高考数学理科基础班训练题公开课课件第六章 数列
合集下载
2020版高考数学大一轮复习第六章数列微专题七放缩法在证明中的应用课件

第六章 数列
微专题七 放缩法在证明中的应用
[解题策略] 放缩法是不等式证明的重要方法,其中的放缩技巧既有模式可循但更有
创意之变,如何灵活运用有:
(1)n12的放缩: n12<nn1-1=n-1 1-n1(n≥2), n12>nn1+1=n1-n+1 1, n12<n2-1 14=n-1 12-n+1 12;
例1
n
设 n∈N*,求证:
1 61 i2<36.
i=1
nn+1 n
n+12
例 2 设 n∈N*,求证: 2 < kk+1< 2 .
k=1
例3
80
求证:16<
1 k<17.
k=1
(4)真分式ba的放缩: 若 a>b>0,m>0,则ba<ab++mm.
另外,利用重要不等式放缩、导数应用中有关ln x型的放缩(如:ln(1+x)<x, x>0)等也是常见的放缩方式. 利用放缩法证明不等式的难点是放缩的“度”不好把握,放大了或放小了都 得不出所证不等式,这样需要回头调整,留一项或几项不放缩逐步试验向所 证结论靠扰,下面举例说明.
(2)n1!的放缩: n1!=1·2·31·…·n<n·n1-1 =n-1 1-1n(n≥2), n1!=1·2·31·…·n<1·2·21·…·2 =2n1-1(n≥2);
(3) 1n的放缩:
1n=2 2 n>
2
=2(
n+ n+1
n+1- n),
1n=2 2 n<
2
=2(
n+ n-1
n-
n-1);
微专题七 放缩法在证明中的应用
[解题策略] 放缩法是不等式证明的重要方法,其中的放缩技巧既有模式可循但更有
创意之变,如何灵活运用有:
(1)n12的放缩: n12<nn1-1=n-1 1-n1(n≥2), n12>nn1+1=n1-n+1 1, n12<n2-1 14=n-1 12-n+1 12;
例1
n
设 n∈N*,求证:
1 61 i2<36.
i=1
nn+1 n
n+12
例 2 设 n∈N*,求证: 2 < kk+1< 2 .
k=1
例3
80
求证:16<
1 k<17.
k=1
(4)真分式ba的放缩: 若 a>b>0,m>0,则ba<ab++mm.
另外,利用重要不等式放缩、导数应用中有关ln x型的放缩(如:ln(1+x)<x, x>0)等也是常见的放缩方式. 利用放缩法证明不等式的难点是放缩的“度”不好把握,放大了或放小了都 得不出所证不等式,这样需要回头调整,留一项或几项不放缩逐步试验向所 证结论靠扰,下面举例说明.
(2)n1!的放缩: n1!=1·2·31·…·n<n·n1-1 =n-1 1-1n(n≥2), n1!=1·2·31·…·n<1·2·21·…·2 =2n1-1(n≥2);
(3) 1n的放缩:
1n=2 2 n>
2
=2(
n+ n+1
n+1- n),
1n=2 2 n<
2
=2(
n+ n-1
n-
n-1);
高考数学总复习6.4数列求和市赛课公开课一等奖省优质课获奖课件

则 S2 017=________.
【解析】 因为数列
an=ncos
n2π呈周期性变化,观察此数
列规律如下:a1=0,a2=-2,a3=0,a4=4. 故 S4=a1+a2+a3+a4=2.
∴S2 017=S2 016+a2 017
=2 0416×2+2 017·cos2 0217π
=1 008.
【答案】 1 008
…;a3,a6,a9,…分别成等差数列,且公差为2,
22/45
∴ S25 = (a1 + a4 + a7 + … + a25) + (a2 + a5 + … + a23) + (a3 + a6 + … + a24) = 1×9+9×2 8×2 + 2×8+8×2 7×2 + 3×8+8×2 7×2=233.
边同时乘以 a 即可根据错位相减法求得.( )
7/45
(4)数列21n+2n-1的前 n 项和为 n2+21n.(
)
(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法
可求得 sin21°+sin22°+sin23°+…+sin288°+sin289°=
44.5.( )
【答案】 (1)√ (2)√ (3)× (4)× (5)√
21Tn=12+232+253+274+295+…+2n2-n 1.② ①-②可得 21Tn=2+21+212+…+2n1-2-2n2-n 1=3-2n2+n 3, 故 Tn=6-22nn+-13.
26/45
【方法规律】 用错位相减法求和时,应注意: (1)要善于识别题目类型,尤其是等比数列公比为负数情形 ; (2)在写出“Sn”与“qSn”表示式时应尤其注意将两式“错项对 齐”方便下一步准确写出“Sn-qSn”表示式; (3)在应用错位相减法求和时,若等比数列公比为参数,应 分公比等于1和不等于1两种情况求解.
2021年高考数学(理)一轮复习讲义 第6章 第3讲 等比数列及其前n项和

上一页
返回导航
下一页
第六章 数 列
10
二、习题改编 1.(必修 5P54A 组 T8 改编)在 3 与 192 中间插入两个数,使它们同这两个数成等比数列, 则这两个数为________. 解析:设该数列的公比为 q,由题意知, 192=3×q3,q3=64,所以 q=4. 所以插入的两个数分别为 3×4=12,12×4=48. 答案:12,48
上一页
返回导航
下一页
第六章 数 列
30
通项 若数列通项公式可写成 an=c·qn-1(c,q 均是不为 0 的常数,n∈N*),则 公式法 {an}是等比数列 前 n 项和 若数列{an}的前 n 项和 Sn=k·qn-k(k 为常数且 k≠0,q≠0,1),则{an} 公式法 是等比数列
[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选 择题、填空题中的判定. (2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.
上一页
返回导航
下一页
第六章 数 列
21
解决等比数列有关问题的 2 种常用思想
方程的思想 等比数列中有五个量 a1,n,q,an,Sn,一般可以“知三求二”, 通过列方程(组)求关键量 a1 和 q,问题可迎刃而解
等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,
分类讨论的 思想
上一页
返回导航
下一页
第六章 数 列
16
2.数列{an}的通项公式是 an=an(a≠0),则其前 n 项和 Sn=________.
解析:因为 a≠0,an=an,所以{an}是以 a 为首项,a 为公比的等比数列.当 a=1 时, Sn=n;当 a≠1 时 Sn=a(11--aan).
高考数学总复习 6-1数列的概念课件 新人教B版

点评:根据数列的前几项写通项时,所求的通项公式不是 唯一的.其中常用方法是观察法.观察 an 与 n 之间的联系, 用归纳法写出一个通项公式,体现了由特殊到一般的思维规 律.联想与转换是有效的思维方法,它是由已知认识未知、将 未知转化为已知的重要思维方法.
(文)写出下列数列的一个通项公式: (1)1,85,175,294,…,an=________. (2)-1,32,-13,34,-15,12,…,an=________.
3 . 已 知 {an} 的 前 n 项 和 Sn 求 an 时 , 用 an =
S1
n=1,
Sn-Sn-1 n≥2.
求解应注意分类讨论.an=Sn-Sn-1 是在
n≥2 条件下求出的,应检验 a1 是否适合.如果适合,则合写
在一块,如果不适合,则分段表示.
思想方法技巧
一、求数列的通项公式常见的有以下三种类型 1.已知数列的前几项,写出一个通项公式. 依据数列前几项的特点归纳出通项公式:方法是依据数 列的排列规律,求出项与项数的关系.一般步骤是:①定符 号,②定分子、分母,③观察前后项的数值特征找规律,④ 综合写出项与项数的关系.
●命题趋势 主要命题热点: 1.an 与 Sn 的关系 2.等差、等比数列的定义、通项公式以及等差、等比数列 的性质、求和公式. 3.简单的递推数列及归纳、猜想、证明问题.
4.数列与函数、方程、不等式、三角、解析几何综合问题. 5.数列应用题. 6.探究性问题.
●备考指南 1.数列是一种特殊的函数,要善于利用函数的思想来解决 数列问题. 2.运用方程的思想解等差(比)数列是常见题型,解决此类 问题需要抓住基本量 a1、d(或 q),常通过“设而不求,整体代入” 来简化运算.
(5)将数列统一为32,55,170,197,…,分子 3,5,7,9,…, 是等差数列,通项公式为 bn=2n+1,对于分母 2,5,10,17,… 联想到数列 1,4,9,16…即数列{n2},可得分母的通项公式为 cn =n2+1,
高考数学一轮复习 第六章 第5讲 数列的综合应用配套课件 理 新人教A版

考点自测
1.若数列{an}为等比数列,则下面四个命题:
①{a2n}是等比数列; ②{a2n}是等比数列; ③a1n是等比数列; ④{lg|an|}是等比数列.其中正确的个数是________.
答案 3
2.(2012·南京一模)若数列{an}满足:lg an+1=1+lg an(n∈N*), a1+a2+a3=10,则lg(a4+a5+a6)的值为________.
答案 (-∞,7]
5.(2012·盐城第一学期摸底考试)设等差数列{an}满足:公差 d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的 一项.若a1=35,则d的所有可能取值之和为________.
解析 由题意知,an=35+(n-1)d.对数列{an}中的任意两 项ar,as其和为ar+as=35+35+(r+s-2)d,设at=35+(t -1)d,则35+(r+s-2)d=(t-1)d,即35=(t-r-s+1)d. 因为r,s,t,d∈N*,所以35是d的整数倍,即d所有可能 取值为1,3,9,27,81,243,和为364. 答案 364
∴{an}是以 a4 为首项,a2 为公比的等比数列.
(2)解 bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2. 当 a= 2时,bn=(2n+2)( 2)2n+2=(n+1)2n+2. Sn=2·23+3·24+4·25+…+(n+1)·2n+2,① 2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3,② ①-②得 -Sn=2·23+24+25+…+2n+2-(n+1)·2n+3 =16+2411--22n-1-(n+1)·2n+3 =16+2n+3-24-n·2n+3-2n+3=-n·2n+3. ∴Sn=n·2n+3.
高考数学一轮复习第6章数列第2讲等差数列及其前n项和课件文

n≤10 , 即 共 有
10
个数.所以
S10
=
10(1+19) 2
=
100或S10=10×1+1பைடு நூலகம்× 2 9×2=100,故选 C.
12/13/2021
第七页,共四十二页。
(必修 5 P46B 组 T2 改编)等差数列{an}的前 n 项和为 Sn,若 S10=20,S20=50,则 S30=________. 解析:根据等差数列性质 S10,S20-S10,S30-S20 成等差数列, 所以 2(S20-S10)=S10+S30-S20,所以 S30=3(S20-S10)=3(50 -20)=90. 答案:90
12/13/2021
第二十七页,共四十二页。
考点四 等差数列的单调性与最值
(1)下面是关于公差 d>0 的等差数列{an}的四个命题:p1: 数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann 是递增数列;p4:数列{an+3nd}是递增数列.其中真命题为
12/13/2021
第十六页,共四十二页。
当 n≥2 时,由22SSnn=-1=a2na+n2-a1n+,an-1, 得 2an=a2n+an-a2n-1-an-1. 即(an+an-1)(an-an-1-1)=0, 因为 an+an-1>0, 所以 an-an-1=1(n≥2), 所以数列{an}是等差数列.
ak+al=am+an.
(3)若{an}是等差数列,公差为 d,则{a2n}也是等差数列,公差 为__2_d_.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
12/13/2021
第三页,共四十二页。
5.等差数列的前 n 项和公式 设等差数列{an}的公差为 d,其前 n 项和 Sn=n(a12+an)或 Sn=____n_a_1+ __n__(__n_2-__1_)__d________.
理科数学高考大一轮总复习课件:第6章 第4讲 数列求和
高中新课标总复习
解析:S50=1-2+3-4+…+49-50 =(-1)×25 =-25.
理数
11 第十一页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
5. 数列 0.5,0.55,0.555,0.5555,…的前 n 项和为________.
12 第十二页,编辑于星期日:十八点 四十八分。
理数
2. 设数列 1,(1+2),…,(1+2+…+2n-1),…的前 n
项和为 Sn,则 Sn 等于( D )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2
6 第六页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
解析:依题意可知数列的每一项是由等比数列的和构成 的,设为 Tn,则 Tn=22n--11=2n-1,所以数列是由等比数列 和等差数列构成的,则 Sn=222-n-11-n=2n+1-n-2.
24 第二十四页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
(2)由(1)知 bn=3n+2n-1(n=1,2,…). 数列{3n}的前 n 项和为32n(n+1),数列{2n-1}的前 n 项和 为11--22n=2n-1. 所以,数列{bn}的前 n 项和为32n(n+1)+2n-1.
25 第二十五页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
二 裂项相消法求和 【例 2】(2014·广东茂名一模)已知等差数列{an}的前 n 项
和为 Sn. (1)请写出数列{an}的前 n 项和 Sn 的公式,并推导其公式; (2)若 an=n,数列{an}的前 n 项和为 Sn,求S11+S12+…+S1n
高考数学一轮复习第六章数列1数列的概念与表示课件新人教A版文
, ≥ 2.
-24考点1
考点2
考点3
1 , = 1,
解题心得已知数列的前n项和Sn,则通项公式 an=
--1 , ≥ 2.
当n=1时,若a1适合Sn-Sn-1,则n=1的情况可并入n≥2时的通项公式an;
当n=1时,若a1不适合Sn-Sn-1,则用分段函数的形式表示.
-25考点1
函数y=3x+5的定义域是R,an=3n+5的图象是离散的点,且排列在
y=3x+5的图象上.
-8知识梳理
双基自测
5.数列的前n项和
在数列{an}中,Sn=
1
2
3
4
5
a1+a2+…+an
6
叫做数列的前n项和.
-9知识梳理
双基自测
1
2
3
4
5
6
6.数列{an}的an与Sn的关系
若数列{an}的前n项和为Sn,则 an=
式.
思考已知在数列{an}中,an+1=an+f(n),利用什么方法求an?
解 ∵an+1=an+3n+2,
∴an+1-an=3n+2,
∴an-an-1=3n-1(n≥2).
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(3n-1)+(3n-4)+…+5+2
(3+1)
的大小关
系
分类
递增数列 an+1
>
an
递减数列 an+1
<
an
2022版高考数学一轮复习第6章数列第2节等差数列及其前n项和课件
3.《算法统宗》是中国古代数学名著,由明代数学家程大位编
著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古
代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现
的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不
知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数
要详推.在这个问题中,记这位公公的第n个儿子的年龄为an,则a1=
C.Sn=2n2-8n
D.Sn=12n2-2n
A [设等差数列{an}的首项为a1,公差为d.
由题知,S4=4a1+d2×4×3=0, a5=a1+4d=5,
解得ad1==2-,3, ∴an=2n-5,Sn=n2-4n,故选A.]
2.(2018·全国卷Ⅰ)记Sn为等差数列{an}的前n项和,若3S3=S2+
1234
4.某剧场有20排座位,后一排比前一排多2个座位,最后一排有 60个座位,则剧场总共的座位数为________.
820 [设第n排的座位数为an(n∈N*),数列{an}为等差数列,其公 差d=2,则an=a1+(n-1)d=a1+2(n-1).由已知a20=60,得60=a1 +2×(20-1),解得a1=22,则剧场总共的座位数为20a12+a20= 20×222+60=820.]
(2)整体思想:当所给条件只有一个时,可将已知和所求都用 a1,d表示,寻求两者间的联系,整体代换即可求解.
(3)利用性质:运用等差数列性质可以化繁为简、优化解题过 程.
1.(2019·全国卷Ⅰ)记Sn为等差数列{an}的前n项和.已知S4=0,
a5=5,则( )
A.an=2n-5
B.an=3n-10
(2)由已知nan+1-(n+1)an=2n(n+1), 得nan+n1-n+n+1 1an=2,即na+n+11-ann=2, 所以数列ann是首项a11=1,公差d=2的等差数列. 则ann=1+2(n-1)=2n-1,所以an=2n2-n.
2020届高考数学总复习第六章数列6_3等比数列及其前n项和课件文新人教A版
A.1盏
B.3盏
C.5盏
D.9盏
(2)(2019·广州测试)在各项都为正数的等比数列{an}中,已知
a1=2,a2n+2+4a2n=4a2n+1,则数列{an}的通项公式 an=__________.
(3)(2019·洛阳统考)设等比数列{an}的前 n 项和为 Sn,若 a1
+8a4=0,则SS43=(
0 的根,则a1aa917的值为(
)
A.2 2
B.4
C.-2 2或 2 2
D.-4 或 4
(2)(2019·武汉华师附中调研)数列{an}的通项公式为 an=2n-1,
则使不等式 a21+a22+…+a2n<5×2n+1 成立的 n 的最大值为( )
A.2
B.3
C.4
D.5
【解析】 (1)因为 a3,a15 是方程 x2-6x+8=0 的根, 所以 a3a15=8,a3+a15=6, 易知 a3,a15 均为正,由等比数列的性质知,a1a17=a29=a3a15 =8, 所以 a9=2 2,a1aa917=2 2,故选 A. (2)因为 an=2n-1,a2n=4n-1,
【例4】 等比数列{an}中,已知a1+a3=8,a5+a7=4,
则a9+a11+a13+a15的值为( )
A.1
B.2
C.3
D.5
【解析】 法一:因为{an}为等比数列, 所以 a5+a7 是 a1+a3 与 a9+a11 的等比中项, 所以(a5+a7)2=(a1+a3)·(a9+a11), 故 a9+a11=(aa51++aa73)2=482=2. 同理,a9+a11 是 a5+a7 与 a13+a15 的等比中项, 所以(a9+a11)2=(a5+a7)(a13+a15), 故 a13+a15=(aa95++aa117)2=242=1.