2024年余丙森概率论辅导讲义
2025年高考数学一轮复习讲义含答案解析 第4节 事件的相互独立性、条件概率与全概率公式

第四节事件的相互独立性、条件概率与全概率公式课标解读考向预测1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率.2.结合古典概型,了解条件概率,能计算简单随机事件的条件概率.3.结合古典概型,了解条件概率与独立性的关系.4.结合古典概型,会利用乘法公式计算概率.5.结合古典概型,会利用全概率公式计算概率.6.了解贝叶斯公式.预计2025年高考将会以事件独立性的判断或条件概率、全概率公式计算在小题中单独考查,或与随机变量的分布列、数字特征相结合融合在解答题中考查.必备知识——强基础1.事件的相互独立性事件A 与事件B 相互独立对任意的两个事件A 与B ,如果P (AB )=01P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立性质若事件A 与事件B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立,P (B |A )=02P (B ),P (A |B )=03P (A )2.条件概率条件概率的定义设A ,B 为两个随机事件,且P (A )>0,称P (B |A )=04P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率条件概率的性质(1)P (Ω|A )=1;(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=05P (B |A )+P (C |A );(3)设B 与B 互为对立事件,则P (B |A )=1-P (B |A )3.全概率公式一般地,设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=06∑ni =1P (A i )P (B |A i ),我们称上面的公式为全概率公式.1.两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.2.计算条件概率除了应用公式P(B|A)=P(AB)外,还可以利用缩减公式法,即P(B|A)=P(A)n(AB),其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.n(A)3.P(B|A)是在事件A发生的条件下事件B发生的概率,P(A|B)是在事件B发生的条件下事件A发生的概率.4.计算条件概率P(B|A)时,不能随便用事件B的概率P(B)代替P(AB).1.概念辨析(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.()(2)若A,B相互独立,且P(A)=0.5,P(B)=0.4,则A,B都不发生的概率为0.3.()(3)抛掷2枚质地均匀的硬币,“第一枚为正面向上”为事件A,“第二枚为正面向上”为事件B,则A,B相互独立.()(4)P(A)=P(A)P(B|A)+P(A)P(B|A).()答案(1)×(2)√(3)√(4)×2.小题热身(1)一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为()A.1B.0.629C.0D.0.74或0.85答案B解析由题意知甲、乙两根保险丝熔断与否相互独立,所以甲、乙两根保险丝都熔断的概率为0.85×0.74=0.629.(2)(人教B选择性必修第二册4.1.1例2改编)根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8B.0.625C.0.5D.0.1答案A解析设“发生中度雾霾”为事件A ,“刮四级以上大风”为事件B ,由题意知,P (A )=0.25,P (B )=0.4,P (AB )=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P (B |A )=P (AB )P (A )=0.20.25=0.8.(3)(2023·河南安阳二模)某班计划在下周一至周三中的某一天去参观党史博物馆,若选择周一、周二、周三的概率分别为0.3,0.4,0.3,根据天气预报,这三天下雨的概率分别为0.4,0.2,0.5,且这三天是否下雨相互独立,则他们参观党史博物馆的当天不下雨的概率为()A .0.25B .0.35C .0.65D .0.75答案C解析他们参观党史博物馆的当天下雨的概率为0.3×0.4+0.4×0.2+0.3×0.5=0.35,所以不下雨的概率为1-0.35=0.65.(4)(多选)(人教A 选择性必修第三册7.1.1练习T3改编)一个袋子中装有除颜色外完全相同的5个球,其中有3个红球,2个白球,每次从中随机摸出1个球,则下列结论中正确的是()A .若不放回地摸球2次,则第一次摸到红球的概率为310B .若不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率为12C .若有放回地摸球3次,则仅有前2次摸到红球的概率为18125D .若有放回地摸球3次,则恰有2次摸到红球的概率为54125答案BCD解析对于A ,第一次摸到红球的概率为35,故A 错误;对于B ,不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率P =24=12,故B 正确;对于C ,有放回地摸球3次,则仅有前2次摸到红球的概率为35×35×25=18125,故C 正确;对于D ,有放回地摸球3次,则恰有2次摸到红球的概率为C 23×25=54125,故D 正确.故选BCD.考点探究——提素养考点一事件的相互独立性(多考向探究)考向1事件独立性的判定例1(2023·江苏常州一中期初检测)袋子里装有形状大小完全相同的4个小球,球上分别标有数字1,2,3,4,从中有放回地随机取两次,每次取1个球,A 表示事件“第一次取出的球上数字是1”,B 表示事件“第二次取出的球上数字是2”,C 表示事件“两次取出的球上数字之和是5”,D 表示事件“两次取出的球上数字之和是6”,通过计算,则可以得出()A .B 与D 相互独立B .A 与D 相互独立C .B 与C 相互独立D .C 与D 相互独立答案C解析由题意可得P (A )=14,P (B )=14,有放回地随机取两次,每次取1个球,两次取出的球上数字之和是5的情况有(1,4),(4,1),(2,3),(3,2),共4种,所以P (C )=44×4=14;两次取出的球上数字之和是6的情况有(2,4),(4,2),(3,3),共3种,故P (D )=34×4=316.对于A ,P (BD )=14×4=116,P (B )P (D )=14×316=364,则P (BD )≠P (B )P (D ),故B 与D 不是相互独立事件,故A 错误;对于B ,P (AD )=0,P (A )P (D )=14×316=364,则P (AD )≠P (A )P (D ),故A与D 不是相互独立事件,故B 错误;对于C ,P (BC )=14×4=116,P (B )P (C )=14×14=116,则P (BC )=P (B )P (C ),故B 与C 是相互独立事件,故C 正确;对于D ,P (CD )=0,P (C )P (D )=14×316=364,则P (CD )≠P (C )P (D ),故C 与D 不是相互独立事件,故D 错误.【通性通法】判断两个事件是否相互独立的方法(1)直接法:直接判断一个事件发生与否是否影响另一事件发生的概率.(2)定义法:判断P (AB )=P (A )P (B )是否成立.(3)转化法:由事件A 与事件B 相互独立知,A 与B ,A 与B ,A 与B 也相互独立.【巩固迁移】1.(2024·河北唐山模拟)已知一个古典概型的样本空间Ω和事件A ,B 如图所示.其中n (Ω)=12,n (A )=6,n (B )=4,n (A ∪B )=8,则事件A 与事件B ()A .是互斥事件,不是独立事件B .不是互斥事件,是独立事件C .既是互斥事件,也是独立事件D .既不是互斥事件,也不是独立事件答案B解析因为n (Ω)=12,n (A )=6,n (B )=4,n (A ∪B )=8,所以n (A ∩B )=2,n (A ∩B )=4,n (B )=8,所以事件A 与事件B 不是互斥事件;P (AB )=412=13,P (A )P (B )=612×812=13,所以P (AB )=P (A )P (B ),所以事件A 与事件B 是独立事件.故选B.考向2相互独立事件的概率例2(2023·山西太原二模)某产品需要通过两类质量检验才能出货.已知该产品第一类检验单独通过率为34,第二类检验单独通过率为p (0<p <1),规定:第一类检验不通过则不能进入第二类检验,每类检验未通过可修复后再检验一次,修复后无需从头检验,通过率不变且每类检验最多两次,且各类检验间相互独立.若该产品能出货的概率为56,则p =()A .25B .12C .23D .56答案C解析设A i 表示第i 次通过第一类检验,B i 表示第i 次通过第二类检验(i =1,2),由题意得P (A 1B 1+A 1A 2B 1+A 1B 1B 2+A 1A 2B 1B 2)=56,即34p +14×34p +34×(1-p )p +14×34×(1-p )p =56,解得p=23或p =43(舍去).【通性通法】求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于它们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.【巩固迁移】2.(多选)(2023·新课标Ⅱ卷)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2 B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案ABD解析对于A,依次发送1,0,1,则依次收到1,0,1的事件是发送1收到1,发送0收到0,发送1收到1这3个事件的积事件,它们相互独立,所以所求概率为(1-β)(1-α)(1-β)=(1-α)(1-β)2,A正确;对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到1,0,1的事件是发送1收到1,发送1收到0,发送1收到1这3个事件的积事件,它们相互独立,所以所求概率为(1-β)β(1-β)=β(1-β)2,B正确;对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的和事件,它们两两互斥,由选项B知,所求的概率为C23(1-β)2β+(1-β)3=(1-β)2(1+2β),C错误;对于D,由C项知,三次传输,发送0,则译码为0的概率P=(1-α)2(1+2α),单次传输发送0,则译码为0的概率P′=1-α,而0<α<0.5,因此P-P′=(1-α)2(1+2α)-(1-α)=α(1-α)(1-2α)>0,即P>P′,D正确.故选ABD.考点二条件概率例3现有甲、乙、丙、丁4人到九嶷山、阳明山、云冰山、舜皇山4处景点旅游,每人只去一处景点,设事件A为“4人去的景点各不相同”,事件B为“只有甲去了九嶷山”,则P(A|B)=()A.59B.49C.29D.13答案C解析由题意,4人去4个不同的景点,总样本点数为4×4×4×4=256,事件B包含的样本点数为1×3×3×3=27,则事件B发生的概率为P(B)=27256,事件A与事件B的交事件AB为“甲去了九嶷山,另外三人去了另外三个不同的景点”,事件AB包含的样本点数为1×A33=6,则事件AB 发生的概率为P (AB )=6256=3128,即P (A |B )=P (AB )P (B )=312827256=29.【通性通法】求条件概率的常用方法(1)定义法:P (B |A )=P (AB )P (A ).(2)样本点法:P (B |A )=n (AB )n (A ).(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.【巩固迁移】3.(多选)(2024·滨州模拟)为庆祝建党节,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题)不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是()A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A -)=12答案ABC解析P (A )=C 13C 15=35,故A正确;P (AB )=C 13C 12C 15C 14=310,故B 正确;P (B |A )=P (AB )P (A )=31035=12故C 正确;P (A -)=1-P (A )=1-35=25,P (A -B )=C 12C 13C 15C 14=310,P (B |A -)=P (A -B )P (A -)=31025=34,故D 错误.考点三全概率公式的应用例4某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是()A .0.155B .0.175C .0.016D .0.096答案B解析设事件B 1表示“被保险人是‘谨慎的’”,事件B 2表示“被保险人是‘一般的’”,事件B 3表示“被保险人是‘冒失的’”,则P (B 1)=20%,P (B 2)=50%,P (B 3)=30%.设事件A 表示“被保险人在一年内发生事故”,则P (A |B 1)=0.05,P (A |B 2)=0.15,P (A |B 3)=0.30.由全概率公式,得P (A )=∑3i =1P (B i )·P (A |B i )=20%×0.05+50%×0.15+30%×0.30=0.175.【通性通法】利用全概率公式的思路(1)按照确定的标准,将一个复合事件分解为若干个互斥事件A i (i =1,2,…,n ).(2)求P (A i )和所求事件B 在各个互斥事件A i 发生条件下的概率P (B |A i ).(3)代入全概率公式计算.【巩固迁移】4.葫芦山庄襟渤海之辽阔,仰天角之雄奇,勘葫芦之蕴涵,显人文之魅力,是渤海湾著名的人文景区,是葫芦岛市“葫芦文化与关东民俗文化”代表地和中小学综合实践教育基地.山庄中葫芦品种分为亚腰、瓢、长柄锤、长筒、异型、花皮葫芦等系列.其中亚腰葫芦具有天然迷彩花纹,果实形状不固定,观赏性强,每株亚腰葫芦可结出果实20~80颗.2024年初葫芦山庄播种用的一等亚腰葫芦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子,一、二、三、四等种子长出的葫芦秧结出50颗以上果实的概率分别为0.5,0.15,0.1,0.05,则这批种子所生长出的葫芦秧结出50颗以上果实的概率为________.答案0.4825解析设从这批种子中任选一颗是一、二、三、四等种子的事件分别是A 1,A 2,A 3,A 4,则Ω=A 1∪A 2∪A 3∪A 4,且A 1,A 2,A 3,A 4两两互斥,设事件B 表示“从这批种子中任选一颗,所生长出的葫芦秧结出50颗以上果实”,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)+P (A 4)P (B |A 4)=95.5%×0.5+2%×0.15+1.5%×0.1+1%×0.05=0.4825.课时作业一、单项选择题1.甲、乙两个袋子中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各抽取1个球,则取出的两个球都是红球的概率为()A .512B .56C .19D .1318答案C解析由题意知,“从甲袋中取出红球”和“从乙袋中取出红球”两个事件相互独立,从甲袋中取出红球的概率为46=23,从乙袋中取出红球的概率为16,故所求事件的概率为23×16=19.2.若P (AB )=19,P (A -)=23,P (B )=13,则事件A 与B 的关系是()A .互斥B .对立C .相互独立D .既互斥又相互独立答案C解析∵P (A )=1-P (A -)=1-23=13,∴P (AB )=P (A )P (B )=19≠0,∴事件A 与B 相互独立,事件A 与B 不互斥,故不对立.3.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时答对的概率为100%,而不知道正确答案时猜对的概率为0.25,那么他答对题目的概率为()A .0.625B .0.75C .0.5D .0答案A解析用A 表示事件“考生答对题目”,用B 表示“考生知道正确答案”,用B 表示“考生不知道正确答案”,则P (B )=0.5,P (B )=0.5,P (A |B )=100%,P (A |B )=0.25,则P (A )=P (AB )+P (AB )=P (A |B )P (B )+P (A |B )P (B )=1×0.5+0.25×0.5=0.625.4.(2023·全国甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A .0.8B .0.4C .0.2D .0.1答案A解析报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A ,“某人报乒乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)=P(AB)P(A)=4757=0.8.故选A.5.在公元前100年左右,我国古代数学著作《周髀算经》中有这样的表述:“髀者股也,正晷者勾也.”并且指出:“若求斜至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得斜至日”,这就是我们熟知的勾股定理,勾股数组是指满足a2+b2=c2的正整数组(a,b,c).现将一枚质地均匀的骰子抛掷三次,则三次向上的点数恰好组成勾股数组的概率是()A.136B.160C.1108D.1216答案A解析由题意知,骰子点数能够成勾股数组的为3,4,5,∴第一次掷骰子得到其中一个数的概率为12,第二次掷骰子得到两个数中的一个的概率为13,第三次掷骰子得到最后一个数的概率为16,∴三次向上的点数恰好组成勾股数组的概率为12×13×16=136.6.(2024·湖南湘潭摸底)设某芯片制造厂有甲、乙两条生产线均生产5nm规格的芯片,现有20块该规格的芯片,其中甲、乙生产线生产的芯片分别为12块、8块,且乙生产线生产该芯片的次品率为120,现从这20块芯片中任取一块芯片,若取得芯片的次品率为0.08,则甲生产线生产该芯片的次品率为()A.15B.110C.115D.120答案B解析设A1,A2分别表示取得的芯片是由甲生产线、乙生产线生产的,B表示取得的芯片为次品,甲生产线生产该芯片的次品率为p,则P(A1)=35,P(A2)=25,P(B|A1)=p,P(B|A2)=120,则由全概率公式得P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=35×p+25×120=0.08,解得p=110.7.在一个质地均匀的正四面体木块的四个面上分别标有数字1,2,3,4.连续抛掷这个正四面体木块两次,并记录每次正四面体木块朝下的面上的数字,记事件A为“两次记录的数字之和为奇数”,事件B 为“第一次记录的数字为奇数”,事件C 为“第二次记录的数字为偶数”,则下列结论正确的是()A .事件B 与事件C 是对立事件B .事件A 与事件B 不是相互独立事件C .P (A )P (B )P (C )=18D .P (ABC )=18答案C解析对于A ,事件B 与事件C 是相互独立事件,但不是对立事件,故A 错误;对于B ,P (A )=12,P (B )=12,P (AB )=14,事件A 与事件B 是相互独立事件,故B 错误;对于C ,连续抛掷这个正四面体木块两次,记录的结果一共有4×4=16种,其中,事件A 发生,则两次朝下的点数为一奇一偶,有2×2+2×2=8种,所以P (A )=816=12,因为抛掷正四面体向下的数字为奇数和偶数的方法种数相同,所以P (B )=24=12,P (C )=24=12,所以P (A )P (B )P (C )=18,故C 正确;对于D ,事件ABC 表示“第一次记录的数字为奇数,第二次记录的数字为偶数”,故P (ABC )=2×24×4=14,故D 错误.8.(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p 1,p 2,p 3,且p 3>p 2>p 1>0.记该棋手连胜两盘的概率为p ,则()A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大答案D解析设棋手在第二盘与甲比赛连胜两盘的概率为P 甲,在第二盘与乙比赛连胜两盘的概率为P 乙,在第二盘与丙比赛连胜两盘的概率为P 丙.由题意得P 甲=p 1[p 2(1-p 3)+p 3(1-p 2)]=p 1p 2+p 1p 3-2p 1p 2p 3,P 乙=p 2[p 1(1-p 3)+p 3(1-p 1)]=p 1p 2+p 2p 3-2p 1p 2p 3,P 丙=p 3[p 1(1-p 2)+p 2(1-p 1)]=p 1p 3+p 2p 3-2p 1p 2p 3,所以P 丙-P 甲=p 2(p 3-p 1)>0,P 丙-P 乙=p 1(p 3-p 2)>0,所以P丙最大.故选D.二、多项选择题9.已知A -,B -分别为随机事件A ,B 的对立事件,P (A )>0,P (B )>0,则下列说法正确的是()A .P (B |A )+P (B -|A )=1B .P (B |A )+P (B |A -)=1C .若A ,B 独立,则P (A |B )=P (A )D .若A ,B 互斥,则P (B |A )=P (A |B )答案ACD解析对于A ,P (B |A )+P (B -|A )=P (AB )+P (A B -)P (A )=P (A )P (A )=1,故A 正确;对于B ,设A ,B 独立,则P (B |A )+P (B |A -)=2P (B ),而P (B )显然不一定为12,故B 错误;对于C ,A ,B 独立,则P (AB )=P (A )P (B ),则P (A |B )=P (AB )P (B )=P (A ),故C 正确;对于D ,A ,B 互斥,P (AB )=0,则根据条件概率公式得P (B |A )=P (A |B )=0,故D 正确.10.抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上面的点数.用x 表示红色骰子的点数,用y 表示绿色骰子的点数,用(x ,y )表示一次试验的结果.定义:事件A =“x +y =7”,事件B =“xy 为奇数”,事件C =“x >3”,则下列结论正确的是()A .A 与B 互斥B .A 与B 对立C .P (B |C )=13D .A 与C 相互独立答案AD解析对于A ,因为x +y =7,所以x 与y 必是一奇一偶,又当xy 为奇数时,x 与y 都是奇数,所以事件A 和B 不能同时发生,即A 与B 互斥,故A 正确;对于B ,因为事件A 和B 不能同时发生,但它们可以同时不发生,如x =1,y =2,即A 与B 不对立,故B 不正确;对于C ,(x ,y )的所有可能结果有36种,其中P (C )=1836=12,P (BC )=336=112,所以P (B |C )=P (BC )P (C )=16,故C 不正确;对于D ,P (A )=636=16,P (C )=1836=12,P (AC )=336=112,则有P (AC )=P (A )P (C ),A 与C 相互独立,故D 正确.故选AD.三、填空题11.已知m 是一个三位正整数,若m 的十位数字大于个位数字,百位数字大于十位数字,则称m 为递增数.已知a ,b ,c ∈{0,1,2,3,4},设事件A =“由a ,b ,c 组成三位正整数”,事件B =“由a ,b ,c 组成的三位正整数为递增数”,则P (B |A )=________.答案110解析所有三位正整数的个数为4×5×5=100,即n (A )=100,满足三位正整数为递增数的有以下三类:①当百位数为2时,有1个;②当百位数为3时,有C 23=3个;③当百位数为4时,有C 24=6个.所以n (AB )=1+3+6=10,故P (B |A )=n (AB )n (A )=110.12.(2023·河南濮阳一模)已知甲、乙两人进行羽毛球比赛,比赛规则是3局2胜,即先赢2局者胜.甲每局获胜的概率为34,则本次比赛甲获胜的概率为________.答案2732解析本次比赛甲获胜有3种可能:①1,3甲胜,2乙胜;②2,3甲胜,1乙胜;③1,2甲胜.则本次比赛甲获胜的概率为P =34×14×34+14×34×34+34×34=2732.13.(2024·黑龙江哈尔滨质量监测)盒子中有大小形状相同的7个小球,其中有4个白球,3个黑球,先随机从盒子中取出两个小球,再从该盒中取出一个小球,则最后取出的小球为白球的概率是________.答案47解析记A 1为先取出的两个小球都为白球,A 2为先取出的两个小球为一白一黑,A 3为先取出的两个小球都为黑球,B 为最后取出的小球为白球,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=C 24C 27×25+C 14C 13C 27×35+C 23C 27×45=27×25+47×35+17×45=47.14.有一种投掷骰子走跳棋的游戏:棋盘上标有第1站、第2站、第3站、…、第10站,共10站,设棋子跳到第n 站的概率为P n ,若一枚棋子开始在第1站,棋手每次投掷骰子一次,棋子向前跳动一次.若骰子点数小于等于3,棋子向前跳一站;否则,棋子向前跳两站,直到棋子跳到第9站(失败)或者第10站(获胜)时,游戏结束.则P 3=________;该棋手获胜的概率为________.答案3485256解析由题意,P 3=12+12×12=34.因为P n =12P n -2+12P n -1(3≤n ≤8),故P n -P n -1P n -1-P n -2=-12,由P 2-P 1=-12,所以P n -P n -1-1,n ≥2,累加可得P 8=1+…=1=85128,所以P 10=12P 8=85256.四、解答题15.鲜花饼是以云南特有的食用玫瑰花入料的酥饼,是具有云南特色的云南经典点心代表,鲜花饼的保质期一般在三至四天.据统计,某超市一天鲜花饼卖出2箱的概率为12,卖出1箱的概率为15,没有卖出的概率为310,假设第一天该超市开始营业时货架上有3箱鲜花饼,为了保证顾客能够买到新鲜的鲜花饼,该超市规定当天结束营业后检查货架上存货,若卖出2箱,则需补货至3箱,否则不补货.(1)在第一天结束营业后货架上有2箱鲜花饼的条件下,求第二天结束营业时货架上有1箱鲜花饼的概率;(2)求第二天结束营业时货架上有1箱鲜花饼的概率.解设事件A 表示“第二天开始营业时货架上有3箱鲜花饼”,事件B 表示“第二天开始营业时货架上有2箱鲜花饼”,事件C 表示“第二天结束营业时货架上有1箱鲜花饼”.(1)因为第一天结束营业后货架上有2箱鲜花饼,所以第二天只卖出1箱,故P (C |B )=15.(2)由题意,P (A )=310+12=45,P (B )=15,P (C |A )=12,由全概率公式得P (C )=P (A )P (C |A )+P (B )P (C |B )=45×12+15×15=1125.16.溺水、触电等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,假设甲队每人回答问题的正确率均为23,乙队每人回答问题的正确率分别为12,23,34,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.解(1)记“甲队总得分为3分”为事件A ,“甲队总得分为1分”为事件B .甲队得3分,即三人都回答正确,其概率P (A )=23×23×23=827,甲队得1分,即三人中只有1人回答正确,其余2人都回答错误,其概率P (B )=23××23××23=29.故甲队总得分为3分与1分的概率分别为827,29.(2)记“甲队总得分为2分”为事件C ,“乙队总得分为1分”为事件D .甲队得2分,即甲队三人中有2人回答正确,1人回答错误,则P (C )=23×23×+23××23+×23×23=49,乙队得1分,即乙队三人中只有1人回答正确,其余2人回答错误,则P (D )=12××23××34=14.由题意得事件C 与事件D 相互独立,则甲队总得分为2分且乙队总得分为1分的概率为P (CD )=P (C )P (D )=49×14=19.17.(多选)一个不透明的袋子中装有6个小球,其中有4个红球,2个白球,这些球除颜色外完全相同,则下列结论中正确的是()A .若一次摸出3个球,则摸出的球均为红球的概率是25B .若一次摸出3个球,则摸出的球为2个红球,1个白球的概率是35C .若第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,则两次摸出的球为不同颜色的球的概率是49D .若第一次摸出一个球,不放回袋中,再次摸出一个球,则两次摸出的球为不同颜色的球的概率是35答案BC解析对于A ,总事件数是C 36=20,摸出的球均为红球的事件数为C 34=4,所以摸出的球均为红球的概率是15,故A 错误.对于B ,总事件数是C 36=20,摸出的球为2个红球,1个白球的事件数为C24C12=12,所以摸出的球为2个红球,1个白球的概率是35,故B正确.对于C,①若第一次摸出红球,第二次摸出白球,则概率为46×26=836;②若第一次摸出白球,第二次摸出红球,则概率为26×46=836.故两次摸出的球为不同颜色的球的概率是836+836=49,故C正确.对于D,①若第一次摸出红球,第二次摸出白球,则概率为46×25=830;②若第一次摸出白球,第二次摸出红球,则概率为26×45=830.故两次摸出的球为不同颜色的球的概率是830+830=815,故D错误.18.(多选)骰子通常作为桌上游戏的小道具.最常见的骰子是六面骰,它是一个质地均匀的正方体,六个面上分别写有数字1,2,3,4,5,6.现有一款闯关游戏,共有4关,规则如下:在第n关要抛掷六面骰n次,每次观察向上面的点数并做记录,如果这n次抛掷所出现的点数之和大于2n+n,则算闯过第n关,n=1,2,3,4.假定每次闯关互不影响,则()A.直接挑战第2关并过关的概率为712B.连续挑战前两关并过关的概率为524C.若直接挑战第3关,设A=“三个点数之和等于15”,B=“至少出现一个5点”,则P(A|B)=1 13D.若直接挑战第4关,则过关的概率是351296答案ACD解析对于A,22+2=6,所以两次点数之和应大于6,即直接挑战第2关并过关的概率为P1=1+2+3+4+5+66×6=2136=712,故A正确;对于B,21+1=3,所以挑战第一关通过的概率为P2=12,则连续挑战前两关并过关的概率为P=P1P2=12×712=724,故B错误;对于C,由题意可知,抛掷3次的基本事件有63=216,抛掷3次至少出现一个5点的共有63-53=216-125=91种,故P(B)=91216,而事件AB包括:含5,5,5的有1种,含4,5,6的有6种,共7种,故P(AB)=7216,所以P(A|B)=P(AB)P(B)=7216×21691=113,故C正确;对于D,当n=4时,2n+n=24+4=20,基本事件有64个,而“4次点数之和大于20”包含以下35种情况:含5,5,5,6的有4种,含5,5,6,6的有6种,含6,6,6,6的有1种,含4,6,6,6的有4种,含5,6,6,6的有4种,含4,5,6,6的有12种,含3,6,6,6的有4种,所以P 4=356×6×6×6=351296,故D 正确.19.(2022·新高考Ⅰ卷节选)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,P (B |A )P (B -|A )与P (B |A -)P (B -|A -)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(1)证明:R =P (A |B )P (A -|B )·P (A -|B -)P (A |B -);(2)利用该调查数据,给出P (A |B ),P (A |B -)的估计值,并利用(1)的结果给出R 的估计值.解(1)证明:由题意R =P (B |A )P (B -|A )P (B |A -)P (B -|A -)=P (AB )P (A )P (A B -)P (A )÷P (A -B )P (A -)P (A -B -)P (A -)=P (AB )P (A B -)·P (A -B -)P (A -B ),而P (A |B )P (A -|B )·P (A -|B -)P (A |B -)=P (AB )P (B )P (A -B )P (B )·P (A -B -)P (B -)P (A B -)P (B -)=P (AB )P (A -B )·P (A -B -)P (A B -).故R =P (A |B )P (A -|B )·P (A -|B -)P (A |B -).(2)由调查数据可得P (A |B )=40100=25,P (A |B -)=10100=110,且P (A -|B )=1-P (A |B )=35,P (A -|B -)=1-P (A |B -)=910,。
余丙森概率强化例题1.8

余丙森概率强化例题1.8
题目 1.8,小明有三门课程要考试,分别是数学、英语和物理。
他预估自己数学考试及格的概率为0.8,英语考试及格的概率为0.7,物理考试及格的概率为0.6。
另外,他估计数学和英语都及格的概
率为0.5,数学和物理都及格的概率为0.4,英语和物理都及格的概
率为0.3,三门课都及格的概率为0.2。
那么小明至少有一门课及格
的概率是多少?
解答,首先,我们可以利用概率的加法公式来计算小明至少有
一门课及格的概率。
根据公式,至少有一门课及格的概率等于所有
课程及格的概率之和减去所有课程都不及格的概率。
首先计算所有课程及格的概率:
P(数学及格) = 0.8。
P(英语及格) = 0.7。
P(物理及格) = 0.6。
然后计算两门课程都及格的概率:
P(数学和英语都及格) = 0.5。
P(数学和物理都及格) = 0.4。
P(英语和物理都及格) = 0.3。
最后计算三门课程都及格的概率:
P(数学、英语和物理都及格) = 0.2。
根据加法公式,至少有一门课及格的概率为:
P(至少有一门课及格) = P(数学及格) + P(英语及格) + P(物理及格) P(数学和英语都及格) P(数学和物理都及格) P(英语和物理都及格) + P(数学、英语和物理都及格)。
= 0.8 + 0.7 + 0.6 0.5 0.4 0.3 + 0.2。
= 1.5 1.2 + 0.2。
= 0.5。
因此,小明至少有一门课及格的概率为0.5。
2024年高考数学复习培优讲义专题39---马尔科夫链(与数列结合的概率递推问题)(含解析)

专题8-1 马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。
2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。
本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。
基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率; (3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y.2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++⋯-+,,,,其中)1(a P X ==-,(0)b P X == (1)c P X ==. 假设0.5α=,0.8β=.①证明:1)0{,1,2,,}7(i i p p i −=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率.1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率. (1)求23,p p ;(2)求20p .重点题型·归类精讲2024届·山东省实验中学高三第一次诊断2.某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为27;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为12,若前一次抽中奖品,则这次抽中的概率为13.记该顾客第n 次摸球抽中奖品的概率为n P .(1)求2P 的值,并探究数列{}n P 的通项公式;(2)求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程.3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出. (1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n =,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第n天选择米饭套餐的概率为n P(Ⅰ)证明:25nP⎧⎫−⎨⎬⎩⎭为等比数列;(Ⅱ)证明:当2n≥时,512nP≤.2023届佛山二模·165.有n 个编号分别为1,2,3,,n ⋅⋅⋅的盒子,第1个盒子中有2个白球1个黑球,其余盒子均为1个白球1个黑球,现从第1个盒中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n 个盒子中取到白球的概率是 .2023·唐山调研6.甲、乙、丙三人玩传球游戏,第1次由甲传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第k 次传球后球在甲手中的概率为*N k p k ∈,,则下列结论正确的有( ) A.10p = B. 213p = C. 121k k p p ++= D. 202313p >2024届武汉高三九月调研T16 7.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(),记球在甲手中的概率为,则 ; .2024届·湖北荆荆恩高三9月起点联考·218.甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.(1)求;(2)设,证明:;(3)求的数学期望的值.*n ∈N n p 3p =n p =()*n n ∈N n X n p n q 11,p q 2n n n c p q =+11233n n c c +=+n X ()n E X9.2022年2月6日,中国女足通过点球大战6:5惊险战胜日本女足.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有12的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X 的分布列和期望; (2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为n p ,易知121,0==p p .①试证明14n p ⎧⎫−⎨⎬⎩⎭为等比数列;②设第n 次传球之前球在乙脚下的概率为n q ,比较10p 与10q 的大小.2023·济南开学考10.甲、乙两人进行抛掷骰子游戏,两人轮流地掷一枚质均匀的骰子.规定:先掷出点数6的获胜,游戏结束.(1)记两人抛掷骰子的总次数为X,若每人最多抛掷两次骰子,求比赛结束时,X的分布列和期望;(2)已知甲先掷,求甲恰好抛掷n 次骰子并获得胜利的概率.2023届·杭州二模11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X −,1t X −,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()t 1t 2t 1t t 1t ,,,X X X X X X P P +−−+=∣∣. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为*(,)A A N A B ∈<元,赌博过程为如图所示的数轴.当赌徒手中有n 元()0,n B n N ≤≤∈时,最终输光的概率为()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值;(2)证明(){}P n 是一个等差数列,并写出公差d ;(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →+∞时,()P A 的统计含义.12.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到。
2024届高考数学一轮总复习第九章计数原理概率随机变量及其分布第四讲随机事件与概率课件

行随机事件的并、交运算 件的有关概念和频率很少直接考查
1.频率与概率
(1)在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否出 现,称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的频数,称 事件 A 出现的比例 fn(A)=nnA为事件 A 出现的频率.
(2)对于给定的随机事件 A,由于事件 A 发生的频率 fn(A)随着 试验次数的增加会逐渐稳定于概率 P(A),因此可以用频率 fn(A)来 估计概率 P(A).
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的
概率.
(1)估计六月份这种酸奶一天的需求量不超过 300 瓶的概率; (2)设六月份一天销售这种酸奶的利润为 Y(单位:元),当六月
0.6.
(2)当这种酸奶一天的进货量为 450 瓶时, 若最高气温低于 20 ℃,则 Y=200×6+(450-200)×2-450× 4=-100; 若最高气温位于区间[20,25),则 Y=300×6+(450-300)× 2-450×4=300; 若最高气温不低于 25 ℃, 则 Y=450×(6-4)=900,
份这种酸奶一天的进货量为 450 瓶时,写出 Y 的所有可能值,并
估计 Y 大于零的概率.
解:(1)这种酸奶一天的需求量不超过 300 瓶,当且仅当最高 气温低于 25 ℃,由表中数据可知,最高气温低于 25 ℃的频率为
2+1960+36=0.6. 所以这种酸奶一天的需求量不超过 300 瓶的概率的估计值为
比值.
2024年高考数学一轮复习课件(新高考版) 第10章 §10.4 随机事件与概率

2024年高考数学一轮复习课件(新高考版)第十章 计数原理、概率、随机变量及其分布§10.4 随机事件与概率考试要求1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.3.掌握古典概型及其计算公式,能计算古典概型中简单随机事件的概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E 的每个可能的称为样本点,常用ω表示.全体样本点的集合称为试验E 的,常用Ω表示.②有限样本空间:如果一个随机试验有n 个可能结果ω1,ω2,…,ωn ,则称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.基本结果样本空间(2)随机事件①定义:将样本空间Ω的称为随机事件,简称事件.②表示:一般用大写字母A ,B ,C ,…表示.③随机事件的极端情形:、 .子集必然事件不可能事件含义符号表示包含关系若A 发生,则B 一定发生______相等关系B ⊇A 且A ⊇B ______并事件(和事件)____________________A ∪B 或A +B 交事件(积事件)A 与B 同时发生__________互斥(互不相容)A 与B 不能同时发生A ∩B =∅互为对立A 与B 有且仅有一个发生______________________2.两个事件的关系和运算A ⊆B A =B A 与B 至少有一个发生A ∩B 或AB A ∩B =∅,且A ∪B =Ω3.古典概型的特征(1)有限性:样本空间的样本点只有 ;(2)等可能性:每个样本点发生的可能性 .4.古典概型的概率公式一般地,设试验E 是古典概型,样本空间Ω包含n 个样本点,事件A 包含其中的k 个样本点,则定义事件A 的概率P (A )=___=其中,n (A )和n (Ω)分别表示事件A 和样本空间Ω包含的样本点个数.有限个相等5.概率的性质性质1:对任意的事件A ,都有P (A )≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P (Ω)=1,P (∅)=0;性质3:如果事件A 与事件B 互斥,那么P (A ∪B )=___________;性质4:如果事件A 与事件B 互为对立事件,那么P (B )=1-P (A ),P (A )=________;P (A )+P (B )1-P (B )性质5:如果A ⊆B ,那么P (A )≤P (B ),由该性质可得,对于任意事件A ,因为∅⊆A ⊆Ω,所以0≤P (A )≤1;性质6:设A ,B 是一个随机试验中的两个事件,有P (A ∪B )=____________________.P (A )+P (B )-P (A ∩B )6.频率与概率(1)频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A稳定于发生的频率f n(A)会逐渐事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用可以用频率f n(A)估计概率P(A).常用结论1.当随机事件A,B互斥时,不一定对立;当随机事件A,B对立时,一定互斥,即两事件互斥是对立的必要不充分条件.2.若事件A1,A2,…,A n两两互斥,则P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.( )(2)两个事件的和事件发生是指这两个事件至少有一个发生.( )(3)从-3,-2,-1,0,1,2中任取一个数,取到的数小于0与不小于0的可能性相同.( )(4)若A ∪B 是必然事件,则A 与B 是对立事件.( )××√√1.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是√A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.2.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为√A.0.2B.0.3C.0.7D.0.8由题意知该同学的身高小于160c m的概率、该同学的身高在[160,175](单位:cm)内的概率和该同学的身高超过175 cm的概率和为1,故所求概率为1-0.2-0.5=0.3.3.(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为______.第二部分命题点1 随机事件间关系的判断例1 (1)(多选)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A ={两弹都击中飞机},事件B ={两弹都没击中飞机},事件C ={恰有一弹击中飞机},事件D ={至少有一弹击中飞机},则下列关系正确的是A.A ∩D =∅B.B ∩D =∅C.A ∪C =DD.A ∪B =B ∪D√√“恰有一弹击中飞机”指第一枚击中、第二枚没中或第一枚没中、第二枚击中,“至少有一弹击中飞机”包含两种情况,一种是恰有一弹击中,另一种是两弹都击中,故A∩D≠∅,B∩D=∅,A∪C =D,A∪B≠B∪D.(2)从装有十个红球和十个白球的罐子里任取两球,下列情况中是互斥而不对立的两个事件的是A.至少有一个红球;至少有一个白球√B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球对于A,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球、一个红球,故两事件可能同时发生,所以不是互斥事件;对于B,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取两球还可能都是红球,故两事件不是对立事件;对于C,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于D,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.命题点2 利用互斥、对立事件求概率例2 某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵事件A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )(2)1张奖券的中奖概率;设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,(3)1张奖券不中特等奖且不中一等奖的概率.思维升华事件关系的运算策略进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.当事件是由互斥事件组成时,运用互斥事件的概率加法公式.跟踪训练1 (1)(多选)抛掷一枚质地均匀的骰子,有如下随机事件:C i =“点数为i ”,其中i =1,2,3,4,5,6;D 1=“点数不大于2”,D 2=“点数不小于2”,D 3=“点数大于5”;E =“点数为奇数”;F =“点数为偶数”.下列结论正确的是A.C 1与C 2对立B.D 1与D 2不互斥C.D 3⊆FD.E ⊇(D 1∩D 2)√√对于A,C1=“点数为1”,C2=“点数为2”,C1与C2互斥但不对立,故选项A不正确;对于B,D1=“点数不大于2”,D2=“点数不小于2”,当出现的点数是2时,D1与D2同时发生,所以D1与D2不互斥,故选项B正确;对于C,D3=“点数大于5”表示出现6点,F=“点数为偶数”,所以D3发生时F一定发生,所以D3⊆F,故选项C正确;对于D,D1∩D2表示两个事件同时发生,即出现2点,E=“点数为奇数”,所以D1∩D2发生,事件E不发生,所以E⊇(D1∩D2)不正确,故选项D不正确.(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间1 1.52 2.53 (分钟/人)已知这100位顾客中一次购物量超过8件的顾客占55%.①确定x,y的值,并估计顾客一次购物的结算时间的平均值;由已知得25+y+10=55,x+30=45,所以x=15,y=20.②估计一位顾客一次购物的结算时间不超过2分钟的概率.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间1 1.52 2.53 (分钟/人)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”,则可估计概率约为因为A=A1∪A2∪A3,且A1,A2,A3两两互斥,例3 (1)(2023·南通质检)我国数学家张益唐在“孪生素数”研究方面取得突破,孪生素数也称为孪生质数,就是指两个相差2的素数,例如5和7.在大于3且不超过20的素数中,随机选取2个不同的数,恰好是一组孪生素数的概率为√大于3且不超过20的素数为5,7,11,13,17,19,共6个,随机选取2个不同的数,分别为(5,7),(5,11),(5,13),(5,17),(5,19),(7,11),(7,13),(7,17),(7,19),(11,13),(11,17),(11,19),(13,17),(13,19),(17,19),共15种选法,其中恰好是一组孪生素数的有(5,7),(11,13),(17,19),共3种,故随机选取2个不同的数,恰好是一组孪生素数的概率为 .(2)在一次比赛中某队共有甲、乙、丙等5位选手参加,赛前用抽签的方法决定出场顺序,则乙、丙都不与甲相邻出场的概率是√思维升华利用公式法求解古典概型问题的步骤跟踪训练2 (1)(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回地随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为√从写有1,2,3,4,5,6的6张卡片中无放回地随机抽取2张,共有15种取法,它们分别是(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),其中卡片上的数字之积是4的倍数的是(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共6种取法,所以所求概率是(2)(2022·宜宾质检)2022年冬奥会在北京、延庆、张家口三个区域布置赛场,北京承办所有冰上项目,延庆和张家口承办所有雪上项目.组委会招聘了包括甲在内的4名志愿者,准备分配到上述3个赛场参与赛后维护服务工作,要求每个赛场至少分到一名志愿者,则志愿者甲正好分到北京赛场的概率为 _____.例4 北京冬奥会顺利闭幕后,某学校团委组织了一次“奥运会”知识讲座活动,活动结束后随机抽取120名学生对讲座情况进行调查,其中男生与女生的人数之比为1∶1,抽取的学生中男生有40名对讲座活动满意,女生中有30名对讲座活动不满意. (1)完成右面2×2列联表,并依据小概率值α=0.10的独立性检验,能否推断对讲座活动是否满意与性别有关?满意不满意合计男生女生合计 120xα 2.706 3.841 6.6357.87910.8282×2列联表如表所示.零假设为H0:对讲座活动是否满意与性别无关.根据列联表中数据,满意不满意合计男生402060女生303060合计7050120根据小概率值α=0.10的独立性检验,我们推断H0不成立,即认为对讲座活动是否满意与性别有关.(2)从被调查的对讲座活动满意的学生中,利用比例分配的分层随机抽样方法抽取7名学生,再在这7名学生中抽取3名学生谈谈自己听讲座的心得体会,求其中恰好抽中2名男生与1名女生的概率.由(1)知,在样本中对讲座活动满意的学生有70人,从中抽取7人,其中记“恰好抽中2名男生与1名女生”为事件A,思维升华求解古典概型的综合问题的步骤(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定样本点个数;(4)代入古典概型的概率公式求解.跟踪训练3 从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出频率分布直方图如图所示,观察图形,回答下列问题.(1)成绩在[80,90)这一组的频数、频率分别是多少?根据题意,成绩在[50,60)这一组的频率为0.015×10=0.15,在[60,70)这一组的频率为0.025×10=0.25,在[70,80)这一组的频率为0.035×10=0.35,在[90,100)这一组的频率为0.005×10=0.05,(2)估计这次环保知识竞赛成绩的平均数、众数、中位数;(不要求写过程)这次竞赛成绩的平均数约为45×0.1+55×0.15+65×0.25+75×0.35+85×0.1+95×0.05=68.5;成绩在[70,80)这一组的频率最大,人数最多,则众数约为75;70分左右两侧的频率均为0.5,则中位数约为70.(3)从成绩是80分以上(包括80分)的学生中选2人,求他们在同一分数段的概率.。
事件的独立性、条件概率和全概率公式(精讲)【2024一轮复习讲义】(新高考通用)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、条件概率1.定义:一般地,设A ,B 为两个事件,且()0P A >,称()()()|P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.注:(1)条件概率|()P B A 中“|”后面就是条件;(2)若()0P A =,表示条件A 不可能发生,此时用条件概率公式计算|()P B A 就没有意义了,所以条件概率计算必须在()0P A >的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即1|0()P B A ≤≤.(2)必然事件的条件概率为1,不可能事件的条件概率为0.(3)如果B 与C 互斥,则(||()(|))P B C A P B A P C A =+ .注:已知A 发生,在此条件下B 发生,相当于AB 发生,要求|()P B A ,相当于把A 看作新的基本事件空间计算AB 发生的概率,即()()()()()()()()|()n AB n AB n P AB P B A n A n A P A n Ω===Ω.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件A ,B ,如果)(|)(P B A P B =,则意味着事件A 的发生不影响事件B 发生的概率.设()0P A >,一、知识点梳理根据条件概率的计算公式,()()()()|P AB P B P B A P A ==,从而()()()P AB P A P B =.由此我们可得:设A ,B 为两个事件,若()()()P AB P A P B =,则称事件A 与事件B 相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件A 与B ,若()0P A >,则()|)()(P AB P A P B A =.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件A ,B 互相独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到(2)n n n >∈*N ,个事件的相互独立性,即若事件1A ,2A ,…,n A 相互独立,则这n 个事件同时发生的概率1212()()()()n n P A A A P A A P A = .2.事件的独立性(1)事件A 与B 相互独立的充要条件是()()()P AB P A P B =⋅.(2)当()0P B >时,A 与B 独立的充要条件是()()|P A B P A =.(3)如果()0P A >,A 与B 独立,则()()()()()()()|P AB P A P B P B A P B P A P A ⋅===成立.三、全概率公式1.全概率公式(1)|()()()()(|)P B P A P B A P A P B A =+;(2)定理1若样本空间Ω中的事件1A ,2A ,…,n A 满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()0i P A >,12i n = ,,,.则对Ω中的任意事件B ,都有12n B BA BA BA =+++ ,且11()()()()|nni i i i i P B P BA P A P B A ====∑∑.2.贝叶斯公式(1)一般地,当0()1P A <<且()0P B >时,有()()()()()()()()()()||||P A P B A P A P B A P A B P B P A P B A P A P B A ==+(2)定理2若样本空间Ω中的事件12n A A A ,,,满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()01i P A <<,12i n = ,,,.则对Ω中的任意概率非零的事件B ,都有12n B BA BA BA =+++ ,且1()()()()()()()()|||j j j j j niii P A P B A P A P B A P A B P B P A P B A ===∑注:贝叶斯公式体现了|()P A B ,()P A ,()P B ,|()P B A ,|()P B A ,()P AB 之间的关系,即()()()|P AB P A B P B =,()()()()()||P AB P A B P B P B A P A ==,|()()()()(|)P B P A P B A P A P B A =+.题型一事件的相互独立性1.判断事件是否相互独立的方法(1)定义法:事件(2)由事件本身的性质直接判定两个事件发生是否相互影响.二、题型分类精讲A.332B.【答案】D【题型训练】一、单选题,从乙口袋内摸出一个白球的概率是6【分析】根据题意,求得事件甲、乙、丙、丁的概率,结合相互独立事件的概念及判定方法,逐项判定,不相互独立,所以本序号说法不正确;二、多选题不能同时发生,但能同时不发生,所以不是对立事件,所以三、填空题四、解答题.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,题型二条件概率1.判断所求概率为条件概率的主要依据是题目中的知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用条件概率的关键是求出【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为d二、多选题、表示事件错误;三、填空题个红球,从中任意取出一球,已知它不是白题型三全概率公式全概率公式复杂的概率计算分解为一些较为容易的情况分别进行考虑.【题型训练】一、单选题小时的学生中任意调查一名学生,则(二、多选题,所以表示买到的口罩分别为甲品牌、乙品牌、其他品牌,,对;三、填空题记任选一人去桂林旅游的事件为B ,则123()0.4,()()0.3P A P A P A ===,123(|)0.1,(|)0.2,(|)0.15P B A P B A P B A ===,由全概率公式得112233()(|)()(|)()(5|)30.15014P P A P B A P A P B A P A P B B A =⨯⨯++==++⨯.故答案为:0.145四、解答题附:()2P K k≥0.150.100.05k 2.072 2.706 3.841 (2)将甲乙生产的产品各自进行包装,每来自甲生产的概率为3,来自乙生产的概率为(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为①A获得季军的概率;②D成为亚军的概率;,其余三人实力旗鼓相当,求题型四贝叶斯公式1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算【题型训练】一、单选题。
2024版高考数学全程一轮总复习第十章计数原理概率随机变量及其分布第三节随机事件的概率与古典概型课件

从中随机选2名参加社会实践的事件有{a1,a2},{a1,b1},{a1,b2},{a2,b1},
{a2,b2},{b1,b2},共计6种.
其中两名同学性别不同的事件有{a1 ,b1},{a1 ,b2},{a2 ,b1},{a2 ,b2},共
D.“都是红球”与“至少有一个黑球”是互斥事件,也是对立事件,故选项D不
符合题意.故选A.
题后师说
判断互斥事件、对立事件的两种方法
巩固训练1
从1,2,3,4,5,6这六个数中任取三个数,下列两个事件为对立
事件的是(
)
A.“至多有一个是偶数”和“至多有两个是偶数”
B.“恰有一个是奇数”和“恰有一个是偶数”
1
率为P= .
3
关键能力·题型突破
题型一 随机事件
角度一 事件的关系与运算
例 1(1)[2023·安徽芜湖期末](多选)从5个女生和4个男生中任选两个
人参加某项活动,有如下随机事件:A=“至少有一个是女生”,B=
“至少有一个男生”,C=“恰有一个男生”,D=“两个都是女
生”,E=“恰有一个女生”.下列结论正确的有(
他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字
后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小
球放回.①若取出的两个小球上数字之积大于8,则奖励飞机玩具一
个;②若取出的两个小球上数字之积在区间[4,8]上,则奖励汽车玩
具一个;③若取出的两个小球上数字之积小于4,则奖励饮料一瓶.
n(A)
=
含其中的k个样本点,则定义事件A的概率P(A)=________.其中,
n(Ω)
2024年高考数学一轮复习课件(新高考版) 第10章 事件的相互独立性与条件概率、全概率公式

§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2024年余丙森概率论辅导讲义
第一节:概率论基础
1.1 概率论的起源和发展
概率论是研究随机现象的数学分支,起源于古代赌博和游戏。
随着时间的推移,概率论逐渐发展成为一门独立的学科,并在各个领域中得到广泛应用。
1.2 概率的定义和性质
概率是描述某个事件发生可能性的数值,通常用0到1之间的一个实数表示。
概率具有可加性、非负性、规范性等基本性质。
1.3 随机变量与概率分布
随机变量是概率论中的重要概念,它是对随机现象的数学建模。
概率分布描述了随机变量的取值及其对应的概率。
1.4 条件概率与独立性
条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
独立性是指两个事件的发生与否互不影响。
1.5 期望与方差
期望是随机变量取值的加权平均值,反映了随机变量的平均水平。
方差是随机变量偏离其期望值的程度的度量。
第二节:概率分布
2.1 离散型随机变量与概率分布
离散型随机变量只能取有限或可数个数值,其概率分布由概率质量函数表示,例如伯努利分布、二项分布、泊松分布等。
2.2 连续型随机变量与概率密度函数
连续型随机变量可以取任意实数值,其概率分布由概率密度函数表示,例如均匀分布、正态分布、指数分布等。
2.3 两个重要的分布:正态分布和泊松分布
正态分布是概率论中最重要的分布之一,具有对称性和稳定性,广泛应用于自然科学和社会科学领域。
泊松分布用于描述单位时间或单位面积内随机事件发生的次数。
第三节:随机变量的特征函数和大数定律
3.1 随机变量的特征函数
特征函数是随机变量的一个重要特征,通过特征函数可以唯一确定随机变量的分布。
3.2 大数定律
大数定律是概率论中的重要定理,描述了随机事件重复进行时,频率逐渐趋近于概率的现象。
第四节:中心极限定理与统计推断
4.1 中心极限定理
中心极限定理是概率论中的核心定理之一,描述了大量独立随机变
量的和的分布近似于正态分布的现象。
4.2 统计推断
统计推断是利用样本信息对总体进行推断和决策的方法,包括参数估计和假设检验两个方面。
第五节:随机过程
5.1 随机过程的定义与分类
随机过程是描述随机现象随时间变化的数学模型,可以分为离散时间和连续时间两种类型。
5.2 马尔可夫链
马尔可夫链是一类具有马尔可夫性质的随机过程,其未来状态只依赖于当前状态,与过去状态无关。
5.3 应用领域:排队论与金融工程
排队论是研究排队系统的概率模型和性能指标的学科,广泛应用于交通运输、通信网络等领域。
金融工程利用概率论和随机过程的方法对金融市场进行建模和分析。
总结:
概率论作为一门重要的数学学科,在现代科学和社会中发挥着重要的作用。
通过对概率论的学习和理解,可以帮助我们更好地理解和分析随机现象,为实际问题的解决提供科学的依据。
在2024年的余丙森概率论辅导讲义中,我们对概率论的基础概念、概率分布、随
机变量特征、大数定律、中心极限定理、统计推断和随机过程等内容进行了详细的介绍和讲解,希望能够帮助学生们更好地掌握和应用概率论的知识。