高考数学 三角函数基础知识总结 北师大版
2022届高考数学一轮复习第四章三角函数解三角形4.2三角函数的同角关系诱导公式课件理北师大版 (1

13
所以cos α=-
1-sin2=- 1 5 3
,tan α= sin = 12 .
cos 5
方法二:看到sin α=- 1 2 ,想到勾股数5,12,13,
13
所以cos α=± 5 ,tan α=± 1 2 ,因为α为第三象限角,
13
5
所以tan α>0,tan α= 1 2 .
5
答案: 1 2
(2)诱导公式的记忆口诀 “奇变偶不变,符号看象限”,其中的奇、偶是指 的奇数倍和偶数倍,变与不
2
变指函数名称的变化.
(3)给角求值的基本原则
负化正,大化小,化到锐角为终了.
【知识点辨析】(正确的打“√”,错误的打“×”)
(1)若α,β为锐角,则sin 2α+cos2β=1. ( )
(2)若α∈R,则tan α= s i n 恒成立. ( )
4
6
= 3tan2(2)3tan(67)
4
6
= 3
【结论】求三角函数值时,熟练运用勾股数解3,4,5;5,12,13;7,24,25等.
【典例】已知sin α=- 1 2 ,且α为第三象限的角,则tan α=
13
金榜导学号
. 世纪
【解析】方法一:因为sin α=- 1 2 ,α为第三象限的角,
【易错点索引】
【教材·基础自测】
1.(必修4P23练习2T3改编)已知sin(π+α)= 1
A.- 1
3
B. 1
C.- 1 或 1
3
3
3
3
,则sin(π-α)=
D. 1
4
()
【解析】选A.由sin(π+α)= 1 ,得sin α= 1 ,
高中数学第二章解三角形2.1.1正弦定理课件北师大版必修5

中,
sin
=
sin
=
.
sin
【做一做1】
在△ABC 中,若 3a=2bsin A,则角 B 等于
.
解析:根据已知条件及正弦定理可知 3sin A=2sin Bsin A⇔
3
π
2π
3=2sin B⇔sin B= 2 ,所以角 B 为3 或 3 .
π
2π
答案:3 或 3
知识拓展1.正弦定理的证明
Bcos A,又 sin B≠0,则 sin A= 3cos A,即 tan A= 3,又△ABC 为锐角三
π
角形,所以 A= .
3
答案:(1)7∶5∶3 (2)A
探究一
探究二
探究三
探究二
探究四
思维辨析
利用正弦定理解三角形
【例2】 在△ABC中,
(1)若A=45°,B=30°,a=2,求b,c与C.
(2)若B=30°,b=5, c=5 3 ,求A,C与a.
分析:先根据三角形中解的个数的判断方法得出解的情况,再求
出各元素的值.
解:(1)由三角形内角和定理得,
C=180°-(A+B)=180°-(45°+30°)=105°.
sin
由正弦定理得,b=
sin
1
=
sin 105°=sin(60°+45°)=
(5)在△ABC中,若 cos = 1 + cos2 ,则△ABC为等腰三角形或直
角三角形. (
)
答案:(1)
(2)
(3)× (4)× (5)
探究一
探究二
探究一
探究三
探究四
思维辨析
演示文稿高中数学第一章三角函数5.2正弦函数的性质课件北师大版必修4201802234153

周期性 是周期函数,周期为 2kπ(k∈Z,k≠0),2π是它的最小正周期
奇偶性
奇函数,图像关于原点对称
单调性 对称轴
在区间_[_-__π2_+__2_k_π_,__π2_+__2_k_π_] (k∈Z)上是增加的; 在区间_[_π2_+__2_k_π_,__32_π_+__2_k_π_] (k∈Z)上是减少的
从而-sin 16°>-sin 66°,即sin 196°>cos 156°.
第十七页,共37页。
解答
反思与感悟
(1)比较sin α与sin β的大小时,可利用诱导公式把sin α与sin β转化为同一单调区
间上的正弦值,再借助于正弦函数的单调性来进行比较.
(2)比较sin α与cos β的大小,常把cos β转化为sin( ±βπ2)后,再依据单调性来进行
∴f(x)=2sin2x+2sin x-12,x∈[π6,56π]的值域为[1,72].
第二十八页,共37页。
解答
第二十九页,共37页。
当堂训练
1.函数 f(x)=sinx+π6的一个递减区间是
A.-π2,π2
B.[-π,0]
C.-23π,23π
√D.π2,23π
解析 由π2≤x+π6≤32π, 解得π3≤x≤43π.故选 D.
思考1
对于x∈R,sin(-x)=-sin x,这说明正弦函数具有怎样的性质?
答案 奇偶性.
第五页,共37页。
答案
思考2
正弦函数取得最大值、最小值时x的值是什么?
答案 对于正弦函数y=sin x,x∈R有: 当且仅当 x=π2+2kπ,k∈Z 时,取得最大值 1; 当且仅当 x=-π2+2kπ,k∈Z 时,取得最小值-1.
高中数学 第三章 三角恒等变换 3.1 同角三角函数的基本关系学案(含解析)北师大版必修4-北师大版

第三章三角恒等变形§1同角三角函数的基本关系知识点同角三角函数的基本关系式[填一填]常用的同角三角函数基本关系式的变形:(1)sin2α+cos2α=1的变形:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α,sinα=±1-cos2α,cosα=±1-sin2α.(2)tanα=sinαcosα的变形:sin α=cos αtan α,cos α=sin αtan α.[答一答]已知某角的一个三角函数值,求它的其他三角函数值时,应注意些什么?提示:(1)已知某角的一个三角函数值,求它的其他三角函数值时,要注意这个角的终边所在的象限.①由sin 2α+cos 2α=1变形可知,cos α=±1-sin 2α或sin α=±1-cos 2α,因此,在使用这两个变形公式计算时,要根据角α的终边所在的象限,确定根号前面的正负号.②在使用tan α=sin αcos α时,没有选择正负号的问题,只是在sin α,cos α的计算中会出现上述①中的情形.(2)如果已知的三角函数值中含有字母,且没有指定角的终边在哪个象限,那么就需要结合数学中分类讨论的思想来确定其他三角函数值.对同角三角函数的基本关系式的四点说明(1)同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”如π3与π3,2α与2α都是同角,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 234α+cos 234α=1.(2)sin 2α是(sin α)2的简写,不能写成sin α2.因为sin α2与sin 2α含义不同. (3)在使用同角三角函数基本关系时要注意使式子有意义,如式子tan90°=sin90°cos90°不成立. (4)在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.类型一 利用同角三角函数的关系求值 【例1】 (1)已知sin α=513,求cos α和tan α;(2)在△ABC 中,若tan A =63,求sin A 和cos A . 【思路探究】 (1)已知角α的正弦值,先用平方关系求cos α,再求tan α,注意角α是第几象限角不确定,故需要分类讨论;(2)已知角A 的正切值,可利用角A 终边上一点的坐标,根据三角函数的定义求解;也可利用同角三角函数的商数关系和平方关系求解,注意角A 是△ABC 的内角这一隐含条件.【解】 (1)∵sin α=513>0,∴α是第一或第二象限角.当α是第一象限角时,cos α=1-sin 2α=1-(513)2=1213,∴tan α=sin αcos α=5131213=512.当α是第二象限角时,cos α=-1-sin 2α=-1-(513)2=-1213,∴tan α=sin αcos α=513-1213=-512.(2)法1:因为tan A =63,角A 为三角形的内角,可知角A 终边上一点的坐标为(3,6),则该点到原点的距离r =15,故sin A =615=105,cos A =315=155.法2:因为tan A =63,所以sin A cos A =63,则sin A =63cos A , 又sin 2A +cos 2A =1,所以23cos 2A +cos 2A =1,即cos 2A =35.因为角A 是△ABC 的内角,且tan A >0,所以角A 为锐角,所以cos A =155,sin A =63cos A=105. 规律方法 已知某角的一个三角函数值,求它的其余各三角函数值时,要注意角的终边所在的象限,这主要是因为在使用cos α=±1-sin 2α或sin α=±1-cos 2α时,要根据角α的终边所在的象限,恰当地选择正、负号.tan α=sin αcos α的正、负号是由sin α和cos α共同决定的.这类问题通常有下列几种情况:(1)如果已知三角函数值,且角的终边所在的象限已被指定,那么只有一组解. (2)如果已知三角函数值,但没有指定角的终边所在的象限,那么先由已知三角函数值确定角的终边可能在的象限,再求解,这种情况一般有两组解.(3)如果所给的三角函数值是用字母表示的,且没有指定角的终边所在的象限,那么就需要对表示该值的字母的正、负进行讨论.另外,还要注意其角的终边有可能落在坐标轴上.已知cos α=-1517,求sin α,tan α的值.解:∵cos α<0,且cos α≠-1,∴α是第二或第三象限角.当α是第二象限角时, sin α=1-cos 2α=1-⎝⎛⎭⎫-15172=817, tan α=sin αcos α=817×⎝⎛⎭⎫-1715=-815.当α是第三象限角时, sin α=-1-cos 2α=-1-⎝⎛⎭⎫-15172=-817, tan α=sin αcos α=⎝⎛⎭⎫-817×⎝⎛⎭⎫-1715=815.类型二 关于sin α,cos α齐次式的求值 【例2】 已知tan α=13,求值:(1)5sin α+7cos αsin α-3cos α; (2)1cos 2α-2sin αcos α+5sin 2α. 【思路探究】 可以将分子、分母中的“1”化成“sin 2α+cos 2α”,进而将原来的代数式化成关于sin α,cos α的齐次分式,求解.【解】 ∵sin 2α+cos 2α=1,tan α=sin αcos α=13,∴cos α≠0.(1)原式=5tan α+7tan α-3=5×13+713-3=-134.(2)解法一:∵1+tan 2α=cos 2α+sin 2αcos 2α=1cos 2α, ∴原式=1cos 2α(1-2tan α+5tan 2α)=1+tan 2α1-2tan α+5tan 2α.将tan α=13代入上式得:原式=1+191-23+5×19=9+19-6+5=54.解法二:∵sin 2α+cos 2α=1,∴原式=cos 2α+sin 2αcos 2α-2sin αcos α+5sin 2α=1+tan 2α1-2tan α+5tan 2α. 将tan α=13代入上式得,原式= 1+191-23+5×19=9+19-6+5=54.解法三:∵tan α=13,∴sin αcos α=13,令sin α=k ,cos α=3k ,则1=cos 2α+sin 2α=10k 2.∴原式=10k 29k 2-6k 2+5k 2=54.规律方法 关于sin α,cos α的齐次式的求值问题关于sin α,cos α的齐次式就是式子中的每一项都是关于sin α,cos α的式子,且它们的次数相同,其求解策略为:可用cos n α(n ∈N +)去除原式分子、分母的各项,这样可以将原式化为关于tan α的表达式,再整体代入tan α=m 的值,从而完成求值任务.具体如下:(1)形如a sin α+b cos αc sin α+d cos α,a sin 2α+b sin αcos α+c cos 2αd sin 2α+e sin αcos α+f cos 2α的分式,分子、分母分别同时除以cos α,cos 2α,将正、余弦转化为正切或常数,从而求值.(2)形如a sin 2α+b sin αcos α+c cos 2α的式子,将其看成分母为1的分式,再将分母1变形为sin 2α+cos 2α,转化为形如a sin 2α+b sin αcos α+c cos 2αsin 2α+cos 2α的式子.已知tan α=2,求下列各式的值: (1)2sin α-3cos α4sin α-9cos α; (2)sin 2α-3sin αcos α+1.解:(1)解法一:因为tan α=2,所以cos α≠0,2sin α-3cos α4sin α-9cos α=2sin αcos α-3cos αcos α4sin αcos α-9cos αcos α=2tan α-34tan α-9=2×2-34×2-9=-1.解法二:因为tan α=2,所以sin α=2cos α, 故原式=2×2cos α-3cos α4×2cos α-9cos α=-1.(2)sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35.类型三 含sin α±cos α,sin αcos α的式子的求值【例3】 已知0<α<π,sin α+cos α=15,求sin α-cos α的值.【思路探究】 欲求sin α-cos α的值,可先求(sin α-cos α)2,为此需由已知条件求出sin α·cos α的值,解题时需注意sin α-cos α的符号.【解】 将已知等式两边平方,得1+2sin αcos α=125,∴2sin αcos α=-2425.又∵0<α<π,∴sin α>0,cos α<0, ∴sin α-cos α>0, ∴sin α-cos α=1-2sin αcos α=1+2425=75. 规律方法 1.sin α+cos α,sin αcos α,sin α-cos α三个式子中,已知其中一个,可以求出其他两个,即“知一求二”.它们的关系是:(sin α+cos α)2=1+2sin αcos α,(sin α-cos α)2=1-2sin αcos α.2.求sin α+cos α或sin α-cos α的值时,要注意判断它们的符号.已知0<α<π,sin αcos α=-60169,求sin α-cos α的值.解:∵0<α<π,sin αcos α=-60169<0,∴sin α>0,cos α<0,∴sin α-cos α>0.由(sin α-cos α)2=1-2sin αcos α=1-2×(-60169)=289169,∴sin α-cos α=1713.类型四 化简三角函数式【例4】 化简:(1)1-cos 4α-sin 4α1-cos 6α-sin 6α;(2)1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.【思路探究】 所谓化简,就是使表达式经过某种变形,使结果尽可能的简单,也就是项数尽可能的少、次数尽可能的低、函数的种类尽可能的少、分母中尽量不含三角函数符号、能求值的一定要求值.【解】 (1)解法一:原式=(cos 2α+sin 2α)2-cos 4α-sin 4α(cos 2α+sin 2α)3-cos 6α-sin 6α=2cos 2α·sin 2α3cos 2αsin 2α(cos 2α+sin 2α)=23. 解法二:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2cos 2α·sin 2α]1-(cos 2α+sin 2α)(cos 4α-cos 2α·sin 2α+sin 4α)=1-1+2cos 2α·sin 2α1-[(cos 2α+sin 2α)2-3cos 2α·sin 2α] =2cos 2α·sin 2α3cos 2α·sin 2α=23. 解法三:原式=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α)sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. (2)原式=1cos α1+sin 2αcos 2α+(1+sin α)21-sin 2α-(1-sin α)21-sin 2α=|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α是第一、四象限角),-1-2tan α(α是第二、三象限角).规律方法 化简过程中常用的方法有:(1)化切为弦,即把非正、余弦的函数都化成正、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下的式子化成完全平方式,然后去根号,达到化简的目的. (3)对于化简含高次的三角函数式,往往借助于因式分解或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.若α为第二象限角,则sin 2α-sin 4αcos α=( B )A .sin αB .-sin αC .cos αD .-cos α 解析:sin 2α-sin 4α=sin 2α(1-sin 2α)=sin 2α·cos 2α=|sin αcos α|.因为α为第二象限角,则cos α<0,sin α>0,则|sin αcos α|=-sin αcos α,所以原式=-sin α.类型五 证明三角函数式【例5】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.【思路探究】思路1:等号右边分子、分母同乘tan α-sin α→利用平方关系和商数关系由右向左进行化简即可思路2:商数关系,平方关系→分别对等号两边的式子进行化简即可【证明】 法1:右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, 故原等式成立.法2:因为左边=tan αsin αtan α-tan αcos α=sin α1-cos α,右边=tan α+tan αcos αtan αsin α=1+cos αsin α=1-cos 2αsin α(1-cos α)=sin 2αsin α(1-cos α)=sin α1-cos α. 所以左边=右边,故原等式成立. 规律方法 证明三角恒等式的方法证明恒等式的过程就是通过转化消去等式两边的差异来促成统一的过程,证明方法常有以下几种:(1)从等式的一边证得另一边,一般从比较复杂的一边化简到另一边,其依据是等式的传递性.(2)综合法:由一个已知等式或公式恒等变形得到要证明的等式,其依据是等价转化的思想.(3)证明左、右两边都等于同一个式子(或值),其依据是等式的传递性. (4)比较法:证明“左边-右边=0”或“左边右边=1”.(5)化异为同法:即化异名为同名,化异角为同角等.求证:tan 2α-sin 2α=tan 2α·sin 2α.证明:法1:右边=tan 2α(1-cos 2α)=tan 2α-tan 2α·cos 2α=tan 2α-sin 2αcos 2α·cos 2α=tan 2α-sin 2α=左边,所以等式成立.法2:左边=sin 2αcos 2α-sin 2α=sin 2α-sin 2αcos 2αcos 2α=sin 2α(1-cos 2α)cos 2α=tan 2α·sin 2α=右边. 等式成立.——规范解答—— 利用同角三角函数关系式求值【例6】 在△ABC 中,sin A -cos A =1713,求tan A 的值. 【审题】审条件→一个三角形:△ABC一个关系:sin A -cos A =1713 ↓ 建联系→求解tan A 的值,根据已有的关系把tan A 与sin A ,cos A 联系起来↓找思路→由在△ABC 中,确定A ∈(0,π),再结合已知的关系与sin 2A +cos 2A =1,联立解方程,先求解sin A ,cos A ,再求解tan A【解题】 由sin A -cos A =1713知,cos A =sin A -1713,又因cos 2A +sin 2A =1,有(sin A -1713)2+sin 2 A =1, 化简得sin 2A -1713sin A +60169=0, 解得sin A =1213或sin A =513. 又因为A 为△ABC 的内角,所以sin A >0,当sin A =1213时,cos A =-513,tan A =-125, 当sin A =513时,cos A =-1213,tan A =-512. 【小结】 1.隐含条件的挖掘对题目的条件要认真分析,找出隐含条件,并要学会辨析使用,如本例中在三角形中,内角都是有范围的,均为(0,π),从而有sin A >0这一条件.2.常用知识应用一些常见常用的知识要记牢,并会应用,如三角函数求值中,只要涉及sin α与cos α,就有sin 2α+cos 2α=1,这一条件往往是解题的关键.已知sin α+cos α=-13,其中0<α<π,求sin α-cos α的值. 解:因为sin α+cos α=-13, 所以(sin α+cos α)2=19, 所以1+2sin αcos α=19, 所以sin αcos α=-49. 因为0<α<π且sin αcos α<0,所以sin α>0,cos α<0,所以sin α-cos α>0.又因为(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.一、选择题1.化简 1-sin 2π5的结果是( A )A .cos π5 B .-cos π5C .sin π5D .-sin π5解析:原式=cos 2π5=cos π5.2.若tan α=2,则2sin α-cos αsin α+2cos α 的值为( B )A .0 B.34C .1 D.54解析:本小题主要考查同角三角函数基本关系式. 原式=2tan α-1tan α+2=34,故选B.3.已知α是第四象限角,tan α=-512,则sin α等于( D) A.15 B .-15C.513 D .-513解析:∵tan α=-512,∴sin αcos α=-512,即cos α=-125sin α.又sin 2α+cos 2α=1,∴16925sin 2α=1,解得sin α=±513. 而α是第四象限角,∴sin α=-513. 二、填空题4.化简1+2sin4cos4=-(sin4+cos4). 解析:原式=sin 24+2sin4cos4+cos 24 =(sin4+cos4)2=|sin4+cos4|.∵π<4<3π2,∴sin4<0,cos4<0. ∴原式=-(sin4+cos4).5.若sin θ=-45,tan θ>0,则cos θ=-35. 解析:考查同角三角函数值间的关系.∵sin θ=-45<0,tan θ>0, ∴θ在第三象限.∴cos θ=-35. 三、解答题6.已知tan α=3,求下列各式的值. (1)4cos α-sin α4cos α+sin α; (2)2sin 2α-3sin α·cos α.解:(1)原式=4-tan α4+tan α=4-34+3=17. (2)原式=2sin 2α-3sin α·cos αsin 2α+cos 2α=2tan 2α-3tan αtan 2α+1=2×32-3×332+1=910.。
高考数学总复习 第四章4.2 同角三角函数的基本关系及三角函数的诱导公式教案 理 北师大版

2013年高考第一轮复习数学北师(江西版)理第四章4.2 同角三角函数的基本关系及三角函数的诱导公式考纲要求1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=πtan π2k αα⎛⎫≠ ⎪⎝⎭+(k ∈Z )).2.能利用单位圆中的三角函数线推导出π2α±,π±α的正弦、余弦、正切的诱导公式,并能灵活运用.知识梳理1.同角三角函数的基本关系式 (1)平方关系:__________; (2)商数关系:__________; (3)倒数关系:__________. 2.诱导公式总口诀为:奇变偶不变,符号看象限,其中“奇”“偶”是指“k ·π2±α(k ∈Z )”中k 的奇偶性;“符号”是指把任意角α看作锐角时,原函数值的符号.即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成__________时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.1.已知cos(α-π)=-513,且α是第四象限角,则sin α=( ).A .-1213B .1213C .±1213D .5122.已知sin x =2cos x ,则sin 2x +1=( ).A .65B .95C .43D .533.已知α是第四象限角,tan α=-512,则sin α等于( ).A .15B .-15C .513D .-5134.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是________.思维拓展1.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α;当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α.2.“符号看象限”中,符号是否与α的大小有关?提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限的角.一、同角三角函数关系式的应用【例1-1】已知tan α=14,则cos 2α+sin 2α的值为__________.【例1-2】已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值. 方法提炼1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z 可以实现角α的弦切互化.2.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.请做[针对训练]1二、诱导公式的应用 【例2-1】化简:sin(540°-x )tan(900°-x )·1tan(450°-x )tan(810°-x )·cos(360°-x )sin(-x )=__________.【例2-2】化简:cos(π+θ)cos θ[cos(π-θ)-1]+cos(θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos(θ-π)-sin ⎝⎛⎭⎪⎫3π2+θ.【例2-3】已知cos(π+α)=-12,且α是第四象限角,计算:sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(α+2n π)·cos (α-2n π)(n ∈Z ).方法提炼利用诱导公式化简求值时的原则为:1.“负化正”,运用公式三将任意负角的三角函数化为任意正角的三角函数.2.“大化小”,利用公式一将大于360°的角的三角函数化为0°到360°的三角函数,利用公式二将大于180°的角的三角函数化为0°到180°的三角函数.3.“小化锐”,利用公式六将大于90°的角化为0°到90°的角的三角函数.4.“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得.请做[针对训练]2三、sin x ±cos x 与方程思想【例3】已知sin θ-cos θ=12,求:(1)sin θcos θ;(2)sin 3θ-cos 3θ;(3)sin 4θ+cos 4θ.方法提炼1.已知a sin x +b cos x =c 可与sin 2x +cos 2x =1联立,求得sin x ,cos x ,一般此法不常用,原因是计算麻烦.2.sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系为:(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值可求其余两个代数式的值.请做[针对训练]3考情分析从近几年的高考试题来看,同角三角函数的基本关系和诱导公式中是高考的热点,题型既有选择题、填空题,又有解答题.主要考查诱导公式在三角函数式求值,化简的过程中与同角三角函数的关系式,和差角公式及倍角公式的综合应用,在考查基本运算的同时,注重考查等价转化的思想方法.预测2013年高考仍将以诱导公式为主要考点,重点考查考生的运算能力与恒等变形能力.针对训练 1.(2011重庆高考,文12)若cos α=-35,且α∈⎝⎛⎭⎪⎫π,3π2,则tan α=__________.2.已知A =sin(k π+α)sin α+cos(k π+α)cos α(k ∈Z ),则A 的值构成的集合是__________.3.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求m 的值.参考答案基础梳理自测 知识梳理1.(1)sin 2α+cos 2α=1(2)tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z(3)tan α·cot α=12.sin α -sin α -sin α sin α cos αcos α cos α -cos α cos α -cos α sin α -sin α tan α tan α -tan α -tan α 锐角3.0 π6 π4 π3 π2 2π3 56ππ 3π2 0 12 22 32 1 32 120 -1 132 22 12 0 -12-32 -1 0 0 331 3 不存在 - 3 -33不存在基础自测1.A 解析:cos(α-π)=-cos α=-513,cos α=513.sin α=±1-cos 2α=±1213,∵α是第四象限角,∴sin α=-1213.2.B 解析:∵sin 2x +cos 2x =1,∴sin 2x +⎝ ⎛⎭⎪⎫12sin x 2=1,∴sin 2x =45,∴sin 2x +1=95.3.D 解析:由tan α=sin αcos α=-512,sin 2α+cos 2α=1及α是第四象限角,解得sin α=-513.4.25 解析:由sin α+3cos α3cos α-sin α=5得,tan α+33-tan α=5,即tan α=2.所以sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=25. 考点探究突破【例1-1】1617 解析:cos 2α+sin 2α=1-2sin 2α+sin 2α=cos 2α=cos 2αcos 2α+sin 2α=11+tan 2α=1617. 【例1-2】解:(1)联立方程 ⎩⎪⎨⎪⎧ sin α+cos α=15,sin 2α+cos 2α=1.①②由①得cos α=15-sin α,将其代入②.整理得25sin 2α-5sin α-12=0. ∵α是三角形的内角,∴⎩⎪⎨⎪⎧sin α=45,cos α=-35.∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α.∵tan α=-43, ∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. 【例2-1】sin x 解析:原式=sin(180°-x )tan(180°-x )·1tan(90°-x )tan(90°-x )·cos x-sin x=sin x-tan x ·ta n x ·tan x ⎝ ⎛⎭⎪⎫-1tan x =sin x . 【例2-2】解:原式=-cos θcos θ(-cos θ-1)+cos θcos θ(-cos θ)+cos θ=11+cos θ+11-cos θ=2sin 2θ. 【例2-3】解:∵cos(π+α)=-12.∴-cos α=-12,cos α=12.则sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(a +2n π)·cos (α-2n π)=sin(2n π+π+α)+sin(-2n π-π+α)sin(2n π+α)·cos (-2n π+α)=sin(π+α)+sin(-π+α)sin α·cos α=-sin α-sin(π-α)sin α·cos α=-2sin αsin αcos α=-2cos α=-4.【例3】解:(1)∵sin θ-cos θ=12,∴(sin θ-cos θ)2=14,即sin 2θ-2sin θcos θ+cos 2θ=14.由平方关系sin 2θ+cos 2θ=1,可得sin θcos θ=38.(2)sin 3θ-cos 3θ=(sin θ-cos θ)(sin 2θ+cos θsin θ+cos 2θ).由平方关系及sin θ-cos θ=12,可得sin 3θ-cos 3θ=12×⎝⎛⎭⎪⎫1+38=1116.(3)由(sin 2θ+cos 2θ)2=sin 4θ+2sin 2θ·cos 2θ+cos 4θ=1,可得sin 4θ+cos 4θ=1-2sin 2θ·cos 2θ=1-2×964=2332.演练巩固提升 针对训练1.43 解析:由1+tan 2α=1cos 2α,则tan 2α=169.又因α∈⎝ ⎛⎭⎪⎫π,3π2,故tan α>0,则tan α=43.2.{-2,2} 解析:当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.解:由韦达定理可知⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=m 2.①②由①式平方得1+2sin θcos θ=2+32,∴sin θcos θ=34,由②得m 2=34.∴m =32.。
高中数学第一章三角函数7.1正切函数的定义7.2正切函数的图像与性质课件北师大版

规律方法
1.比较同名三角函数值的大小,实质上是将两个角利
用周期性放在同一个单调区间内,利用单调性比较大小. 2.对于形如y=tan(ωx+φ)(ω、φ为非零常数)的函数性质和图像 的研究,应以正切函数的性质与图像为基础,运用整体思想和 换元法求解.如果ω<0,一般先利用诱导公式将x的系数化为正 数,再进行求解.
π π x(a≠0),x∈-3,3,
∴f(-x)=-atan(-x)=atan x=-f(x).
π π 又∵定义域-3,3关于原点对称,
∴f(x)为奇函数. (2)f(x)的最小正周期为 π.
(3)∵y=tan x ∴当 a>0 当 a<0
π π 在kπ-2,kπ+2(k∈Z)上单调递增,
解 ∵tan 2=tan(2-π),tan 3=tan(3-π), π π 又∵2<2<π,∴-2<2-π<0. π π ∵2<3<π,∴-2<3-π<0, π π 显然-2<2-π<3-π<1<2, 且 y=tan x
π π 在-2,2内是增函数,
∴tan (2-π)<tan (3-π)<tan 1, 即 tan 2<tan 3 <tan 1.
π π 时,f(x)在kπ-2,kπ+2(k∈Z)上单调递减,
π π 时,f(x)在kπ-2,kπ+2(k∈Z)上单调递增. π π 时,f(x)在4,2上单调递减,故
(4)当 a>0
π x=4时,f(x)max=-a,
无最小值. ∴f(x)的值域为(-∞,-a].
3π π 解之得 kπ- 4 <x<kπ+4,故选 C.
答案 C
高考数学一轮复习第3章三角函数解三角形第2讲同角三角函数的基本关系与诱导公式课件文北师大版

1.(1)已知 α 是第二象限的角,tan α =-1,则 2
-2 5 cos α =____5____.
(2)如果 sin x+cos x=1,且 0<x<π ,那么 tan x 的值是( A ) 5
A.-4 3
B.-4或-3 34
C.-3 4
D.4或-3 34
解析:(1)因为 α 是第二象限的角,所以 cos α <0.又因为 sin2
(1)弦切互化法:主要利用公式 tan
α
=sin cos
α α
化成正、余弦.
(2)和积转换法:利用(sin θ ±cos θ )2=1±2sin θ cos θ 的
关系进行变形、转化.
(3)巧用“1”的变换:1=sin2θ +cos2θ =cos2θ (1+tan2θ )
=tanπ4 =….
1.cos-203π =( C )
(1)(2016·辽宁省五校高三联考)已知 cosπ2 +α=
3,且 5
α∈π2
,3π 2
,则
tan
α
=(
B
)
A.4
B.3
3
4
C.-3 4
D.±3 4
(2)(2015·高考四川卷)已知 sin α +2cos α =0,则 2sin α cos α -cos2α 的值是___-_1____.
(1)sin(-1 200°)cos 1 290°=___4_____.
第三章 三角函数、解三角形
第2讲 同角三角函数的基本关系与诱 导公式
1.同角三角函数的基本关系
(1)平方关系:__si_n_2_α__+__c_o_s2_α__=__1_____. sin α
高中数学第一章三角函数1.6余弦函数的图像与性质课件北师大版必修4

•学习目标 1.了解余弦函数与正弦函数之间的关系.2. 理解“五点法”作出余弦函数的图像(重点).3.掌握余弦 函数的图像性质及其运用(难点).
知识点 1 余弦函数的图像 余弦函数 y=cos x(x∈R)的图像叫余弦曲线. 根据诱导公式 sinx+π2=cos x,x∈R.只需把正弦函数 y=sin x, x∈R 的图像向左平移π2个单位长度即可得到余弦函数图像(如 图).
• 答案 B
• 3.函数y=cos x,x∈[0,2π]的图像和直线y=1围成 一个封闭的平面图形,这个封闭图形的面积是 ________.
• 解析 如图,可把x轴下方图形补到x轴上方阴影 部分,此时所围面积可变成一个矩形.
• 答案 2π
4.使 cos x=11-+mm有意义的实数 m 的取值范围是________. 解析 -1≤11-+mm≤1;即11+-mm≤1;|1+m|≤|1-m|且 m≠1, 得 m≤0.
答案 D
(2)作出函数 y=1-13cos x 在[-2π,2π]上的图像. 解 ①列表:
x y=cos x
0
π 2
π
3π 2
2π
1 0 -1 0 1
y=1-13cos x
2 3
1
4 3
1
2 3
②作出 y=1-13cos x 在 x∈[0,2π]上的图像.由于该函数为偶函数, 作关于 y 轴对称的图像.从而得出 y=1-13cos x 在 x∈[-2π,2π] 上的图像.
•规律方法 对于余弦函数的性质,要善于结合余弦函 数图像并类比正弦函数的相关性质进行记忆,其解题 规律方法与正弦函数的对应性质解题方法一致.
【训练 2】 (1)求函数 y=1-12cos x 的单调区间; (2)比较 cos-π7与 cos187π的大小. 解 (1)∵-12<0, ∴y=1-12cos x 的单调性与 y=cos x 的单调性相反. ∵y=cos x 的单调增区间是[2kπ-π,2kπ](k∈Z),减区间是[2kπ, 2kπ+π](k∈Z). ∴y=1-12cos x 的单调减区间是[2kπ-π,2kπ](k∈Z),增区间 是[2kπ,2kπ+π](k∈Z).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用心 爱心 专心
- 1 -
三角函数练习题
1.角α的终边上有一点P(a,a),a∈R且a≠0,则sinα值为 ( )
A.22 B.22 C.1 D.22或22
2.函数xsiny2是 ( )
A.最小正周期为2π的偶函数 B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数 D.最小正周期为π的奇函数
3、sinαcosα=81,且4<α<2,则cosα-sinα的值为 ( ) 7、对于函数f(x)=,sincos,cos,cossin,sin时当时当xxxxxx给出下列四个命题: A.① B.② 8、已知51cossin,02xxx.
A.23 B.23 C.43 D.43
4、函数),2,0)(sin(RxxAy的部分图象如图所示,则函数表达式为( )
A.)48sin(4xy
B.)48sin(4xy
C.)48sin(4xy
D.)48sin(4xy
5、若tan(+)=3, tan(-)=5, 则tan2= ( )
A.74 B.-74 C.21 D.-21
6、设a=sin13°+cos13°,b=sin17°+cos17°,c=26,则a、b、c的大小关系是
A.a
①该函数的值域为[-1,1];
②当且仅当x=2kπ+2π(k∈Z)时,该函数取得最大值1;
③该函数是以π为最小正周期的周期函数;
④当且仅当2kπ+π
C.③ D.④
8
用心 爱心 专心
- 2 -
(1)求xxcossin的值; (2)求xxxtan1sin22sin2的值.
9、.已知函数2()23cos2sincos3fxxxx.
(1)求函数()fx的单调递增区间;
(2)若将()fx的图象向左平移3后,再将所有点的横坐标缩小到原来的21倍,得到函数()gx的图象,
试写出()gx的解析式.
(3)求函数()gx在区间[,]88上的值域.