之间相关关系的一种统计推断法。
一. 一元线性回归的数学模型在一元线性回归中,有两个变量,其中 x 是可观测、可控制的普通变量,常称它为自变量或控制变量,y 为随机变量,常称其为因变量或响应变量。
通过散点图或计算相关系数判定y 与x 之间存在着显著的线性相关关系,即y 与x 之间存在如下关系:(1) 通常认为且假设与x 无关。
将观测数据(i=1,……,n)代入(1)再注意样本为简单随机样本得:(2)称(1)或(2)(又称为数据结构式)所确定的模型为一元(正态)线性回归模型。
对其进行统计分析称为一元线性回归分析。
模型(2)中 EY=,若记 y=E(Y),则 y=a+bx,就是所谓的一元线性回归方程,其图象就是回归直线,b 为回归系数,a 称为回归常数,有时也通称 a 、b 为回归系数。
设得到的回归方程bx b y+=0ˆ 残差方程为N t bx b y yy v t t t i ,,2,1,ˆ0 =--=-= 根据最小二乘原理可求得回归系数b 0和b 。
对照第五章最小二乘法的矩阵形式,令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=N N N v v v V b b b x x x X y y y Y 2102121ˆ111则误差方程的矩阵形式为V bX Y =-ˆ对照X A L V ˆ-=,设测得值 ty 的精度相等,则有 Y X X X bT T 1)(ˆ-= 将测得值分别代入上式,可计算得,)())((2112111xxxy Nt t N t t Nt t Nt t Nt t t l l x x N y x y x N b =--=∑∑∑∑∑=====x b y x x N y x x y x b N t Nt t t t Nt t N t t N t t N t t -=--=∑∑∑∑∑∑======1122111120)())(())((其中211122111121121211)(1)())((1)()()(1)(11∑∑∑∑∑∑∑∑∑∑∑∑============-=-=-=--=-=-===Nt t N t Nt t t yy Nt t Nt t Nt t t t Nt t xy Nt t Nt t Nt t xx N t tNt ty N y y y l y x N y x y y x x l x N x x x l yNy xN x二、回归方程的方差分析及显著性检验问题:这条回归直线是否符合y 与x 之间的客观规律回归直线的预报精度如何解决办法:方差分析法—分解N 个观测值与其算术平均值之差的平方和;从量值上区别多个影响因素;用F 检验法对所求回归方程进行显著性检验。