高效太阳能电池机理与工艺结构
hjt、topcon、perc晶硅电池的技术原理

hjt、topcon、perc晶硅电池的技术原理HJT、TOPCon和PERC是目前晶硅太阳能电池中常见的三种技术原理。
这三种技术原理都是为了提高太阳能电池的效率和性能而发展出来的。
首先,HJT(Heterojunction with Intrinsic Thin layer)技术原理是一种异质结太阳能电池技术。
它的特点是在p-n结的两侧分别加上透明导电氧化物层,形成了一个p-i-n结构。
在这种结构中,p型和n型材料之间形成了一个内禀薄层,这个薄层能够有效地收集光生载流子,并将其输送到电极上。
由于HJT电池利用了异质结的优势,可以减少电池内部的电子复合现象,提高光电转换效率。
此外,HJT电池还具有较低的温度系数和较高的光谱响应,使得它在高温和弱光环境下都能保持较高的性能稳定性。
其次,TOPCon(Tunnel Oxide Passivated Contact)技术原理是一种隧道氧化物钝化接触太阳能电池技术。
它的特点是在p型衬底上形成了一层非晶硅薄膜,并通过氧化处理形成了一个隧道氧化物层。
这个隧道氧化物层可以有效地阻止载流子在p型衬底和n型掺杂层之间的复合,并且可以提高载流子的传输效率。
另外,TOPCon电池还采用了背面接触设计,可以减少光照面积上的电极遮挡,并提高光吸收效率。
这些特点使得TOPCon电池具有较高的开路电压和短路电流,从而提高了光电转换效率。
最后,PERC(Passivated Emitter and Rear Cell)技术原理是一种背面钝化接触太阳能电池技术。
它的特点是在p型衬底上形成了一个背面钝化层,并在n型掺杂层上形成了一个前面钝化层。
这些钝化层可以有效地减少表面缺陷和载流子复合现象,从而提高电池的开路电压和光电转换效率。
此外,PERC电池还可以通过调整背面钝化层的厚度和掺杂浓度来优化电池的性能。
由于PERC电池采用了背面接触设计,所以可以减少光照面积上的电极遮挡,并提高光吸收效率。
晶体硅太阳能电池结构及原理通用课件

行业政策与市场趋势的挑战与机遇
环保政策
随着全球对环境保护意识的增强,各国政府出台了一 系列的环保政策,对晶体硅太阳能电池的生产和应用 提出了更高的要求,但同时也为环保型、高效能的晶 体硅太阳能电池提供了市场机遇。
市场竞争
晶体硅太阳能电池市场竞争激烈,各国企业都在加大 研发和生产力度,提高产品质量和降低成本,以争取 更大市场份额,企业需要保持技术创新和市场敏锐度, 才能立于不败之地。
分类
太阳能电池主要分为硅基太阳能电池、 薄膜太阳能电池、染料敏化太阳能电 池等几大类,其中晶体硅太阳能电池 是硅基太阳能电池的一种。
晶体硅太阳能电池的应用与优势
应用
晶体硅太阳能电池广泛应用于光伏电站、太阳能热水器、太阳能灯具、太阳能 船、太阳能车等方面。
优势
晶体硅太阳能电池具有稳定性好、寿命长、转换效率高等优点,同时,由于其 在制造过程中技术成熟、成本逐渐降低,因此大规模应用较为广泛。
太阳能光伏电站案例分析
光伏电站类型
根据电站规模和应用场景,太阳能光伏电站可分为集中式光伏电站和分布式光伏电站。集中式光伏电 站通常建设在荒漠、戈壁等土地资源丰富地区,而分布式光伏电站则主要建设在建筑屋顶、墙面等闲 置空间。
案例分析
以某大型集中式光伏电站为例,介绍晶体硅太阳能电池在其中的应用,包括电池组件选型、电站布局 设计、发电效率分析等方面。
太阳能交通工具概述
简要介绍太阳能汽车、太阳能船舶、太阳能 飞机等太阳能交通工具的发展现状及趋势。
晶体硅太阳能电池在太阳 能交通工具中的应用
阐述晶体硅太阳能电池在太阳能交通工具中 的关键技术,如高效能量存储系统、轻量化 设计等,并分析其在提高交通工具续航里程、 降低能耗等方面的作用。同时,探讨晶体硅 太阳能电池在未来太阳能交通工具领域的潜
perc电池背钝化机理

perc电池背钝化机理摘要:perc电池是一种高效的太阳能电池,其背钝化机理是实现高转换效率的关键因素之一。
本文将介绍perc电池的背钝化机理,包括背电场和背面结构优化等方面的内容,以期对perc电池的工作原理有更深入的理解。
引言:太阳能电池是一种将太阳能转化为电能的装置,其效率的提升一直是研究的重点。
在太阳能电池中,背钝化是一种常见的技术,用以提高光电转换效率。
perc电池正是利用了背钝化机理,成为太阳能电池中的佼佼者。
一、perc电池背钝化机理概述perc电池(Passivated Emitter and Rear Cell)是一种具有背钝化层的太阳能电池。
在perc电池中,背钝化层的作用是限制电荷载流子的复合,提高电池的效率。
背钝化层是通过在太阳能电池的背面形成一个接近电池表面的电场,使得电荷载流子在背面上被集中,减少了电子和空穴的复合,从而提高了电池的光电转换效率。
二、perc电池背钝化机理详解1. 背电场的形成在perc电池中,背电场是通过某种方式形成的。
一种常见的方式是在背面上制备一个透明导电氧化物层(TCO),然后在背面形成一个p型掺杂层。
通过这种方式,在背面形成了一个电场,使得电子和空穴在背面上被分离,从而减少了电荷载流子的复合。
2. 背面结构优化除了背电场的形成,背面结构的优化也是perc电池背钝化的重要因素。
一种常见的优化方式是在背面形成一个反射层,用以增强光的吸收。
此外,还可以在背面添加一层反射层或衬底层,以增加光的路径长度,提高光的吸收效果。
3. 背钝化层的材料选择背钝化层的材料选择也对perc电池的效率有着重要影响。
目前常用的背钝化层材料有氮化硅、氧化锌等。
这些材料具有优良的电子和光学特性,能够有效地限制电荷载流子的复合,提高电池的光电转换效率。
三、perc电池背钝化机理的应用perc电池背钝化机理的应用已经广泛存在于太阳能电池的生产中。
perc电池以其高转换效率和良好的性能稳定性,成为了目前太阳能电池市场的主流产品。
砷化镓太阳能电池

砷化镓太阳能电池
砷化镓太阳能电池是一种利用砷化镓材料制造的高效率光电转换设备。
砷化镓
材料具有优秀的光电性能,使得砷化镓太阳能电池在太阳能转换效率方面具有巨大优势。
砷化镓太阳能电池的结构
砷化镓太阳能电池的基本结构包括p型和n型半导体材料的层叠组合。
在制造过程中,首先在高纯度的砷化镓基片上生长n型砷化镓外延层,接着在外延层上
生长p型砷化镓外延层。
形成p-n结后,通过薄表面氧化层来增强电场,提高光
电转换效率。
砷化镓太阳能电池的优势
1.高效率:砷化镓太阳能电池的转换效率高于其他材料制成的太阳能
电池,可以在光照较弱的情况下获得更高的输出功率。
2.稳定性:砷化镓材料具有良好的抗辐照性能,不易受环境影响,具
有长期稳定的特点。
3.薄膜制备:砷化镓太阳能电池可以采用薄膜制备技术,使得制造成
本较低且适合大面积生产。
砷化镓太阳能电池的应用前景
砷化镓太阳能电池在光伏领域有着广泛的应用前景。
随着清洁能源需求的增长,研究人员正在不断改进制备工艺和材料性能,以提高砷化镓太阳能电池的效率和稳定性。
未来,砷化镓太阳能电池有望在城市建筑、无人机、航天等领域得到广泛应用,为减少对传统能源的依赖和减少环境污染做出重要贡献。
结语
砷化镓太阳能电池作为一种高效率、稳定性强的光电转换设备,具有巨大的应
用潜力。
随着技术不断进步和成本不断降低,砷化镓太阳能电池将在未来的清洁能源领域发挥重要作用。
希望通过持续的研究和创新,能够推动砷化镓太阳能电池技术的发展,实现可持续能源的目标。
《有机太阳能电池》PPT课件

2.有机太阳能电池机理介绍
2.1有机太阳能电池中的基本物理过程:
光的吸收和激子的产生: 光被有机材料吸收后激发有机分 子从而产生激子。
激子的扩散和解离: 通常激子可以被电场、杂质和适 当的界面所解离。
载流子的收集:由于有机太阳能电 池器件的厚度很薄,两个电极的功 函数差值建立起来的电场较强, 可以较为有效地分离自由载流子
聚合物材料:太阳能电池上应用的聚合物首先必须是导电高分子,并 且聚合物的微观结构和宏观结构都对聚合物材料的光电特性有较大影响。 导电性聚合物的分子结构特征是含有大的π电子共扼体系,而聚合物材 料的分子量影响着共扼体系的程度。材料的凝聚状态(非晶和结晶)、结 晶度、晶面取向和结晶形态都会对器件光电流的大小有影响。主要的聚 合物材料有聚对苯乙烯(PPv)、聚苯胺(队Nl)和聚唆吩(PTh)以及它们的 衍生物等。
3.3体异质结型有机太阳能电池
物 MEH一PPv和富勒烯(C00)的衍 生物PCBM按一定的比例掺杂制 成体异质结结构,由于两种材料 互相掺杂,掺杂尺寸在几个至几 十纳米之间,这样,在掺杂层内 任何一处形成的激子都可以在其 扩散长度之内到达界面处分离 形成电荷,因而可以获得极高的 激子分离效率。
2005年,A.J.Heeger等人采用在制备电极后再对器件进行热退火处理的方法有 效地提高了电池的能量转换效率,使其光电转换效率达到了5%。
之后,太阳能电池的光电转换效率提高到5.4%左右。
今年7月,由德国的Heliatek公司,巴斯夫公司和德累斯顿大学应用研究所光物理 联合研发的叠层有机太阳能电池转换效率打破了此前5.4%的世界记录,将记录提 高为5.9%。并且该研究项目研究工作将持续到2011年6月。
有机材料合成成本低、功能易于调制、柔韧 性及成膜性都较好;.
太阳能电池优秀课件

2 、光电导效应
电子能量
在光线作用下,电子吸收光
子能量从束缚状态过渡到自由
hv
状态,而引起材料电导率的变
导带 Eg
价带
化,这种现象被称为光电导效
应。
当光照射到半导体光电导材料上时,若光辐
射能量足够强,材料价带上的电子将被激发到导
带,从而使材料中的自由载流子增加,致使材料
的电导变大。
光电导产生的条件
6、温度效应
太阳能电池用半导体的禁带 宽度的温度系数为负,随温度 上升带隙变窄,会使短路电流 略有上升,但同时会使I0增加, Voc下降。
综合所有参数,转换效率随 温度上升而下降。
7、辐照效应 作为卫星和飞船的电源,太阳电池必然暴露
在外层空间的高能粒子的辐照下。高能粒子 辐照时通过与晶格原子的碰撞,将能量传给 晶格,当传递的能量大于某一阈值时,便使 晶格原子发生位移,产生晶格缺陷。这些缺 陷将起复合中心的作用,从而降低少子寿命。 大量研究工作表明,寿命参数对辐照缺陷最 为灵敏,也正因为辐照影响了寿命值,从而 使太阳电池性能下降。
理想情况下的效率
舍弃太阳光中波长大于长波限的光 谱,在理想情况下,能量大于禁带宽 度的光子全部被材料吸收形成光电流, 显然,最大短路电流Isc仅与材料的带隙 有关。
理想情况下Voc为:
Voc
kT q
ln
I ph I0
1
式中Iph为光生电流,I0为二 极管饱和电流:
I0
A
qDn
n2 i
LN nA
图一
将表面制成金字塔型的组织结构,以减少光的反射 量。
将金属电极埋入基板中,以减少串联电阻。(图二)
图二
减少背电极与硅的接触面积,以减少因金属与硅的 接合处引入的缺陷, (图三)
CdTe太阳能电池
CdTe太阳能电池发电的原理是基于光伏效应,即由太阳 光子与半导体相互作而产生电势从而输出电流对外做功。
p/n结型太阳能电池的工作原理是:p型半导体和n型半导 体结合在一起形成p-n结,由于多数载流子的扩散形成空间电 荷区,同时形成一个不断增强的从n型到p型半导体的内建电场, 导致多数载流子反向飘移。当这一过程达到平衡,扩散电流和 飘移电流相等。当有光照射p-n结,且光子能量大于p-n结的禁 带宽度时。吸收层的电子获得能量跃迁到导带,同时在价带中 产生空穴。在p-n结附近会产生电子-空穴对。产生的非平衡载 流子由于内建电场作用向空间电荷区两端漂移从而产生光生电 势。将p-n结与外电路导通,电路中会出现电流。这一现象称 为光生伏特效应,简称光伏效应。
升华过程:CdTe在一定温度下分解为气态的Cd和Te2。 沉积过程:气相的Cd和Te2被输运到温度较低的衬底表面区
域,使其成为过饱和状态,经过冷凝成核,在村底 表面沉积成固态的CdTe薄膜。
其中升华和沉积过程可逆,而且决定着薄膜的厚度。
Institute of Optoelectronic Technology
BEIJING JIAOTONG UNIVERSITY
5、发优展点前景
镉排放量
碲化镉薄膜太阳能电池在工业规模上成本
1
大大优于晶体硅和其他材料的太阳能电池
技术,生产成本仅为0.87美元/W。
其 次 它 和 太 阳 的 光 谱 最 一 致 , 可 吸 收 95%
2
以上的阳光。
工艺相对简单,标准工艺,低能耗,无污
BEIJING JIAOTONG UNIVERSITY
CdTe吸收层
它是电池的主体吸光层,它与n型的CdS窗口层形成的 p-n结是整个电池最核心的部分。多晶CdTe薄膜具有制 备太阳能电池的理想的禁带宽度(Eg=1.45 eV)和高的 光吸收率(大约104cm-1)。CdTe的光谱响应与太阳光谱 几乎相同。
新能源技术知识:太阳能电池的衰减机理和缓解措施
新能源技术知识:太阳能电池的衰减机理和缓解措施随着环境污染问题日益严重,新能源技术如太阳能电池成为了重要的解决之道。
但是,随着使用时间的推移,太阳能电池的性能会逐渐下降,这是由衰减引起的,下面我们来详细讨论其衰减机理和缓解措施。
一、太阳能电池的衰减机理1.光吸收和反射:太阳能电池在长时间使用过程中,表面会堆积许多灰尘、污渍或其他污染物,会对太阳光的吸收和反射产生一定程度影响,减小光电转换效率。
2.电池极性:太阳能电池在阳极处产生的磷酸盐离子会渗入电池中,导致电解液酸化,使电池极性逐渐退化,电池性能下降。
3.晶体缺陷:晶体缺陷是太阳能电池衰减的主要原因之一,由于晶体缺陷会影响耐用性,唯独性和电流效率,使得电池性能下降。
4.温度:太阳能电池在高温的环境中,由于光吸收率下降,导致光电转换效率下降,同时也会加速晶体的老化。
以上四个原因是太阳能电池衰减的主要原因,下面我们来讨论如何缓解太阳能电池的衰减。
二、太阳能电池的缓解措施1.清洁和维护:要定期对太阳能电池进行清洁和维护,保证其表面干净,避免灰尘和污染物的堆积,维护周密。
2.设备降温:太阳能电池在高温的环境中容易产生晶体缺陷,因此在使用过程中尽量避免高温环境,设备设计时应考虑设备通风和降温,保持合适温度。
3.质量控制:要对太阳能电池进行质量控制,从材料、工艺、过程三方面加强质量控制,确保太阳能电池结构的稳固性和耐用性。
4.增加太阳能电池面积:增加太阳能电池面积可以提高光吸收率,减少反射率等措施,从而提高光电转换效率,减缓衰减。
5.选择高质量原材料:选择高质量的原料可以缓解太阳能电池的衰减,从而提高电池的使用寿命和耐用性,保持长期稳定性。
以上措施可以有效缓解太阳能电池的衰减问题,保证其充分发挥环保、节能、高效等特点,在世界范围内得到广泛的应用。
总之,太阳能电池是可持续发展的环境友好型能源装备,在使用中,要注意长期维护和策略措施,以确保太阳能电池的稳定性和完整性,努力发挥其应有的作用,促进生态可持续发展。
有机太阳能电池探讨
并联电阻R 2 不变时串联电 阻R 1 对电池I-V曲线的影 响,表明R 1 增加导致短路 电流I sc减小,同时R 1 的 改变对开路电压V oc几乎 没有影响,V oc的数值保持 为大约0. 492V.另外, 当R 1 增加时, 有机太阳能电池的 伏安特性曲线明显偏离理 想情况, 从而使其填充因子 F F 将大大减小, 最终导致 电池的能量转换效率显著 下降.
DSSC基本结构
负 极
玻璃基板 透明导电薄膜 纳米晶体层 染料敏化剂 液态电解质 铂 透明导电薄膜 玻璃基板
( 对 正 电 极 极 )
• 透明导电玻璃:导电电极, 普通玻璃上镀上一 层掺F或Sb的SnO2 的透明导电膜或ITO薄膜, 其制备方法主要有: 磁控溅射、化学气相沉积 等。 • 对电极:还原催化剂,通常在带有透明导电 膜的玻璃上镀上铂 • 染料光敏化剂:性能决定电池的光电转换效 率 • 电解质:含有氧化还原电对,一般为I3-/I-
当电池两端短路即负载电阻R 为零时, R 两端的电压V 为零, 此时的电流称为短路电流I sc, 在(1)式中令V = 0, 则有:
由(1)~ (3) 式容易看出, 物理量I、V oc和I sc均无法通过初等函数 用其它物理量显性表达出来, 为了研究内部串并联电阻R 1 和R 2 对有机太阳能电池输出性能的影响, 本文利用W 函数可以将式(1) 显式表示为I= I (V ) 形式:
• 填充因子: FF I mVm
I sc Voc
I mVm I sc Voc FF • 转换效率: Pin Pin
第六章 太阳能电池的基本结构 经典太阳电池基础课件
其中,J01、J02分别为基区/发射区、耗尽区贡献的饱和电流密度
2 同质结太阳电池原理
同质结太阳电池如图所示(n+/p型)。它是在p型硅衬底上形成一个n+型层, 构成一个p-n结。正面的金属栅欧姆接触,称为正电极,背面的大面积欧姆接触,称 为背电极。上表面还覆盖有均匀的减反射层。
I
Isc W
Im没?m
Voc
V
Vm
调节负载电阻到某一值Rm时,曲线上有一点M,满足功率输出Pm最大
Pm ImVm
M点称为电池的最大功率点。直观上讲,即上图中使I-V曲线的内接矩形面 积最大的点
定义填充因子FF来表征电池I-V曲线“方形”的程度,这是衡量太阳电池输出 特性好坏的重要指标之一
FF Pm VOC ISC
对于Si,温度每增加1°C,VOC下降室温值 的0.4%,h也因而降低约同样的百分数。 例如,一个硅电池在20°C时的效率为 20%,当温度升到120°C时,效率仅为 12%。又如GaAs电池,温度每升高1°C, VOC降低1.7mv 或降低0.2%。
转换效率
转换效率表示在外电路连接最佳负载电阻R 时,得到的最大能量转换效率,其定义为, 电池的最大功率输出与入射功率之比。
俄歇复合
载流子从高能级向低能级跃迁,发生电子空穴 复合时,把多余的能量传给另一个载流子并使之 激发到较高的能级上去,当他重新跃迁到较低的 能级时,多余的能量以声子的形式释放。 载流子的寿命随着掺杂浓度的增加而迅速减小。
表面复合
载流子的寿命在很大程度上 受到半导体表面状态的影响,表 面有促进复合的作用。表面的悬 挂建,杂质及特有的缺陷等在禁 带形成复合中心能级。就复合机 制而言,表面复合仍是间接复合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 高效太阳能电池机理与工艺结构 宋太伟 2013-10-22 上海建冶环保科技股份有限公司,上海陆亿新能源有限公司,建冶研发中心
内容摘要:本文系统地、原创性地阐述了太阳能电池的普遍机理、提高光电转换效率的关键技术及多种简便可行的超高效率硅基电池的结构与工艺方法;开创性地提出准二维薄膜结构、准一维纳米线结构是决定太阳能电池高效的关键时空结构,并阐明染料敏化电池和钙钛矿电池只是纳米线超晶格结构电池的特殊形式;开创性地提出纳米薄膜超晶格结构电池和纳米线超晶格结构电池,开创性地提出了诱导更多光子电子有序运动的材料结构与电子泵结构,开创性地提出了多层PN结的叠层连接的高效耦合技术等等。
1. 前言 地球能源与环境问题日益突出,人类充分、高效、绿色地使用太阳能迫在眉睫。高效绿色太阳能电池的开发,是人类大量且充分地使用太阳能的关键环节。近年来新型太阳能电池不断出现,硅基太阳能电池效率与工艺也有所提高,但有关太阳能电池的普遍机制,以及使用什么样的材料与结构,才是人类比较理想的长期大量使用太阳能的工艺路径,等等核心问题,都没有真正取得共识与解决。本文以作者长期的实践探索积累为基础,对太阳能电池的本质逻辑,以及适应于人类长期持久的、循环经济的、无毒无害的、太阳能电池工艺路线和提高电池光电转换效率的方法等核心问题,作相对简明的理论回答(表述)。
2. 太阳能电池的普遍机理 2.1 环境保护约束条件下的电池材料与光电转换效率的选择 广义上讲,太阳能是地球万物能量的源泉。经过千百万年进化,大自然广泛利用太阳能的方法,如光合作用、大气环流的热蒸发效应等,是真正绿色自然循环的方式,值得人类借鉴。太阳光强度如用太阳常数描述约为1367W/M2 ,单位面积能量密度相对于现代人类的能耗需求来讲比较小,要广泛的、方便的使用太阳能,就必须大面积的、甚至像树枝树叶一样立体化的建造太阳能光电池叶片或电池薄膜。这里有两个关键环节问题需要把握与解决: 一是生产太阳电池所需材料问题,即必须使用无毒、无害、在大自然环境中大量存在并参与生态自循环的低成本材料作为制作可以广泛推广使用的、大市场的太阳能电池的原材 2
料,否则,会出现新的材料短缺与新的更严重的环境污染问题,从这个意义讲,硅基太阳能薄片或薄膜电池,是极好的选择:硅是地球第二大丰度物质,是土地的主要组成部分,大量的太阳能硅基电池,不论是使用中还是报废,都没有给大自然生态环境增添新的成份,可以成为绿色的循环。绿色植物主要组成成份为有机碳水化合物,作为太阳能电池原材料当然更为绿色自然,但因寿命与效率限制,绿色有机物太阳能电池,不会成为主流太阳能电站的首选电池材料,但可以是多元化的太阳能电池产品中的非常环保的、低成本的、方便使用的重要组成成员。 二是太阳能电池的光电转换效率问题,要广泛地推广使用太阳能发电,使用太阳能电池的经济性、适用性,必须均为地球上大部分地区的普通公民与企业所接受,这实际上是绿色太阳能电池的光电转换效率问题,也就是普通居民与企业使用效果好坏问题。当前最好的硅基单晶电池产品的实际光电转换效率不超过19%—20%,绝大多数使用产品的车间光电转换效率在16%—19%(薄膜电池产品效率低得多),实际使用中单位平方米功率仅100—150W/ M2 ,天气稍有阴雨发电功率即近为零。这样低的太阳能电池使用价值,决定了其不可能为广大社会民众所接受,也不可能有辉煌、美好的未来。炎热夏季即使是阴雨天,空气温度也在30—40o C ,可利用的太阳能是巨大的,如果能将现有绿色太阳能硅基电池的效率大幅提升20%—30%以上,并将其光电转换吸收谱线宽度拓展至近中红外区域,地球人类自觉、积极推广使用太阳能的时代就会来临,太阳能电池产业也将真正进入黄金时代。 2.2 太阳能电池普遍原理 2.2.1 光照下的物体组成原子的外围电子的集体跃迁 微观世界由光电主宰,电磁作用处于支配地位,光与电场磁场是宏观与微观联系的基础路径。电子能级跃迁发射或吸收光子,一个电子吸收一个光子,即进入更高能级状态,是一种激发态,当然处于激发态的电子也可能再吸收一个光子,进入更高的激发态,这要满足泡利不相容原理与电子量子跃迁选择定则。 广义上讲,大量电子同时吸收大量光子,产生(宏观可测的)有序移动态势,即形成空间电位梯度,这种光生电势差,即光电池(积累电能);宏观物质(包括气体)被光照,只有在某些特定的条件下,才能产生(宏观可测的)有序移动态势,绝大部分光照能量被材料物体的原子电子吸收产生宏观无序热运动(或称“热激发”);实际上宏观物质的微观结构原子离子电子,吸收光子光能,产生的宏观物理状态,是宏观有序移动态势与无序热运动之和(叠加),大量微观粒子(较)纯集体有序运动,是一种宏观量子效应。假设一个宏观物体被光照射,入射光功率为△W(J/s),物体对外辐射的光热功率为△Q(J/s),物体由此产生的内能变化△E(J/s),△E包含宏观有序移动态势△Φ(J/s)(即积累势能,对电荷粒子来讲即 3
为电能)与宏观无序热运动能△R(J/s),则在不考虑其它宏观条件下,有: △E = △W — △Q (1) △E = △Φ + △R (2) △Φ = △W — △Q — △R (3) η = △Φ / △W (4) β = △Φ / △E (5) 其中,η、β 分别为物体(光电池)吸收光能变为有序能(电能)的转换效率、物体吸收光能的宏观量子效应大小(或称相对强弱)。物体在外界作用下的表现出纯宏观量子效应时β等于1(即100% )。 以上论述并没有对光电池的材料结构组成等作具体限制,不只是适用于固体、液体形态的光电池,是普适的关系。 2.2.2 下面讨论物体微观电子在外界功(光)作用下能实现宏观自发有序运动的条件 普通太阳光照下,由于气体物质分子原子中吸收光子激发跃迁的电子密度低、脱离原子束缚的空间“自由电子”极少,以下吸收太阳能物体只考虑固体、液体等凝聚态情形。 凝聚态物质,微观分子原子离子等单元结构有一定清晰度的空间边界,但外围电子或单元整体的电磁作用边界已经不清晰,或者说,结构单元之间的电磁相互作用已经很强,不同原子的外层电子已经存在不同程度的相互关联度,结构单元之间Å或10 Å级的空间距离,已经可能实现一个原子的外围电子的逃逸与在原子之间接力移动,这是原子间外围电子产生协同有序状态的前提。 吸光物体在稳定的光功率△W(J/s)照射下达到平衡状态时,物理状态量随时间变化的宏观量子统计平均值为零,宏观物理状态量的时空关系可以简单地化为微观粒子的空间量子结构的统计平均关系。大量外围电子吸收光子产生激发跃迁处在统计平衡状态,假设单位时间处在高能级(激发态)的平均电子数为Ne ,吸收的光子的平均能量为Δε= ħω— ,(其中,ħ为普朗克常数,ω—为光子平均角频率。),△E为均衡状态下相对于无光照时的内能变化,则 △E = NeΔε= Neħω— = ħΣω (6) 跃迁到激发态的电子,因为物体微观结构单元(原子)的电磁边界重叠,相互之间形成比较强的电磁作用,如果存在一个稳定的作用力场(或),则全体外围激发态电子即会形成集体有序运动来对冲内部空间内的作用力场,(因此也可以称这些外围激发态电子为光生载流子),直至这些电子形成的内部电场完全对冲作用力场。作用力场可以是外加作用场,也可以是物体内部结构内生场,同时也可以是光照与物体结构共同作用而产生宏观有序作用。假设电子电荷为e库仑,光生载流子(电子)的平均有序做功移动路径为d, 4
单位时间处在激发态的平均电子数为Ne,则有序移动态势能△Φ(电能)为: △Φ= Ne∫d ·d = Ne∫d e·d = e Ne△V (7) 其中,△V为电子受作用进行有序运动后形成平均空间电位势,(即开路电压)。 一般来讲,光生载流子的在稳定作用力场作用下形成的电能△Φ,是可以通过外接电路可逆地释放出来的(除去部分热功),这就是光电池放电过程,太阳光持续照射,光电池可以持续发电做功。利用(5)、(6)、(7)等式,可得: △V = △Φ/ e Ne = ħω—△Φ/ e△E = ħω—β/ e (8) 如果 △E =△Φ , 则有 △V = ħω—/ e 。 也就是说,如果物体内部吸收光能所引起的电子量子跃迁产生的高位激发内能变化△E(J/s),全部转化为宏观有序移动态势能△Φ(电能),而没有宏观无序热运动能△R损失,被吸收光能全部转换为电能,呈现100%的宏观量子效应,以500nm波长绿(近青)光计算,完全出现宏观量子效应的开路电压△V可达2.5伏特。但要提高电池光能变为有序能(电能)的转换效率η,不仅要尽可能的实现宏观量子效应的最大化,而且要尽可能的减少反射透射(包括热辐射)的照射光能损失。对于完全理想化的宏观量子超精细结构光电池,其光电转换效率η是没有止境的。 以上论述与结论同样是普遍适用的。 如果作用力场是外加作用场如偏压(电场),光能的实际利用价值无几。以下重点分析物体内部结构内生场,及光照与物体结构共同作用而产生宏观有序作用场的情形。 2.2.2.1 物体内部结构内生载流子作用场 任何导电材料如果内部微观结构,某些物理性能,如密度、电导率、折射率等,存在宏观有序的梯度分布,或者不同性能材料无隔离接触,均会在内部或者接触界面附近,产生
有序电场与电位势,良导体材料由于内部存在自由电子,这种电位梯度则存在于表面或接触面。图一、图二、图三分别是同一导电材料(包括半导体)存在某些物理性能在某一方向的梯度分布、至少一种是导电材料的两种不同物质材料无间隔接触界面、属于图二的特殊情形的半导体PN结表面接触结构。
图一同质物体存在性能有序梯度 1 2