高中数学函数的应用同步练习题(带答案)

高中数学函数的应用同步练习题(带答案)
高中数学函数的应用同步练习题(带答案)

高中数学函数的应用同步练习题(带答案)人教必修一第三章函数的应用同步练习题(带答案)3.1函数与方程

3.1.1方程的根与函数的零点

1.已知函数f(x)的图象是连续不断的,x,f(x)的对应值如下表:

x 0 1 2 3 4 5

f(x) -6 -2 3 10 21 40

则函数f(x)在区间()内有零点.()

A.(-6,-2) B.(1,2)

C.(2,3) D.(3,5)

2.(2019年浙江模拟)设x0为方程2x+x=8的解.若x0(n,n+1)(nN*),则n的值为()

A.1 B.2 C.3 D.4

3.如果二次函数y=x2+mx+(m+3)有两个不同的零点,那么实数m的取值范围是()

A.(-2,6)

B.[-2,6]

C.(-2,6]

D.(-,-2)(6,+)

4.设函数f(x)=x3+x+b是定义在[-2,2]上的增函数,且f(-1)f(1)<0,则方程f(x)=0在[-2,2]内()

A.可能有三个实数根B.可能有两个实数根

C.有唯一的实数根D.没有实数根

5.若x0是方程12x=的解,则x0属于区间()

A.23,1

B.12,23

C.13,12

D.0,13

6.利用计算器,列出自变量和函数值的对应值如下表:

x 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 …

y=2x 1.149 1.516 2.0 2.639 3.482 4.595 6.063 8.0 10.556 …

y=x2 0.04 0.36 1.0 1.96 3.24 4.84 6.76 9.0 11.56 …

那么方程2x=x2的一个根位于区间()

A.(0.6,1.0) B.(1.4,1.8)

C.(1.8,2.2) D.(2.6,3.0)

7.若关于x的方程x2+2kx-1=0的两根x1,x2满足-102,求k的取值范围.

8.(2019年陕西)设nN*,一元二次方程x2-4x+n=0有整数根的充要条件是n=_____________.

9.(2019年山东)已知函数f(x)=logax+x-b(a0,且a1).当2<a<3<b<4时,函数f(x)的零点x0(n,n+1),nN*,则n =________.

10.试确定方程2x3-x2-4x+2=0的最小根所在的区间,并使区间的两个端点是两个连续的整数.

3.1.2用二分法求方程的近似解

1.用二分法求如图K31所示的函数f(x)的零点时,不可能求出的零点是()

图K31

A.x1 B.x2

C.x3 D.x4

2.关于用“二分法”求方程的近似解,下列说法不正确的是() A.“二分法”求方程的近似解一定可将y=f(x)在区间[a,b]内的所有零点找出来

B.“二分法”求方程的近似解有可能得不到y=f(x)在区间[a,b]内的零点

C.“二分法”求方程的近似解,y=f(x)在区间[a,b]内有可能无零点

D.“二分法”求方程的近似解有可能得到y=f(x)在区间[a,b]内的精确解

3.在用二分法求函数f(x)零点近似值时,第一次取的区间是[-2,4],则第三次所取的区间可能是()

A.[1,4]

B.[-2,1]

C.[-2,2.5]

D.[-0.5,1]

4.方程x3-2x2+3x-6=0在区间[-2,4]上的根必定属于区间()

A.[-2,1] B.52,4

C.1,74

D.74,52

5.函数y=x3与y=12x-3的图象交点为(x0,y0),则x0所在的区间为()

A.(0,1) B.(1,2)

C.(2,3) D.(3,4)

6.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)

7.方程2-x+x2=3的实数解的个数为________.

8.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:

f (1)=-2 f (1.5)=0.625 f (1.25)=-0.984

f (1.375)=-0.260 f (1.437 5)=0.162 f (1.406 25)=-0.054 那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为() A.1.2 B.1.3

C.1.4 D.1.5

9.已知函数f(x)=ax+x-2x+1 (a1).

(1)证明:函数f(x)在(-1,+)上为增函数;

(2)若a=3,证明:方程f(x)=0没有负数根;

(3)若a=3,求出方程的根(精确度0.01).

3.2函数模型及其应用

3.2.1几类不同增长的函数模型

1.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x年植树的亩数y(单位:万亩)是时间x(单位:年)的一次函数,这个函数的图象是()

2.下列函数中,随着x的增长,增长速度最快的是() A.y=50 B.y=1000x

C.y=0.42x-1 D.y=11000ex

3.某单位为鼓励职工节约用水,作出了如下规定:每月用水不超过10 m3,按每立方米x元收取水费;每月用水超过10 m3,超过部分加倍收费,某职工某月缴费16x元,则该职工这个月实际用水为()

A.13 m3 B.14 m3

C.18 m3 D.26 m3

4.小李得到一组实验数据如下表:

t 1.99 3.0 4.0 5.0 6.2 7

V 1.5 4.05 7.5 12 18 23.9

下列模型能最接近数据的是()

A.V=log t B.V=log2t

C.V=3t-2 D.V=t2-12

5.某地的中国移动“神州行”卡与中国联通130网的收费标准如下表:

网络月租费本地话费长途话费

甲:联通130网12元每分钟0.36元每6秒钟0.06元乙:移动“神州行”卡无每分钟0.6元每6秒钟0.07元(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)

若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(单位:分钟)的范围在区间(60,70)内,则选择较为省钱的网络为()

A.甲B.乙

C.甲、乙均一样D.分情况确定

6.从A地向B地打长途电话,按时间收费,3分钟内收费2.4元,3分钟后每多1分钟就加收1元.当时间t3时,电话费y(单位:元)与时间t(单位:分钟)之间的函数关系式是____________.

7.已知函数y1=2x和y2=x2.

当x(2,4]时,函数________的值增长较快;

当x(4,+)时,函数________的值增长较快.

8.如图K31,点P在边长为1的正方形的边上运动,设M 是CD边的中点,则当点P沿着A-B-C-M运动时,以点P经过的路程x为自变量,△APM的面积为函数的图象形状大致是()

图K31

9.我们知道,燕子每年冬天都要从北方飞向南方过冬.研

究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2O10,单位是m/s,其中O表示燕子的耗氧量.

(1)计算当一只两岁燕子静止时的耗氧量是多少单位;

(2)当一只两岁燕子的耗氧量是80个单位时,它的飞行速度是多少?

10.以下是某地区一种生物的数量y(单位:万只)与繁殖时间x(单位:年)的数据表:

时间/年 1 2 3 4

数量/万只10 20 40 80

根据表中的数据,请从y=ax+b,y=alogbx,y=abx中选择一种函数模型刻画出该地区生物的繁殖规律,并求出函数解析式.

3.2.2实际问题的函数模型

1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时后,这种细菌可由1个分裂成()

A.511个B.512个

C.1023个D.1024个

2.拟定从甲地到乙地通话m分钟的电话费为f(m)=

1.06(0.50[m]+1),其中m0,[m]是大于或等于m的最小整数,如[4]=4,[

2.7]=3,[

3.8]=4,则从甲地到乙地的通话时间为5.5分钟的话费为()

A.3.71元B.3.97元

C.4.24元D.4.77元

3.某银行实行按复利计算利息的储蓄,若本金为2万元,利率为8%,则5年后可得利息()

A.2(1+0.8)5元

B.(2+0.08)5元

C.2(1+0.08)5-2元

D.2(1+0.08)4-2元

4.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg 并且每挂重1 kg就伸长12 cm,则挂重后的弹簧长度y cm与挂重x kg之间的函数关系式是()

A.y=12x+12(0<x15)

B.y=12x+12(0x<15)

C.y=12x+12(015)

D.y=12x+12(0<x<15)

5.在我国大西北,某地区荒漠化土地面积平均每年比上一年增长10.4%,专家预测经过x年,荒漠化土地面积可能增长为原来的y倍,则函数y=f(x)的图象大致是()

A B CD

6.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费32 m元,则该职工这个月实际用水为()

A.13立方米B.14 立方米

C.18立方米D.21立方米

7.某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值为__________.

8.(2019年北京海淀统测)图K32(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图K32(2)(3)所示.

图K32

给出下列说法:

①图K32(2)的建议是:提高成本,并提高票价;

②图K32(2)的建议是:降低成本,并保持票价不变;

③图K32(3)的建议是:提高票价,并保持成本不变;

④图K32(3)的建议是:提高票价,并降低成本.

其中说法正确的序号是________.

9.某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加成本100元,已知总收益(总成本+利润)满足函数:R(x)=400x-12x20400,80 000x400.其中x是仪器的月产量(单位:台).

(1)将利润表示为月产量的函数f(x);

(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?

10.提高过江大桥车辆的通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20200时,车流速度v是车流密度x的一次函数.

(1)当0200时,求函数v(x)的表达式;

(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/时).

第三章函数的应用

3.1函数与方程

3.1.1方程的根与函数的零点

1.B

2.B解析::∵x0为方程2x+x=8的解,2x0+x0-8=0. 令f(x)=2x+x-8=0,∵f(2)=-2<0,f(3)=3>0,

x0(2,3).再根据x0(n,n+1) (nN*),可得n=2.

3.D解析:=m2-4(m+3)0,m6或m-2.

4.C解析:由题意,可知:函数f(x)在区间[-2,2]上是连

续的、递增的,又f(-1)f(1)<0,故函数f(x)在[-2,2]内有且只有一个零点,则方程f(x)=0在[-2,2]内有唯一的实数根.5.C

6.C解析:设f(x)=2x-x2,由f(0.6)=1.516-0.360,f(1.0)=2.0-1.00,故排除A;

由f(1.4)=2.639-1.960,f(1.8)=3.482-3.240.故排除B;

由f(1.8)=3.482-3.240,f(2.2)=4.595-4.840,故可确定方程2x=x2的一个根位于区间(1.8,2.2).故选C.

7.解:设函数f(x)=x2+2kx-1,∵关于x的方程x2+2kx -1=0的两根x1,x2满足-102,f-10,f00,f20,即-2k0,-10,4k+30,-340.

8.3或4解析:x=416-4n2=24-n,因为x是整数,即24-n为整数,所以4-n为整数,且n4,又因为nN*,取n =1,2,3,4,验证可知n=3或4符合题意;反之当n=3或4时,可推出一元二次方程x2-4x+n=0有整数根.

9.2解析:∵f(2)=loga2+2-b0,f(3)=loga3+3-b0,x0(2,3),故n=2.

10.解:令f(x)=2x3-x2-4x+2,

∵f(-3)=-54-9+12+2=-49<0,

f(-2)=-16-4+8+2=-10<0,

f(-1)=-2-1+4+2=3>0,

f(0)=0-0-0+2=2>0,

f(1)=2-1-4+2=-1<0,

f(2)=16-4-8+2=6>0,

根据f(-2)f(-1)<0,f(0)f(1)<0,f(1)f(2)<0,

可知f(x)的零点分别在区间(-2,-1),(0,1),(1,2)内.

∵方程是一个一元三次方程,所以它最多有三个根,

原方程的最小根在区间(-2,-1)内.

3.1.2用二分法求方程的近似解

1.C 2.A

3.D解析:因为第一次所取的区间是[-2,4],所以第二次的区间可能是[-2,1],[1,4];第三次所取的区间可能是[-2,-0.5],[-0.5,1],[1,2.5],[2.5,4],只有选项D在其中.故选D.

4.D解析:令f(x)=x3-2x2+3x-6,分别计算f(-2),f(1),f52,f74的值,得f(-2)=-28<0,f(1)=-4<0,f52=4.625>0,f74-1.515 6<0.故选D.

5.B解析:x0即为f(x)=x3-12x-3的零点,又∵f(1)=-30,f(2)=60,f(x)在(1,2)有零点.

6.证明:设函数f(x)=2x+3x-6,

∵f(1)=-10,f(2)=40,又∵f(x)是增函数,

函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点.

则方程6-3x=2x在区间[1,2]内有唯一一个实数解.

设该解为x0,则x0[1,2],f(1)=-10,f(2)=40,

取x1=1.5,f(1.5)1.330,f(1)f(1.5)0,

x0(1,1.5).

取x2=1.25,f(1.25)0.1280,f(1)f(1.25)0,

x0(1,1.25).

取x3=1.125,,f(1.125)-0.4440,f(1.125)f(1.25)0,

x0(1.125,1.25).

取x4=1.187 5,,f(1.187 5)-0.160,f(1.187 5)f(1.25)0,

x0(1.187 5,1.25).

∵|1.25-1.187 5|=0.062 50.1,

1.187 5可作为这个方程的实数解.

7.2个解析:画出y=2-x与y=3-x2的图象,有两个交点,故方程2-x+x2=3的实数解的个数为2个.

8.C解析:f(1.406 25)=-0.0540,f(1.437 5)=0.1620且都接近0,由二分法,知其近似根为1.4.

9.(1)证明:f(x)=ax+x-2x+1=ax+1-3x+1(a1).

设-1x2,

则f(x1)-f(x2)=+1-3x1+1-

=--31x1+1-1x2+1.

∵-1x2且a1,

-0,1x1+1-1x2+1=x2-x1x1+1x2+10.

f(x1)-f(x2)0,

即f(x1)f(x2).f(x)在(-1,+)上为增函数.

(2)证明:当a=3时,3x+x-2x+1=0,

∵f(0)0,f(1)=520,

区间(0, 1)上必有一根,

由函数单调性,可知:3x+x-2x+1=0至多有一根,故方程恰有一根在区间(0, 1)上.即f(x)=0没有负数根.

(3)解:由二分法f120,f140,

f380,f5160,f9320,

f17640,f351280,

而35128-932=-1128,

而11280.01,x=35128可作为该方程的一个根.

3.2函数模型及其应用

3.2.1几类不同增长的函数模型

1.A 2.D

3.A解析:设实际用水量为a m3,则有10x+2x(a-10)=16x,解得a=13.

4.D解析:注意到自变量每次增加约为1,V的增加越来越快,结合数据验证,D符合.

5.A

6.y=t-0.6(t3)7.y2=x2y1=2x

8.A解析:当01时,y=12x1=12x;当1<x2时,y=1-12(x-1)-14(2-x)-14=-14x+34;当2<x2.5时,y=1252-x1=54-12x.故选A.

9.解:(1)由题意知,当燕子静止时,它的速度v=0,

代入已知函数关系式可得0=5log2O10,解得O=10个单位.(2)将耗氧量O=80代入已知函数关系式,得

v=5log28010=5log223=15 m/s.

10.解:对于y=ax+b,则

a+b=10,2a+b=20,a=10,b=0.y=10x.

而当x=3时,y=30;当x=4时,y=40.

对于y=alogbx,alogb1=10,alogb2=20,此方程组无解.对于y=abx,ab=10,ab2=20,a=5,b=2.

y=52x.而当x=3时,y=40;

当x=4时,y=80.

故选择函数y=52x刻画该地区生物的繁殖规律比较好.

3.2.2实际问题的函数模型

1.B 2.C 3.C 4.C

5.A解析:设原来该地区荒漠化土地面积为a,则经过x 年后,面积为a(1+10.4%)x,那么经过x年后增长到原来的y倍,故有y=a1+10.4%xa=1.104x.因此图象大致应为指数函数的图象.故选A.

6.D

7.208.②③

9.解:(1)设月产量为x台,则总成本C(x)=20 000+100x,从而f(x)=R(x)-C(x)

=-12x2+300x-20 0000400,60 000-100xx400.

(2)当0400时,f(x)=-12(x-300)2+25 000.

当x=300时,f(x)max=25 000.

当x400时,f(x)=60 000-100x是减函数,

f(x)60 000-100400=20 000.

综上所述,当x=300时,f(x)max=25 000.

10.解:(1)由题意,当020时,v(x)=60;

当20200时,设v(x)=ax+b,显然v(x)=ax+b在区间(20,200]是减函数,

由已知,得200a+b=0,20a+b=60,解得a=-13,b=2019. 故函数v(x)的表达式为

v(x)=60,020,13200-x,20200.

(2)依题意并由(1),可得

f(x)=60x,020,13x200-x,20200.

当020时,f(x)为增函数,故当x=20时,其最大值为6020=1200;

当20200时,f(x)=13x200-x=-13x-1002+10 0003,

死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文

水平的重要前提和基础。

所以当x=100时,f(x)在区间(20,200]上取得最大值为10 0003.

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为10 00033333,

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/时.

高中数学:应用题练习

高中数学:应用题练习 1.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:m 2),高为h (单位:m)(S ,h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架组成,设腰和下底的夹底为α,不锈钢支架的长度之和记为l . (1)请将l 表示成关于α的函数l =f (α); (2)问:当α为何值时l 最小,并求最小值. 解 (1)过D 作DH ⊥BC 于点H ,则∠DCB =α? ? ???0<α<π2,DH =h ,设AD =x . 则DC = h sin α ,CH = h tan α ,BC =x + 2h tan α . 因为S =12? ? ???x +x + 2h tan α·h , 则x =S h -h tan α, 则l =f (α)=2DC +AD =S h +h ? ????2 sin α-1tan α? ????0<α<π2. (2)f ′(α)=h ·? ????-2cos αsin 2 α--1sin 2α=h ·1-2cos αsin 2α, 令f ′(α)=h · 1-2cos αsin 2α=0,得α=π3 . 当α变化时,f ′(α),f (α)的变化情况如下表: α ? ? ???0,π3 π 3 ? ????π3 ,π2

f ′(α) - 0 + f (α) ↘ 极小值 ↗ 所以l min =f ? ???? π3=3h +S h . 答 当α= π3时,l 取最小值3h +S h (m). 2.某宾馆在装修时,为了美观,欲将客户的窗户设计成半径为1 m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口. (1)若窗口ABCD 为正方形,且面积大于14 m 2 (木条宽度忽略不计),求四根木条总长的取值范围; (2)若四根木条总长为6 m,求窗口ABCD 面积的最大值. 解 (1)设一根木条长为x m, 则正方形的边长为2 1-? ?? ?? x 22=4-x 2 m. 因为S 四边形ABCD >14,所以4-x 2>14,即x <15 2. 又因为四根木条将圆分成9个区域,所以x >2, 所以42<4x <215. 答 四根木条总长的取值范围为(42,215). (2)方法一 设AB 所在的木条长为a m,则BC 所在的木条长为(3-a )m. 因为a ∈(0,2),3-a ∈(0,2),所以a ∈(1,2). 窗口ABCD 的面积S =41-a 2 4 · 1-(3-a )24 4-a 2·4-(3-a )2 a 4-6a 3+a 2+24a -20, 设f (a )=a 4-6a 3+a 2+24a -20,

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高中数学应用题汇总

高中数学应用题汇总 1.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (1)将y表示成x的函数; (11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。 解(1)如图,由题意知AC⊥BC,, 其中当时,y=0.065,所以k=9 所以y表示成x的函数为 (2)令得所以即当时,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数 有最小值 (注:该题可用基本不等式求最小值。)

2.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数k (1≤k≤3)。 (1)求该企业正常生产一年的利润F(x)与出厂价x的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. (1)依题意,F(x)=(x-3)(11-x)2-k(11-x)2=(x-3-k)(11-x)2,x∈[7,10]. (2)因为F′(x)=(11-x)2-2(x-3-k)(11-x)=(11-x)(11-x -2x+6+2k) =(x-11)[3x-(17+2k)]. 由F′(x)=0,得x=11(舍去)或x=.(6分) 因为1≤k≤3,所以≤≤. ①当≤≤7,即1≤k≤2时,F′(x)在[7,10]上恒为负,则F(x)在[7,10]上为减函数,所以[F(x)]max=F(7)=16(4-k).(9分) ②当7<≤,即2

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

(完整版)2高中数学函数解题技巧方法总结

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是y x x x = --432 lg ()()()(答: ,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数 x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数 x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [](答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解 出x 的范围,即为 [])(x g f y =的定义域。 例 若函数 )(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数 )(x f y =的定义域为?? ? ???2,21可知:221≤≤x ; 所以)(log 2x f y =中有2log 212≤≤x 。

高中数学应用题

函数、不等式型 1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3 a y x x = +--,其中3

高中数学函数的解析式

课题:___函数的解析式___ 教学任务 教 学 目 标 知识与技能目标会求简单函数的解析式 过程与方法目标 学生通过“回顾-反思-巩固-小结”的过程中 总结简单函数的解析式三种类型及解法。理解掌握 换元法、待定系数法,体会建立数学模型。培养学 生分类讨论的数学思想。 情感,态度与价值 观目标 使学生认识到数学与生活紧密相连,数学活动充满着探索与创 造,让他们在学习活动中培养独立的分析和建模的能力。 重点理解掌握应用换元法、待定系数法求简单函数的解析式 难点能初步掌握用数学模型解决实际问题,并能注意实际问题中的定义域 教学过程设计 问题与情境 设计 意图 活动1课前热身(资源如下) 1、设 ? ? ? ? ? < = > + = )0 (0 )0 ( )0 (1 ) ( x x x x x fπ,则f{f[f(-1)]}=_______ ___ 2、若一次函数f(x),使f[f(x)]=9x+1,则() f x= 3、已知:) (x f=x2-x+3 ,则 f(x+1) = , f( x 1 )= 4、若 x x x f - = 1 ) 1 (求f(x) = 5、客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙 地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙 地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过 的路程s与时间t之间关系的图象中,正确的是(). A. B. C. D. . 从正 反两 种情 况出 发,让 学生 回忆 体会 函数 解析 式用 法和 求法。 活动2类型解法 函数的解析式的几种类型及解法: 1、已知所要求的函数类型(一次、二次、反比例、指对数等), 利用待定系数法来求; 2、已知复合函数一般用变量代换(换元)法; 3、涉及实际问题求解析式,需建立数学模型即:把实际问题转 化为数学问题。 培 养学 生用 自己 的语 言来 总结 类型 与解 法 活动3提高探究 资源1、求满足下列条件的函数() f x的解析式: ①已知一次函数() f x,满足3(1)2(1)217 f x f x x +--=+. ②若二次函数满足(0)0 f=,且(1)()1 f x f x x +=++ ③设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,在x轴上截得 的线段长为2 2. 掌 握利 用待 定系 数法 求解 析式。

高中数学必修一函数大题(含详细解答) (1)

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2 ()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-? =??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2 =++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =- ≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

高中数学函数测试题(含答案)

高中数学函数测试题 学生: 用时: 分数: 一、选择题和填空题(3x28=84分) 1、若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >> 【答案】A 【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 2、函数2 ()(1)1(1)f x x x =-+<的反函数为( ) A .1 ()11)f x x -=+> B .1 ()11)f x x -=-> C .1()11)f x x -=≥ D .1 ()11)f x x -=-≥ 【答案】B 【解析】 221(1)1,(1)11x y x x y x 3、已知函数2 ()cos f x x x =-,对于ππ22 ??-???? ,上的任意12x x ,,有如下条件: ①12x x >; ②22 12x x >; ③12x x >. 其中能使12()()f x f x >恒成立的条件序号是 . 【答案】② 【解析】函数2 ()cos f x x x =-为偶函数,则1212()()(||)(||).f x f x f x f x >?> 在区间π02?? ???? ,上, 函数2 ()cos f x x x =-为增函数, 22121212(||)(||)||||f x f x x x x x ∴>?>?> 4、已知函数3log ,0()2,0 x x x f x x >?=?≤?,则1 (())9f f =( )

高一数学必修一函数的解析式

求函数的解析式的主要方法有: 1) 凑配法(直接变换法) 如:f (x-1)=x+1,求f (x )的解析式。 2) 待定系数法 如:若f{f[f(x)]}=27x+26,求f (x )的解析式。 3) 换元法 如:f (1 x )=x+2x ,求f (x )。 4) 消参法 如:如果f (x )满足af (x )+f (x 1)=ax ,x ∈R ,且x ≠0,a ≠+1,求f (x )。

5) 特殊值法 如:设f (x )是R 上的函数,f (0)=1,并且对任意实数x 、y 有f (x-y )=f (x )-y (2x-y+1),求f (x )。 6、函数最大(小)值 ○1 利用二次函数的性质(配方法)求函数的最大(小) 值 ○ 2 利用图象求函数的最大(小)值 ○ 3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 练习: 1.已知f(3x+1)=4x+3, 求f(x)的解析式. 2.已知221)1(x x x x f +=-, 求)(x f 的解析式.

3.设)(x f 是一元二次函数, )(2)(x f x g x ?=,且212)()1(x x g x g x ?=-++,求)(x f 与)(x g . 4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式 x x f x f 4)1(2)(3=+,求)(x f 的解析式. 5.设)(x f 是定义在*N 上的函数,若1)1(=f ,且对任意的x,y 都有:xy y x f y f x f -+=+)()()(, 求)(x f .

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

相关文档
最新文档