《大学物理》习题训练与详细解答一(质点运动学练习一、二)

合集下载

大学物理学练习册参考答案全

大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。

大学物理(赵近芳)练习册答案

大学物理(赵近芳)练习册答案

练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.1. D ;2. -g /2 , ()g 3/322v3. 4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)4. 17.3 m/s, 20 m/s .5. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)6. 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvt=1s 时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 21.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

大学物理第2章 质点动力学习题(含解答)

大学物理第2章 质点动力学习题(含解答)

第2章质点动力学习题解答2-1如图所示,电梯作加速度大小为a 运动。

物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。

解:(a )ma mg N =-)(a g m N +=(b )ma N mg =-)(a g m N -=(c )ma mg F =-)(a g m F +=2-2如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。

该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。

解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。

ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3一质点质量为2.0kg ,在O x y 平面内运动,•其所受合力j t i t F 232+=(SI ),0=t 时,速度j v 20=(SI ),位矢i r20=。

求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s时质点的速度和位矢。

解:j t i t m Fa+==223 223t a x =,00=x v ,20=x ⎰⎰=t v x dt t dv x 0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a +=(2)j t i t v )22(223++=,1=t s 时,j i v2521+= j t t i t r )26()28(34+++=,1=t s 时,j i r613817+=2-4质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

大学物理活页作业答案(全套)

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m j i v-= )/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=ωths2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mgk m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理解题指导与练习 答案

大学物理解题指导与练习  答案

·练习一 质点运动学1、C2、B3、D4、3 m, 5 m5、28(/)a j m s →→=-,2(52)(410)()r t i t j m →→→=+-+ 6(/)m s 7、22(3),162(/),8(/),x y v i j m s a i m s →→→→→=-=+=8、解:(1)000(68)v t t v dva dv adt t dt dt=⇒==-⎰⎰⎰2038v v t t ⇒-=-23810(/)v t t m s ⇒=-+,(2)0200(3810)x t t x dxv dx vdt t t dt dt=⇒==-+⎰⎰⎰320410x x t t t ⇒-=-+324101()x t t t m ⇒=-++9、解:如图,设灯与人的水平距离为1x ,灯与人头影子的水平距离为x ,则:人的速度:10dx v dt =,人头影子移动的速度:dx v dt =。

而:1H x x H h =-1dx dx H dt H h dt ⇒=-, 即:0Hv v H h=- 。

10、解(1)324()t rad θ=+2212212()24()d d t rad s t rad s dt dtθθωβ--⇒==⋅⇒==⋅22422.4(),14.4()n a R t m s a R t m s τβω--⇒==⋅==⋅ 则2t s =时, 224.8(),230.4()n a m s a m s τ--⇒=⋅=⋅(2)加速度和半径成45︒角,即n a a τ=,即42.414.4t t =32.4/14.41/6t ⇒==代入得: 2.67rad θ=练习二 牛顿力学1、C2、A3、C4、D5、6 N, 4 N6、解:(1)0,T mg α==;(2)sin ,cos T ma T mg αα==;则:tan /,a g T α==7、解 小球受重力mg 、绳的张力T 及斜面的支持力N 。

大学物理同步训练第2版第一章质点运动学详解

3
运动。
它的总加速度的大小为 答案: 6 10/5 分析:
m/s2。
s R 0.5 0.2t 3 , v ds / dt 0.6t 2 v(1) 0.6 m/s
at dv / dt 1.2t at (1) 1.2 m/s2, an (1) v(1) 2 / R 3.6 m/s2 6 2 a at2 an 1.22 3.62 10 m/s2 5
dr R sin ti R sin tj dt 2 2 v v R sin t R cos t R ,故 at dv / dt 0 v
x R cos t , y R sin t ,消去时间 t 可得 x 2 y 2 R 2 ,故质点的运动轨迹

d 2x d 2 y d 2z d 2r dv dv 2 2 (5) (1) (2) ( 3) (4) dt dt dt 2 dt dt dt 2
(A)只有(1)正确 (C)只有(4) (6)正确 答案:B 分析:由加速度的定义 (B)只有(1) (5)正确
v2 R
d 2s dt 2
2
同步训练答案
第一章 质点力学
许照锦
(5)正确。 8. (☆)以初速 v0 将一物体斜向上抛,抛物角为 ,忽略空气阻力,则物体飞行轨道最高 点处的曲率半径是 (A) v0 sin / g 答案:C 分析:物体到达最高点时的速度为 v0 cos (竖直方向上的速度降为 0) ,此时物体的总加速 度为 g,方向竖直向下,即此时物体的法向加速度为 an g 。由法向加速度公式可得
2 3

(A) 0 t 1s 内,质点沿 x 轴负向作加速运动 (B) 1 t 2 s 内,质点沿 x 轴正向作减速运动 (C) t 2 s 时,质点沿 x 轴负向作减速运动 (D)质点一直沿 x 轴正向作加速运动 答案:B

大学物理第1章 质点运动学习题解答

第1章 质点运动学习题解答1-9 质点运动学方程为k j e i e r t t ˆ2ˆˆ22++=- .⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。

解:⑴由运动学方程可知:1,2,,22====-xy z e y e x t t ,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。

⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆j i ˆ2537.7ˆ2537.7+-=。

所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x rγβα轴夹角与轴夹角与轴夹角与1-10 ⑴k t j t R i t R r ˆ2ˆsin ˆcos ++= ,R 为正常数,求t=0,π/2时的速度和加速度。

⑵kt j t i t r ˆ6ˆ5.4ˆ332+-= ,求t=0,1时的速度和加速度(写出正交分解式)。

解:⑴kj t R i t R dt r d v ˆ2ˆcos ˆsin /++-== jR a k i R v iR a k j R v j t R i t R dt v d a t t t t ˆ|,ˆ2ˆ|,ˆ|,ˆ2ˆ|.ˆsin ˆcos /2/2/00-=+-=-=+=∴--======ππ ⑵kt j dt v d a k t j t i dt r d v ˆ36ˆ9/,ˆ18ˆ9ˆ3/2+-==+-== ; kj a k j i v j a i v t t t t ˆ36ˆ9|,ˆ18ˆ9ˆ3|,ˆ9|,ˆ3|1100+-=+-=-======1-12质点直线运动的运动学方程为x=acost,a 为正常数,求质点速度和加速度,并讨论运动特点(有无周期性,运动范围,速度变化情况等)解:t a dt dv a t a dt dx v t a x x x x cos /,sin /,cos -==-=== 显然,质点随时间按余弦规律作周期性运动,运动范围:a a a a v a a x a x x ≤≤-≤≤-≤≤-,,1-13图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图像,试说明每种运动的特点(即速度,计时起点时质点的位置坐标,质点位于坐标原点的时刻)解:质点直线运动的速度 dt dx v /=,在x-t 图像中为曲线斜率。

大学物理习题课1 质点动力学


v
6k /(mA )
大学物理习题课(一)
6.一水平放置的飞轮可绕通过中心的竖直轴转动,飞轮的辐条上 装有一个小滑块,它可在辐条上无摩擦地滑动.一轻弹簧一端固 定在飞轮转轴上,另一端与滑块联接.当飞轮以角速度ω旋转时, 弹簧的长度为原长的f倍,已知ω=ω0时,f =f0,求ω与f的函数 关系. 解:设弹簧原长为 l ,劲度系数为 k ,r 为运动半径
2 0
大学物理习题课(一)
(2)根据功能原理有:
1 2 mgh mv fs 2 1 2 mv mgh mgh ctg
2
v 2 gh(1 ctg ) 8.16m / s
1
2
大学物理习题课(一)
l
v0
v M
m
大学物理习题课(一)
解:(1) 因穿透时间极短,故可认为物体未离开平衡位 置.因此,作用于子弹、物体系统上的外力均在竖直方向, 故系统在水平方向动量守恒.令子弹穿出时物体的水平 速度为 v 有:
mv0 mv Mv
2
v m(v0 v) / M 3.13m / s T Mg Mv / l 26.5N
mrw2 k (r l ) mfw2 k ( f 1)
2
r fl
(1)
mf0 w0 k ( f0 1) (2)
ω与f的函数关系:
fw2 f 1 2 f0 1 f 0 w0
大学物理习题课(一)
7.质量为M的木块在光滑的固定斜面上,由A点从静止开始下滑, 当经过路程 l 运动到B点时,木块被一颗水平飞来的子弹射中,子 弹立即陷入木块内.设子弹的质量为m,速度为 v ,求子弹射中 木块后,子弹与木块的共同速度.

大学物理第一章质点运动学习题解详细完整

第一章 质点运动学1–1 描写质点运动状态的物理量是 ;解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”;1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动;解:匀速率;直线;匀速直线;匀速圆周;1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 )m/s 102=g ;解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________;解:将s t 1=代入t x 2=,229t y -=得2=x m,7=y ms t 1=故时质点的位置矢量为j i r 72+=m由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v m/s质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2;1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________;解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=s ;1–6 一质点作半径R =的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计;则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________;解: t =2s 时,质点的角位置为=⨯+⨯=23223θ22rad由t t 323+=θ得任意时刻的角速度大小为36d d 2+==t tθω t =2s 时角速度为 =+⨯=3262ω27rad/s任意时刻的角速度大小为t t12d d ==ωα t =2s 时角加速度为 212⨯=α=24rad/s 2t =2s 时切向加速度为=⨯⨯==2120.1t αR a 24m/s 2t =2s 时法向加速度为=⨯==22n 270.1ωR a 729m/s 2;1–7 下列各种情况中,说法错误的是 ;A .一物体具有恒定的速率,但仍有变化的速度B .一物体具有恒定的速度,但仍有变化的速率C .一物体具有加速度,而其速度可以为零D .一物体速率减小,但其加速度可以增大解:一质点有恒定的速率,但速度的方向可以发生变化,故速度可以变化;一质点具有加速度,说明其速度的变化不为零,但此时的速度可以为零;当加速度的值为负时,质点的速率减小,加速度的值可以增大,所以A 、C 和D 都是正确的,只有B 是错误的,故选B;1–8 一个质点作圆周运动时,下列说法中正确的是 ;A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化;而切向加速度a t 是否变化,要视具体情况而定;质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化;由此可见,应选B;1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: 1t r d d 2t d d r 3t s d d 422d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是 ;A .只有1,2正确B .只有2,3正确C .只有3,4正确D .只有1,3正确 解:tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中为质点的径向速度,是速度矢量沿径向的分量;t d d r 表示速度矢量;t s d d 是在自然坐标系中计算速度大小的公式;22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 是在真角坐标系中计算速度大小的公式;故应选C;1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=其中a 、b 为常量,则该质点作 ;A .匀速直线运动B .变速直线运动C .抛物线运动D .一般曲线运动解:由j i r 22bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a ;因质点的速度变化,加速度的大小和方向都不变,故质点应作变速直线运动;故选B;1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2SI,则小球运动到最高点的时刻是 ;A .t =4sB .t =2sC .t =8sD .t =5s解:小球到最高点时,速度应为零;由其运动方程为S =5+4t –t 2,利用ts d d =v 得任意时刻的速度为 t 24-=v令024=-=t v ,得s 2=t故选B;1–12 如图1-1所示,小球位于距墙MO 和地面NO 等远的一点A ,在球的右边,紧靠小球有一点光源S 当小球以速度V 0水平抛出,恰好落在墙角O 处;当小球在空中运动时,在墙上就有球的影子由上向下运动,其影子中心的运动是 ;A .匀速直线运动B .匀加速直线运动,加速度小于gC .自由落体运动D .变加速运动解:设A 到墙之间距离为d ;小球经t 时间自A 运动至B;此时影子在竖直方向的位移为S ;t V x 0=, 221gt y = 根据三角形相似得d S x y //=,所以得影子位移为2/V gt x yd S == 由此可见影子在竖直方向作速度为02V g 的匀速直线运动;故选A;1–13 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向;今在A 船上设置与静止坐标系方向相同的坐标系x 、y 方向单位矢量用i 、j 表示,那么在A 船上的坐标系中,B 船的速度以m/s 为单位为 ;A .j i 22+B .j i 22+-C .j i 22--D .j i 22+解:选B 船为运动物体,则B 船相对于地的速度为绝对速度j 2=v ,A 船相对于地的速度为牵连速度i 2=0v ,则在A 船的坐标系中,B 船相对于A 船的速度为相对速度v ';因v v v 0'+=,故j i 22+-='v ,因此应选B1–14 2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星;在人类成功登陆火星之前,人类为了探测距离地球大约5103⨯km 的月球,也发射了一种类似四轮小车的月球探测器;它能够在自动导航系统的控制下行走,且每隔10s 向地球发射一次信号;探测器上还装着两个相同的减速器其中一个是备用的,这种减速器可提供的最大加速度为5m/s 2;某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物;此时地球上的科学家必须对探测器进行人工遥控操作;下表为控制中心的显示屏的数据:图1-1y BM9:10:40 12 已知控制中心的信号发射与接收设备工作速度极快;科学家每次分析数据并输入命令最少需要3s;问: 1经过数据分析,你认为减速器是否执行了减速命令2假如你是控制中心的工作人员,应采取怎样的措施加速度需满足什么条件,才可使探测器不与障碍物相撞请计算说明;解:1设在地球和月球之间传播电磁波需时为0t ,则有s 10==c s t 月地从前两次收到的信号可知:探测器的速度为m/s 21032521=-=v 由题意可知,从发射信号到探测器收到信号并执行命令的时刻为9:10:34;控制中心第3次收到的信号是探测器在9:10:39发出的;从后两次收到的信号可知探测器的速度为m/s 2101232=-=v 可见,探测器速度未变,并未执行命令而减速;减速器出现故障;(2)应启用另一个备用减速器;再经过3s 分析数据和1s 接收时间,探测器在9:10:44执行命令,此时距前方障碍物距离s =2m;设定减速器加速度为a ,则有222≤=as v m,可得1≥a m/s 2,即只要设定加速度1≥a m/s 2,便可使探测器不与障碍物相撞;1–15 阿波罗16号是阿波罗计划中的第十次载人航天任务1972年4月16日,也是人类历史上第五次成功登月的任务;1972年4月27日成功返回;照片图1-2显示阿波罗宇航员在月球上跳跃并向人们致意;视频显示表明,宇航员在月球上空停留的时间是;已知月球的重力加速度是地球重力加速度的1/6;试计算宇航员在月球上跳起的高度;解:宇航员在月球上跳起可看成竖直上抛运动,由已知宇航员在空中停留的时间为,故宇航员从跳起最高处下落到月球表面的时间为t =,由于月球的重力加速度是地球的重力加速度的1/6,即g g 61M =,所以 m 43.0725.08.961212122M =⨯⨯⨯==t g h1–16 气球上吊一重物,以速度0v 从地面匀速竖直上升,经过时间t 重物落回地面;不计空气对物体的阻力,重物离开气球时离地面的高度为多少;解:方法一:设重物离开气球时的高度为x h ,当重物离开气球后作初速度为0v 的竖直上抛运动,选重物离开气球时的位置为坐标原点,则重物落到地面时满足图1-220021)(x x x gt h t h --=-v v 其中x h -表示向下的位移,0v x h 为匀速运动的时间,x t 为竖直上抛过程的时间,解方程得 gt t x 02v = 于是,离开气球时的离地高度可由匀速上升过程中求得,其值为)2()(000gt t t t h x x v v v -=-= 方法二:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动;显然总位移等于零,所以0)(21200=--v v x h t g t 解得 )2(00g t t h x v v -=1–17 在篮球运动员作立定投篮时,如以出手时球的中心为坐标原点,作坐标系Oxy 如图1–3所示;设篮圈中心坐标为x ,y ,出手高度为H ,于的出手速度为0v ,试证明球的出手角度θ应满足⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ才能投入;证明:设出手后需用时t 入蓝,则有 θt t x x cos 0v v ==20221sin 21gt t gt t y y -=-=θv v 消去时间t ,得 θgx gx αx θgx θx y 22022022202tan 22tan cos 21tan v v v --=-= 图1-3整理得02tan tan 22022202=++-v v gx y θx θgx解之得⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ1–18 有一质点沿x 轴作直线运动,t 时刻的坐标为32254t t .x -=SI;试求:1第2s 内的平均速度;2第2s 末的瞬时速度;3第2s 内的路程;解:1将t =1s 代入32254t t .x -=得第1s 末的位置为m 5.225.41=-=x将t =2s 代入32254t t .x -=得第2s 末的位置为m 0.22225.4322=⨯-⨯=x则第2s 内质点的位移为0.5m 2.5m -m 0.212-==-=∆x x x第2s 内的平均速度-0.5m/s 10.5=-=∆∆=t x v 式中负号表示平均速的方向沿x 轴负方向;2质点在任意时刻的速度为269d d t t tx -==v 将s 2=t 代入上式得第2s 末的瞬时速度为 m/s 626292-=⨯-⨯=v式中负号表示瞬时速度的方向沿x 轴负方向;3由069d d 2=-==t t tx v 得质点停止运动的时刻为s 5.1=t ;由此计算得第1s 末到末的时间内质点走过的路程为m 875.05.25.125.15.4321=-⨯-⨯=s 第末到第2s 末的时间内质点走过的路程为m 375.10.25.125.15.4322=-⨯-⨯=s则第2s 内的质点走过的路程为m 25.2375.1875.021=+=+=s s s1–19 由于空气的阻力,一个跳伞员在空中运动不是匀加速运动;一跳伞员在离开飞机到打开降落伞的这段时间内,其运动方程为)e (/k t k t c b y -+-=SI,式中b 、c 和k 是常量,y 是他离地面的高度;问:1要使运动方程有意义,b 、c 和k 的单位是什么2计算跳伞员在任意时刻的速度和加速度;解:1由量纲分析,b 的单位为m,c 的单位为m/s,k 的单位为s;2任意时刻的速度为)e 1(d d /k t c ty -+-==v 当时间足够长时其速度趋于c -;任意时刻的加速度为k t kc t a /ed d -==v 当时间足够长时其加速度趋于零;1–20 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v K t-=,式中K 为常量;试证明电艇在关闭发动机后又行驶x 距离时的速度为Kx -=e 0v v 其中0v 是发动机关闭时的速度; 证明:由2d d v v K t-=得 2d d d d d d v v v v K xt x x -== 即x K d d -=vv 上式积分为⎰⎰-=x x K 0d d 0v v v v 得 Kx -=e 0v v1–21 一质点沿圆周运动,其切向加速度与法向加速度的大小恒保持相等;设θ为质点在圆周上任意两点速度1v 与2v 之间的夹角;试证:θe 12v v =;证明:因R a 2n v =,ta d d t v =,所以 t R d d 2v v =dsv v d d = 即vv d d =R s 对上式积分⎰⎰=2d d 0v v v v s R s得 12ln v v =R s 12ln v v ==R s θ 所以 θe 12v v =1–22 长为l 的细棒,在竖直平面内沿墙角下滑,上端A 下滑速度为匀速v ,如图1-4所示;当下端B 离墙角距离为xx<l 时,B 端水平速度和加速度多大解:建立如图所示的坐标系;设A 端离地高度为y ;∆AOB 为直角三角形,有222l y x =+ 方程两边对t 求导得 0d d 2d d 2=+t y y t x x所以B 端水平速度为 t y x y t x d d d d -=v xy =v x x l 22-= B 端水平方向加速度为v 222d /d d /d d d x tx y t y x t x-=232v x l -=1–23 质点作半径为m 3=R 的圆周运动,切向加速度为2t ms 3-=a ,在0=t 时质点的速度为零;试求:1s 1=t 时的速度与加速度;2第2s 内质点所通过的路程;图1-4解:1按定义ta d d t v =,得 t a d d t =v ,两端积分,并利用初始条件,可得 ⎰⎰⎰==t t t a t a 0t 0t 0d d d v v t t a 3t ==v当s 1=t 时,质点的速度为 m/s 3=v方向沿圆周的切线方向;任意时刻质点的法线加速度的大小为2222n m/s 39t Rt R a ===v 任意时刻质点加速度的大小为242n 2t m/s 99t a a a +=+=任意时刻加速度的方向,可由其与速度方向的夹角θ给出;且有22t n 33tan t t a a ===θ 当s 1=t 时有24m/s 23199=⨯+=a ,1tan =θ注意到0t >a ;所以得︒=45θ2按定义ts d d =v ,得t s d d v =,两端积分可得 ⎰⎰⎰==t t t s d 3d d v故得经t 时间后质点沿圆周走过的路程为C t s +=223 其中C 为积分常数;则第2s 内质点走过的路程为:m 5.4)123()223()1()2(22=+⨯-+⨯=-=∆C C s s s1–24 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v ;求飞机仍沿原正方形对地轨道飞行时周期要增加多少解:依题意,设飞机沿如图1-5所示的ABCD 矩形路径运动,设矩形每边长为l ,如无风时,依题意有 vl T 4= 1 图1-5当有风时,设风的速度如图1-5所示,则飞机沿AB 运动时的速度为v v v k V +=+,飞机从A 飞到B 所花时间为vv k l t +=1 2 飞机沿CD 运动时的速度为v v v k V -=-,飞机从C 飞到D 所花时间为vv k l t -=2 3 飞机沿BC 运动和沿DA 运动所花的时间是相同的,为了使飞机沿矩形线运动,飞机相对于地的飞行速度方向应与运动路径成一夹角,使得飞机速度时的速度v 在水平方向的分量等于v k -,故飞机沿BC 运动和沿DA 运动的速度大小为222v v k -,飞机在BC 和DA 上所花的总时间为22232v v k lt -= 4综上,飞机在有风沿此矩形路径运动所花的总时间,即周期为2223212vv v v v v k l k l k l t t t T -+-++=++=' 5 利用1式,5式变为)1(4)4()1(4)11(22222k k T k k T T --≈--+='飞机在有风时的周期与无风时的周期相比,周期增加值为43)1(4)4(222T k T k k T T T T =---≈'-=∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 3 2 3 x x0 t 10 t 3 3
6.如图2所示,质点p在水平面内沿一半径为R =2m的圆轨道转动,转动的角速度ω与时间的关系 2 示为 kt (k为常数)。 已知t=2s时,质点P的速度值为32m/s. 试求 t=1s时,质点P的速度与加速度的大小
w v k 2 2 4 t Rt
(A)(1)、(4)是正确的 (C) (2) 是正确的 (B) (2)、(4)是正确的 (D) (3)是正确的
3.一质点沿x轴作直线运动,它的运动方程为 x=3+5t+6t2-t3 (SI) 则 5m/s (1) 质点在t=0时刻的速度V0=________; (2)加速度为零时,该质点的速度v=________. 17m/s
dv dv 2 kv t 2 ktdt dt v v t 1 1 2 ( ) ( kt ) v0 0 v 2
.
3.一质点作直线运动,其坐标x与时间t的函数曲线如图 3 秒瞬时速度为零;在第 1所示,则该质点在第______ 3 6 ______ 秒至第______ 秒间速度与加速度同方向。
大学物理Ⅳ-习题课1
练习一 质点运动学(一)
1.一质点在平面上作一般曲线运动,其瞬时速度为 , 瞬时速率为v,某一段时间内的平均速度为v ,平均速 率为v ,它们之间的关系必定有 [ ] D (A) | v | = v, | v | = v (B) | v | ≠v, | v | = v (C) | v | ≠v,
r 平均速度: v , t s 平均速率: v , t dr 瞬时速度: v , dt d r ds 瞬时速率: v dt dt
v
|v≠ | v
(D)
|v =|v, | v≠|
v
2.质点作曲线运动,r 表示位置矢量, s表示路程, at表示 切向加速度,下列表达式中: D (1)dv/dt=a; (2) dr/dt=v; v (3) ds/dt=v; (4) d /d t=at.
y ·
路程:s vt
P O
x
5. 有一质点沿x轴作直线运动,t时 刻的坐标为 x=4.5t2-2t3 (SI), 试求: (1)第2秒内的平均速度; s s2 s1 -0.5m/s v (2)第2秒末的瞬时速度;
dx v 9t 6t 2 dt
t t
-6m/s 2.25m


5.一质点沿x轴运动,其加速度为a=4t(SI),已 知t=0时,质点位于x0=10m处,初速度v0=0。试求 其位置与时间的关系式。
v t dv 2 a dv 4tdt v 2t v0 0 dt x t dx 2 3 2 v dx 2t dt x x0 t x0 0 dt 3
(3)第2秒内的路程
由v 9t 6t 2可得,t 1.5s时,v 0, 质点反向运动 因此路程S x(1.5) x(1) x(2) x(1.5) 2.25m
6.什么是矢径?矢径和位移矢量之间有何关系?怎 样选取坐标原点才能够使两者一致?
若把坐标原点选在质点的初始位置,则 r0 0
任意时刻质点对此位置的位移为
答:矢径是从坐标原点至质点所在位置的有向线段。 位移是由前一时刻质点所在位置引向后一时刻质点 所在位置的有向线段,它们的一般关系为 r r r0
r
r r ,即此时
既是矢径也是位移。
练习二 质点运动学(二)
1.一质点从静止出发沿半径R=1m的圆周运动, 其角加速度随时间t的变化规律是 β=12t2-6t (SI) 3 2 4 t 3 t (rad / s) 则质点的角速度 __________ 2 12t 6t (m / s) 切向加速度 at=___________.
dx v 5 12t 3t 2 dt
dv a 12 6t dt
4.一质点以πm·s-1的匀速率作半径为5m的圆周运动,则 该质点在5s内: 10m (1)位移的大小是______________; (2)经过的路程是_______________. 5m
2 V= r, T T =10s, 5s内运动半个圆周
V(m/s)
5 2 10 x t t 9 3
3
t(s)
图1
4.当一列火车以10m/s的速度向东行使时,若相对 于地面竖直下落的雨滴在列车的窗子上形成的雨迹 偏离竖直方向30º ,则雨滴相对于地面的速率是 10 3(m / s) ;相对于列车的速率是________ __________ 。 20(m/s) 已经知道车速是向东, 大小10m/s,水滴方向 竖直向下,合速度方向 知道与竖直方向成 30o
d lim t 0 t 源自tdv d at R R dt dt
2.某物体的运动规律为dv/dt=-kv2t ,式中的k为 大于零的常数,当t=0时,初速为v0,则速度v与时 间t的函数关系是 [ C ] 1 2 1 2 (A) v kt v0 (B) v kt v0 2 2 2 2 1 kt 1 (C) 1 kt 1 . ( D) v 2 v0 v 2 v0
.
v Rw 8m / s
v 2 an 32m / s R
2
图2
dv a 16m / s 2 dt
2 a a2 an 16 5 35.8m / s 2
相关文档
最新文档