高一数学函数公式总结

合集下载

高一数学上册全部公式

高一数学上册全部公式

高一数学上册全部公式一、集合。

1. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。

- 若A中的元素都在B中,则A⊆ B(A是B的子集);若A⊆ B且B⊆ A,则A = B。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

2. 函数的表示法。

- 解析法:用数学表达式表示两个变量之间的对应关系。

- 图象法:用图象表示两个变量之间的对应关系。

- 列表法:列出表格来表示两个变量之间的对应关系。

3. 函数的性质。

- 单调性。

- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性。

- 对于函数y = f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于函数定义域内的任意一个x,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。

4. 一次函数y = kx + b(k≠0)- 斜率k=(Δ y)/(Δ x),k决定函数的单调性,当k>0时,函数单调递增;当k<0时,函数单调递减。

- b为截距,是直线与y轴交点的纵坐标。

5. 二次函数y = ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 对称轴方程x =-(b)/(2a)- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

高一数学三角函数公式

高一数学三角函数公式

高一数学三角函数公式高一数学三角函数公式大全为了帮助大家学习好三角函数公式,下面是店铺帮大家整理的高一数学三角函数公式大全,仅供参考,大家一起来看看吧。

高一数学三角函数公式11.两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2.和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB3.半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))4.倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a高一数学三角函数公式2(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2)(arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2(arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1)(arcothx)'=1/(x^2-1) (|x|>1)(arsechx)'=1/(x(1-x^2)^1/2)(arcschx)'=1/(x(1+x^2)^1/2)高一数学三角函数公式3公式一:设α为任意角,终边相同的角的同一三角函数的值相等:cos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的`三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:cos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)。

高一数学必修一三角函数所有公式

高一数学必修一三角函数所有公式

一、基本概念三角函数是描述直角三角形中角和边关系的一类函数,是初中阶段学习的重要内容。

在高一数学必修一中,三角函数是一个重要的知识点,学生们需要掌握相关的公式和性质。

下面我们将详细介绍高一数学必修一中涉及三角函数的所有公式。

二、正弦函数和余弦函数的定义1. 正弦函数的定义:在直角三角形中,对于一个锐角θ,其正弦值定义为对边与斜边的比值,即sinθ=对边/斜边。

2. 余弦函数的定义:在直角三角形中,对于一个锐角θ,其余弦值定义为邻边与斜边的比值,即cosθ=邻边/斜边。

三、正弦函数和余弦函数的基本性质1. 周期性:正弦函数和余弦函数的周期都是2π。

2. 奇偶性:正弦函数是奇函数,即sin(-x)=-sinx,余弦函数是偶函数,即cos(-x)=cosx。

3. 范围:正弦函数和余弦函数的值域都是[-1, 1]。

四、正切函数和余切函数的定义1. 正切函数的定义:在直角三角形中,对于一个锐角θ,其正切值定义为对边与邻边的比值,即tanθ=对边/邻边。

2. 余切函数的定义:在直角三角形中,对于一个锐角θ,其余切值定义为邻边与对边的比值,即cotθ=邻边/对边。

五、正切函数和余切函数的基本性质1. 周期性:正切函数和余切函数的周期都是π。

2. 正切函数的奇性:tan(-x)=-tanx3. 余切函数的奇性:cot(-x)=-cotx4. 正切函数和余切函数没有定义域和值域的限制。

六、三角函数的互余关系1. 正弦和余弦的互余关系:sin(π/2-θ)=cosθ2. 正切和余切的互余关系:tan(π/2-θ)=cotθ七、三角函数的诱导公式1. 正弦诱导公式:sin(A±B)=sinAcosB±cosAsinB2. 余弦诱导公式:cos(A±B)=cosAcosB∓sinAsinB3. 正切诱导公式:tan(A±B)=(tanA±tanB) / (1∓tanAtanB)八、其他性质和公式1. 三角恒等式2. 三角函数的图像和性质3. 三角函数的应用以上就是高一数学必修一中涉及三角函数的所有公式。

高一数学常用公式及知识点总结

高一数学常用公式及知识点总结

三角函数值在各象限的符号
sin a
cos a
tan a
(2)、同三角函数的基本关系
平方关系: sin2 a cos2 a =
商数关系: tan a =
(3)、特殊角的三角函数值表
a 的角度 0o 30o 45o 60o 90o 120o 135o 150o 180o 270o 360o
a 的弧度
函数。(即 f (x1) f (x2 ) 0 ) x1 x2
3、周期性
对于定义域内任意的 x,都有 f (x T ) f (x) ,则 f (x) 的周期为

四、三角函数、三角恒等变换和解三角形
1、三角函数
(1)、三角函数的定义:______________________________________________
=
=
T2 : tan 2 =
(9)、辅助角公式
asin x bcos x a2 b2 ( a sin x b cos x)
a2 b2
a2 b2
a2 b2 (sin x cos cos x sin)
a2 b2 sin(x )(tan b ) a
cos(a) = cos( a) = cos( a) =
2
cos( a) =
2
tan( a) = tan(a) =
tan( a) =
(记忆口诀:奇变偶不变,符号看象限。奇偶指 的奇偶数倍,变与不变指三
2 角函数名称的变化,若变则是正弦变余弦,正切变余切;符号是根据角的范围 以及三角函数在四个象限的正负来判断新三角函数的符号(无论 a 是多大的角, 都将 a 看成锐角))
2、对数运算法则及换底公式( a 0且a,M1>0, N>0 )

高一数学公式归纳大全

高一数学公式归纳大全

高一数学公式归纳大全
高一数学主要涉及的知识点有:函数、解析几何、三角函数、不等式等。

以下是一些常用的公式归纳:
1.函数- 函数的定义:f(x) = {x | A→B},其中A、B是数集,→表示对应关系。

- 函数的性质:单调性、奇偶性、周期性等。

- 基本初等函数:y = 指数函数、对数函数、反比例函数、正弦函数、余弦函数、正切函数等。

2. 解析几何- 坐标系:直角坐标系、平面直角坐标系。

- 直线方程:斜率截距式、一般式、点斜式。

- 圆的方程:圆的标准方程、一般方程、参数方程。

- 椭圆、双曲线、抛物线的方程及性质。

3. 三角函数- 三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

- 三角函数的性质:周期性、奇偶性、单调性等。

- 三角函数的公式:和差化积、积化和差、倍角公式、半角公式、万能公式等。

- 解三角形:正弦定理、余弦定理、正弦公式、余弦公式。

4. 不等式- 基本不等式:a² + b²≥ 2ab,(a > , b > )- 绝对值不等式:|x + a| ≤ b → -b ≤ x ≤ b- 解不等式:一元一次不等式、一元二次不等式、复合不等式、绝对值不等式等。

这里只是简要归纳了一些常用的公式,实际上高一数学涉及的知识点还有很多,学生在学习过程中要不断总结和整理,形成自己的知识体系。

在解题时,要熟练掌握这些公式,并能够灵活运用。

高一数学必修三角函数公式汇总

高一数学必修三角函数公式汇总

高一数学必修三角函数公式汇总两角和公式in(A+B)=inAcoB+coAinBin(A-B)=inAcoB-coAinBco(A+B)=coAcoB-inAinBco(A-B)=coAcoB+inAinBtanAtanBtan(A+B)=1-tanAtanB tanAtanBtan(A-B)=1tanAtanBcotAcotB-1cot(A+B)=cotBcotAcotAcotB1cot(A-B)=cotBcotA倍角公式2tanAtan2A=21tanASin2A=2SinACoACo2A=Co2A-Sin2A=2Co2A-1=1-2in2A三倍角公式in3A=3inA-4(inA)3co3A=4(coA)3-3coAtan3a=tana·tan(+a)·tan(-a)33半角公式in(AcoA)=22A1coA)=22A1coA)=21coAA1coA)=21coAco(tan(cot(tan(A1coAinA)==inA1coA2和差化积ababina+inb=2inco22 ababina-inb=2coin22ababco22ababcoa-cob=-2inin22in(ab)tana+tanb=coacob积化和差1inainb=-[co(a+b)-co(a-b)]2 1coacob=[co(a+b)+co(a-b)]21inacob=[in(a+b)+in(a-b)]21coainb=[in(a+b)-in(a-b)]2诱导公式in(-a)=-inaco(-a)=coacoa+cob=2co-a)=coa2co(-a)=ina2in(+a)=coa2co(+a)=-ina2in(π-a)=inaco(π-a)=-coain(π+a)=-inaco(π+a)=-coainatgA=tanA=coa万能公式a2tanina=a1(tan)2a1(tan)2coa=a1(tan)22in(atana=1(tan)2其它公式2tanbaina+bcoa=(a2b2)in(a+c)[其中tanc=]aain(a)-bco(a)=(a2b2)co(a-c)[其中tan(c)=a]b aa1+in(a)=(in+co)222aa1-in(a)=(in-co)222其他非重点三角函数1cc(a)=ina1ec(a)=coa双曲函数ea-e-ainh(a)=2eae-acoh(a)=2tgh(a)=inh(a)coh(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:in(2kπ+α)=inαco(2kπ+α)=coαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:in(π+α)=-inαco(π+α)=-coαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:in(-α)=-inαco(-α)=coαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:in(π-α)=inαco(π-α)=-coαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:in(2π-α)=-inαco(2π-α)=coαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:3±α及±α与α的三角函数值之间的关系:22in(+α)=coα2co(+α)=-inα2tan(+α)=-cotα2cot(+α)=-tanα2in(-α)=coα2co(-α)=inα2tan(-α)=cotα2cot(-α)=tanα23in(+α)=-coα23co(+α)=inα23tan(+α)=-cotα23cot(+α)=-tanα23in(-α)=-coα23-α)=-inα23tan(-α)=cotα23cot(-α)=tanα2(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用co(Ain(ωt+θ)+Bin(ωt+φ)=A2B22ABco()intarcin[(AinBin)AB2ABco()22三角函数公式证明(全部)2022-07-0816:13公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式,a+b,≤,a,+,b,a-b,≤,a,+,b,a,≤b<=>-b≤a≤b,a-b,≥,a,-,b,-,a,≤a≤,a,一元二次方程的解-b+√(b2-4ac)、2a-b-b+√(b2-4ac)、2a根与系数的关系1+2=-b、a12=c、a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有一个实根b2-4ac<0注:方程有共轭复数根三角函数公式两角和公式in(A+B)=inAcoB+coAinBin(A-B)=inAcoB-inBcoA篇二:高中数学必修四三角函数重要公式高中数学必修四三角函数重要公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:in(2kπ+α)=inαco(2kπ+α)=coαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:in(π+α)=-inαco(π+α)=-coαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:in(-α)=-inαco(-α)=coαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:in(π-α)=inαco(π-α)=-coαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:in(2π-α)=-inαco(2π-α)=coαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π、2±α及3π、2±α与α的三角函数值之间的关系:in(π、2+α)=coαco(π、2+α)=-inαtan(π、2+α)=-cotαcot(π、2+α)=-tanαco(π、2-α)=inαtan(π、2-α)=cotαcot(π、2-α)=tanαin(3π、2+α)=-coαco(3π、2+α)=inαtan(3π、2+α)=-cotαcot(3π、2+α)=-tanαin(3π、2-α)=-coαco(3π、2-α)=-inαtan(3π、2-α)=cotαcot(3π、2-α)=tanα(以上k∈Z)诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π、2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即in→co;co→in;tan→cot,cot→tan。

高一数学公式和重点知识点

高一数学公式和重点知识点

高一数学公式和重点知识点一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b其中,k为斜率,b为截距。

2. 二次函数二次函数的标准方程为:y = ax² + bx + c其中,a为二次项系数,b为一次项系数,c为常数项。

3. 一元二次方程一元二次方程的一般形式为:ax² + bx + c = 0其中,a、b、c为实数,且a不等于0。

4. 二元一次方程组二元一次方程组的一般形式为:{ ax + by = cdx + ey = f其中,a、b、c、d、e、f为实数,且ad-be ≠ 0。

5. 不等式不等式常见的符号包括:<(小于)、>(大于)、≤(小于等于)、≥(大于等于)解不等式时需要进行符号的转换和区间的划分。

二、几何1. 基本图形的面积和周长常见图形的计算公式:- 长方形的面积:S = 长 ×宽,周长:C = 2 × (长 + 宽)- 正方形的面积:S = 边长²,周长:C = 4 ×边长- 圆的面积:S = π × 半径²,周长:C = 2 × π × 半径- 三角形的面积:S = 底 ×高 / 2,周长:C = 边1 + 边2 + 边3 - 梯形的面积:S = (上底 + 下底) ×高 / 2,上底和下底是梯形上下平行的边,高是两平行边之间的垂直距离。

2. 三角函数常见三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

三角函数的定义中,角度可以用弧度表示,也可以用角度表示。

3. 相似与全等在几何中,相似表示两个图形的形状和角度相同但大小不同,全等表示两个图形的形状和大小完全相同。

三、概率与统计1. 计数原理- 排列:从n个元素中取出m个元素按一定次序排列的方法数为:A(n, m) = n! / (n-m)!- 组合:从n个元素中取出m个元素不计次序排列的方法数为:C(n, m) = n! / (m! × (n-m)!)2. 事件的概率事件的概率可以用数值表示,概率值介于0和1之间。

高一数学诱导公式_公式总结

高一数学诱导公式_公式总结

高一数学诱导公式_公式总结常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:期中考试已经圆满结束,在期中考试后或多或少我们都会找到自己的复习不到位的地方,小编为大家分享高一数学函数公式,希望能帮助大家复习知识!两角和与差的三角函数cos(+)=coscos-sinsin cos(-)=coscos+sinsinsin()=sincoscossin tan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积公式sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]积化和差公式sincos=(1/2)[sin(+)+sin(-)] cossin=(1/2)[sin(+)-sin(-)]coscos=(1/2)[cos(+)+cos(-)]
sinsin=-(1/2)[cos(+)-cos(-)]倍角公式sin(2)=2sincos=2/(tan+cot)cos(2)=(cos)^2-(sin)^2=2(cos)^2-1=1-2(sin)^2
tan(2)=2tan/(1-tan^2)cot(2)=(cot^2-1)/(2cot) sec(2)=sec^2/(1-tan^2) csc(2)=1/2*seccsc三倍角公式sin(3) = 3sin-4sin^3 = 4sinsin(60+)sin(60-) cos(3) =4cos^3-3cos = 4coscos(60+)cos(60-) tan(3) = (3tan-tan^3)/(1-3tan^2)= tantan(/3+)tan(/3-) cot(3)=(cot^3-3cot)/(3cot^2-1)n倍角公式sin(n)=ncos^(n-1)sin-C(n,3)cos^(n-3)sin^3+C(n,5)cos^(n-5)sin^5-cos(n)=cos^n-C(n, 2)cos^(n-2)sin^2+C(n,4)cos^(n-4)sin^4-半角公式sin(/2)=((1-cos)/2) cos(/2)=((1+cos)/2)tan(/2)=((1-cos)/(1+cos))=sin/(1+cos)=(1-cos)/sincot(/2)=((1+ cos)/(1-cos))=(1+cos)/sin=sin/(1-cos)sec(/2)=((2sec/(sec+1))
csc(/2)=((2sec/(sec-1))辅助角公式Asin+Bcos=(A^2+B^2)sin(+arctan(B/A))Asin+Bcos=(A^2+B^2)cos(-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))降幂公式sin^2=(1-cos(2))/2=versin(2)/2 cos^2=(1+cos(2))/2=covers(2)/2tan^2=(1-cos(2))/(1+cos(2))三角和的三角函数sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sinco ssin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a) cos30=sin60 sin30=cos60推导公式tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos^2 1-cos2=2sin^21+sin=[sin(/2)+cos(/2)]^2总结:高一数学函数公式就为大家介绍到这里了,希望同学们找到自己高效的复习方法,在高考中取得优异的成绩!。

相关文档
最新文档