半导体材料课程教学大纲
《半导体器件物理》课程教学大纲

《半导体器件物理》课程教学大纲课程名称:半导体器件物理课程代码:ELST3202英文名称:Semiconductor Device Physics课程性质:专业必修课学分/学时:3.0 / 63开课学期:第*学期适用专业:微电子科学与工程、电子科学与技术、集成电路设计与集成系统先修课程:半导体物理及固体物理基础后续课程:器件模拟与工艺模拟、模拟集成电路课程设计、大规模集成电路制造工艺开课单位:课程负责人:大纲执笔人:大纲审核人:一、课程性质和教学目标课程性质:《半导体器件物理》课程是微电子科学与工程、电子科学与技术以及集成电路设计与集成系统专业的一门专业必修课,也是三个专业的必修主干课程,是器件模拟与工艺模拟、模拟集成电路课程设计等课程的前导课程,本课程旨在使学生掌握典型的半导体器件的工作机制和特性表征方法,为设计和制造集成电路奠定知识基础。
教学目标:本课程的教学目的是使学生掌握半导体材料特性的物理机制以及典型半导体器件的作用原理。
通过本课程的学习,要求学生能基于半导体物理知识,分析BJT、MOSFET、LED以及Solar Cell等半导体器件的工作原理、器件特性以及影响器件特性的关键参数。
本课程的具体教学目标如下:1、掌握牢固的半导体基础知识,理解半导体器件工作的物理机制。
2、掌握影响半导体器件电学特性的关键因素,能够从半导体器件的电学特性曲线提取半导体器件的关键参数。
3、能够根据给定的器件特性要求,设计和优化器件参数和器件结构。
4、能够对半导体器件的特性进行测量,对测量结果进行研究,并得到合理有效的结论。
二、课程目标与毕业要求的对应关系(一)半导体的晶体结构与能带理论(支持教学目标1)课时:1周,共3课时1. 晶体结构与硅工艺1.1 晶体的结构★1.2 硅工艺简介2. 基本能带理论2.1 能带理论2.2 统计分布的特点2.3 本征与掺杂半导体★(二)载流子输运(支持教学目标1)课时:1周,共3课时1. 传统输运机制★1.1 漂移运动1.2 扩散运动2. 产生复合机制与连续性方程2.1 几种产生复合假设2.2 连续性方程及其基本应用(三)PN结二极管课时:1周,共3课时1. 热平衡状态下的PN结(支持教学目标1)1.1 PN结的形成与能带特点★1.2 突变PN结耗尽近似的基本方程与参数分布★2. 直流偏压下的PN结(支持教学目标1)2.1 载流子与能带分析★2.2 电流电压方程★2.3 异质结(四)双极晶体管课时:4周,共12课时1. 晶体管的工作原理(支持教学目标1)1.1 器件结构特点和工作模式(支持教学目标1)2.1 电流增益(支持教学目标2)★3.1非理想效应(支持教学目标3)★2. 电路模型(支持教学目标1)3. 频率响应(支持教学目标2)★4. 特殊结构晶体管(支持教学目标3)◆(五)MOSFET基础(支持教学目标1)课时:2周,共6课时1. MOS的基本结构与能带分析1.1 能带分析(支持教学目标1)★1.2 阈值电压(支持教学目标2)★2. MOSFET的基本原理2.1 MOSFET结构(支持教学目标1)2.2 电流电压特性(支持教学目标2)★2.3 小信号模型(支持教学目标2)◆(六)MOSFET概念深入课时:3周,共9课时1. 亚阈值特性(支持教学目标1)1.1亚阈值电流机制★1.2亚阈值摆幅2. 非理想效应(支持教学目标1)★2.1沟道长度调制效应2.2表面散射效应2.3速度饱和效应2.4弹道输运3. MOSFET按比例缩小理论(支持教学目标3)3.1按比例缩小理论★3.2阈值电压修正◆4. 击穿级热载流子效应(支持教学目标3)4.1击穿及轻掺杂漏★4.2辐射及热载流子效应思考题:1、Bipolar与MOSFET的比较(七)结型场效应晶体管和功率器件课时:2周,共6课时1. 结型场效应晶体管(支持教学目标1)1.1 JFET工作原理及器件特性1.2 MESFET工作原理及器件特性★1.3 MODFET◆2. 功率器件2.1 功率双极晶体管2.2 功率MOSFET2.3 半导体闸流管(八)光电器件课时:4周,共12课时1. 光谱及光吸收(支持教学目标2)1.1光谱1.2光吸收系数2. 太阳能电池(支持教学目标2)2.1pn结太阳能电池★2.2异质结太阳能电池2.3非晶硅太阳能电池3. 光电探测器(支持教学目标2)◆3.1光导体3.2光电二极管3.3光电晶体管4. LED和激光(支持教学目标3)4.1电致发光4.2发光二极管★4.3激光二极管(九)实验(支持教学目标4)★课时:3周,共9课时1)显微镜下观察MOSFET器件并测量MOSFET器件的尺寸2)MOSFET CV特性测量3)MOSFET 转移、输出特性曲线测量四、教学方法授课方式:A、理论课(讲授核心内容、总结、按顺序提示今后内容、答疑、公布习题和课外拓展学习等);B、课后练习(按照理论内容进行);C、实验环节(根据理论课教学内容,要求学生学会简单操作、四探针仪以及探针台并完成实验任务);D、办公室时间(每周安排固定的办公室时间,学生无需预约,可来教师办公室就课程内、外内容进行讨论);E、答疑(全部理论课程和实验课程完成后安排1~2次集中答疑,答疑时间不包括在课程学时内,答疑内容包括讲授内容、习题、实验等);F、期中和期末闭卷考试。
半导体物理课程教学大纲

《半导体物理实验》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:半导体物理实验所属专业:电子材料与器件工程专业本科生课程性质:专业必修课学分: 4(二)课程简介、目标与任务;本课程是为物理科学与技术学院电子材料与器件工程专业大四本科生所开设的实验课,是一门专业性和实践性都很强的实践教学课程。
开设本课程的目标和任务是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制坚定基础。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;由于是实验课,所以需要学生首先掌握《半导体物理》和《半导体器件》的基本知识,再通过本课程培养学生对半导体材料和器件的制备及测试方法的实践能力。
其具体要求包括:1、了解半导体材料与器件的基本研究方法;2、理解半导体材料与器件相关制备与基本测试设备的原理、功能及使用方法,并能够独立操作;3、通过亲自动手操作提高理论与实践相结合的能力,提高理论学习的主动性。
开设本课程的目的是培养学生实事求是、严谨的科学作风,培养学生的实际动手能力,提高实验技能。
(四)教材与主要参考书。
教材:《半导体物理实验讲义》,自编教材参考书:1. 半导体器件物理与工艺(第三版),施敏,苏州大学出版社,2. [美]A.S.格罗夫编,齐健译.《半导体器件物理与工艺》.科学出版社,1976二、课程内容与安排实验一绪论1、介绍半导体物理实验的主要内容2、学生上课要求,分组情况等实验二四探针法测量电阻率一、实验目的或实验原理1、了解四探针电阻率测试仪的基本原理;2、了解的四探针电阻率测试仪组成、原理和使用方法;3、能对给定的薄膜和块体材料进行电阻率测量,并对实验结果进行分析、处理。
二、实验内容1、测量单晶硅样品的电阻率;2、测量FTO导电层的方块电阻;3、对测量结果进行必要的修正。
三、实验仪器与材料四探针测试仪、P型或N型硅片、FTO导电玻璃。
半导体物理教学大纲

半导体物理教学大纲半导体物理教学大纲随着科技的不断进步,半导体技术已经成为现代社会中不可或缺的一部分。
而半导体物理作为半导体技术的基础,对于学生的学习和研究具有重要的意义。
因此,制定一份合理的半导体物理教学大纲是非常必要的。
一、引言在引言部分,我们可以简单介绍半导体物理的背景和重要性。
可以提到半导体在电子、通信、光电等领域的广泛应用,以及对于新一代技术的推动作用。
二、基础知识在这一部分,可以介绍半导体物理的基础知识,包括晶体结构、能带理论、载流子的运动等。
可以通过图表和实例来说明这些概念,让学生更好地理解和掌握。
三、半导体材料与器件这一部分可以详细介绍半导体材料的种类、特性以及制备方法。
可以涉及到硅、锗等常见的半导体材料,以及它们在电子器件中的应用。
同时,也可以介绍一些新型半导体材料的发展和应用前景。
四、半导体器件的工作原理在这一部分,可以详细介绍半导体器件的工作原理,包括二极管、晶体管、场效应管等。
可以通过图示和实验来说明这些器件的工作原理,让学生能够更加直观地理解。
五、半导体物理实验半导体物理实验是非常重要的一部分,可以帮助学生巩固所学的理论知识,并培养学生的实验操作和数据处理能力。
可以设计一些简单的实验,如测量半导体材料的电阻率、探究PN结的特性等。
六、半导体材料的应用在这一部分,可以介绍半导体材料在电子、通信、光电等领域的应用。
可以涉及到集成电路、光电器件、太阳能电池等。
通过介绍这些应用,可以让学生了解到半导体物理的实际应用价值。
七、未来发展在这一部分,可以展望半导体物理的未来发展方向。
可以介绍一些前沿的研究领域,如量子点、纳米材料等。
同时,也可以提到半导体技术对于新一代技术的推动作用,如人工智能、物联网等。
八、总结在总结部分,可以对整个教学大纲进行总结,强调半导体物理的重要性和应用前景。
同时,也可以鼓励学生对半导体物理进行深入研究,并为未来的科技发展做出贡献。
通过制定一份合理的半导体物理教学大纲,可以帮助学生系统地学习和掌握半导体物理的基础知识和实验技能,为他们未来的学习和研究打下坚实的基础。
《半导体光电子学》课程教学大纲

半导体光电子学Semiconductor photoelectronics一、课程基本情况课程属性:专业方向选修课学分: 2 学分学时:32 学时(讲课:32 学时,上机:0 学时,实验:0 学时)课程性质:选修开课学期:第5学期先修课程:物理光学、电磁学、原子物理学、模拟电子技术适用专业:光信息科学与技术教材:《光电子技术原理及应用》第1版,国防工业出版社,裴世鑫等编著,2013。
开课院系:物理与光电工程学院二、课程的教学目标和任务光电子学(技术)是伴随着激光技术、微电子技术和光电子材料的发展而迅速发展起来的一门新学科、新技术,主要研究光与物质的相互作用及其能量的相互转换,以光源激光化、传输波导化、手段电子化、现代电子学中的理论模式和电子学处理方法光学化为特征,是光信息科学与技术专业的主干课之一。
通过本课程的学习,使学生掌握辐射度学与光度学、光辐射的传播、光束的调制、光电探测及成像技术、光电显示技术等基本概念及技术,掌握光辐射的基本概念及激光产生的原理与特性、光在介质中的传输特性以及光探测的原理与方法,理解发光器件和光电转换器件的基本原理及与光信号加载有关的光调制概念以及强光作用下的非线性光学现象等。
三、课程的内容和要求1.第1章光辐射与发光源(8学时)(1)掌握辐射度学和光度学中的各个物理量,理解这两套物理量的适用范围;(2)掌握基尔霍夫辐射定律、普朗克定律、维恩公式和斯忒潘-玻尔兹曼定律等热辐射的基本定律;(3)掌握热辐射光源,气体放电光源和光致发光光源的发光原理,熟悉常用的上述光源的特点,了解同步辐射光源;(4)掌握产生激光的条件,以及常见激光器的结构与原理,包括固体激光器、气体激光器和半导体激光器等;(5)了解半导体的基础知识,掌握半导体光源的发光原理,包括发光二极管和半导体激光器,理解上述两种半导体光源在结构和发光特性上的不同。
2. 第2章光辐射的传播(6学时)(1)熟悉光辐射的电磁理论;(2)掌握光波在大气、水、电光晶体、声光晶体、磁光介质和光纤波导中的传播特性,以及相应的分析方法。
半导体物理与器件教学大纲

半导体物理与器件教学大纲1. 课程简介本课程旨在介绍半导体物理学的基础理论和实际应用,以及半导体器件的基本原理、设计和制造技术。
学生将在课程中学习半导体物理学的基础知识,掌握半导体器件设计的方法和技巧,为今后的专业发展奠定坚实的基础。
2. 课程目标通过本课程的学习,学生将会达到以下目标: - 掌握半导体物理学的基本概念和原理; - 了解基于半导体材料制造的各类器件的基本工作原理; - 熟悉半导体器件设计的方法和技巧; - 能够应用所学知识解决实际问题; - 具备将来深入学习和研究半导体器件领域的能力。
3. 课程内容本课程内容涵盖以下几个方面: ### 3.1 半导体物理基础 - 半导体材料基础特性 - pn 结的特性和工作原理 - 金属-半导体接触和场效应晶体管3.2 半导体器件设计原理•pn 结二极管•齐纳二极管和隧道二极管•双极型晶体管•场效应晶体管•光电二极管3.3 半导体器件制造技术•半导体晶体的生长技术•制造工艺流程•工艺流程中的光刻、化学蚀刻、扩散和离子注入等关键技术•介绍常见的半导体加工工艺和设备3.4 应用实践案例•简要介绍半导体器件在电子产品中的应用•通过案例分析介绍如何在实际工程中设计和制造半导体器件4. 课程要求学生应具备以下先修知识: - 基础的数学知识,包括微积分、线性代数和概率论; - 基础的物理知识,包括力学、电学和光学; - 基础的材料科学知识。
5. 学习方法•讲授:教师通过课堂讲解、示范和演示,向学生介绍各种半导体物理和器件设计的基本原理和技术;•实验:学生可以参加相关的实验室练习,使学生能够更加深入地理解和掌握所学知识;•自学:学生可以通过参考教材和相关文献,了解和扩展课堂内容,加深对所学知识的认识。
6. 考试要求本课程的考核方式包括考试和作业。
具体规定如下: - 考试:采用闭卷考试,考试时间为 2 小时,考试内容涵盖课程中的重点、难点和案例分析。
- 作业:设计一款简单的半导体器件,并制作出样品,并对该样品进行测试和分析。
半导体器件物理课程大纲_施敏

《半导体器件物理》教学大纲课程名称: 半导体器件物理学分: 4 总学时:64 实验学时:(单独设课)其它实践环节:半导体技术课程设计适用专业:集成电路设计与集成系统一、本课程的性质和任务本课程是高等学校本科集成电路设计与集成系统、微电子技术专业必修的一门专业主干课,是研究集成电路设计和微电子技术的基础课程。
本课程是本专业必修课和学位课。
本课程的任务是:通过本课程的学习,掌握半导体物理基础、半导体器件基本原理和基本设计技能,为学习后续的集成电路原理、CMOS模拟集成电路设计等课程以及为从事与本专业有关的集成电路设计、制造等工作打下一定的基础。
二、本课程的教学内容和基本要求一、半导体器件简介1.掌握半导体的四种基础结构;2.了解主要的半导体器件;3.了解微电子学历史、现状和发展趋势。
二、热平衡时的能带和载流子浓度1.了解主要半导体材料,掌握硅、锗、砷化镓晶体结构;2.了解基本晶体生长技术;3.掌握半导体、绝缘体、金属的能带理论;4.掌握本征载流子、施主、受主的概念。
三、载流子输运现象1.了解半导体中两个散射机制;掌握迁移率与浓度、温度的关系;2.了解霍耳效应;3.掌握电流密度方程式、爱因斯坦关系式;4.掌握非平衡状态概念;了解直接复合、间接复合过程;5.掌握连续性方程式;6.了解热电子发射过程、隧穿过程和强电场效应。
四、p-n结1.了解基本工艺步骤:了解氧化、图形曝光、扩散和离子注入和金属化等概念;2.掌握热平衡态、空间电荷区的概念;掌握突变结和线性缓变结的耗尽区的电场和电势分布、势垒电容计算;3.了解理想p-n结的电流-电压方程的推导过程;4.掌握电荷储存与暂态响应、扩散电容的概念;5.掌握p-n结的三种击穿机制。
6.了解异质结的能带图。
五、双极型晶体管及相关器件1.晶体管的工作原理:掌握四种工作模式、电流增益、发射效率、基区输运系数;2.双极型晶体管的静态特性:掌握各区域的载流子分布;了解放大模式下的理想晶体管的电流-电压方程;掌握基区宽度调制效应;3.双极型晶体管的频率响应与开关特性:掌握跨导、截止频率、特征频率、最高振荡频率的概念;4.了解异质结双极型晶体管HBT的结构及电流增益;5.了解可控硅器件基本特性及相关器件。
半导体集成电路课程教学大纲

《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。
半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。
本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。
并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。
二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。
2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。
3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。
4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。
《半导体物理与器件》教学大纲讲解(5篇)

《半导体物理与器件》教学大纲讲解(5篇)第一篇:《半导体物理与器件》教学大纲讲解物理科学与技术学院《半导体物理与器件》教学大纲课程类别:专业方向课程性质:必修英文名称:Semiconductor Physics and Devices 总学时:讲授学时:48 学分:先修课程:量子力学、统计物理学、固体物理学等适用专业:应用物理学(光电子技术方向)开课单位:物理科学与技术学院一、课程简介本课程是应用物理学专业(光电子技术方向)的一门重要专业方向课程。
通过本课程的学习,使学生能够结合各种半导体的物理效应掌握常用和特殊半导体器件的工作原理,从物理角度深入了解各种半导体器件的基本规律。
获得在本课程领域内分析和处理一些最基本问题的初步能力,为开展课题设计和独立解决实际工作中的有关问题奠定一定的基础。
二、教学内容及基本要求第一章:固体晶格结构(4学时)教学内容: 1.1半导体材料 1.2固体类型 1.3空间晶格1.4原子价键1.5固体中的缺陷与杂质 1.6半导体材料的生长教学要求:1、了解半导体材料的特性, 掌握固体的基本结构类型;2、掌握描述空间晶格的物理参量, 了解原子价键类型;3、了解固体中缺陷与杂质的类型;4、了解半导体材料的生长过程。
授课方式:讲授第二章:量子力学初步(4学时)教学内容:2.1量子力学的基本原理 2.2薛定谔波动方程2.3薛定谔波动方程的应用 2.4原子波动理论的延伸教学要求:1、掌握量子力学的基本原理,掌握波动方程及波函数的意义;2、掌握薛定谔波动方程在自由电子、无限深势阱、阶跃势函数、矩形势垒中应用;3、了解波动理论处理单电子原子模型。
授课方式:讲授第三章:固体量子理论初步(4学时)应用物理学专业教学内容:3.1允带与禁带格 3.2固体中电的传导 3.3三维扩展3.4状态密度函数 3.5统计力学教学要求:1、掌握能带结构的基本特点,掌握固体中电的传导过程;2、掌握能带结构的三维扩展,掌握电子的态密度分布;3、掌握费密-狄拉克分布和玻耳兹曼分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体材料课程教学大纲
一、课程说明
(一)课程名称:半导体材料
所属专业:微电子科学与工程
课程性质:专业限选
学分: 3
(二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备大体原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方式。
目标与任务:使学生把握要紧半导体材料的性质和制备方式,了解半导体材料最新进展情形、为以后从事半导体材料科学、半导体器件制备等打下基础。
(三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》;
本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。
同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。
(四)教材:杨树人《半导体材料》
要紧参考书:褚君浩、张玉龙《半导体材料技术》
陆大成《金属有机化合物气相外延基础及应用》
二、课程内容与安排
第一章半导体材料概述
第一节半导体材料进展历程
第二节半导体材料分类
第三节半导体材料制备方式综述
第二章硅和锗的制备
第一节硅和锗的物理化学性质
第二节高纯硅的制备
第三节锗的富集与提纯
第三章区熔提纯
第一节分凝现象与分凝系数
第二节区熔原理
第三节锗的区熔提纯
第四章晶体生长
第一节晶体生长理论基础
第二节熔体的晶体生长
第三节硅、锗单晶生长
第五章硅、锗晶体中的杂质和缺点
第一节硅、锗晶体中杂质的性质
第二节硅、锗晶体的搀杂
第三节硅、锗单晶的位错
第四节硅单晶中的微缺点
第六章硅外延生长
第一节硅的气相外延生长
第二节硅外延生长的缺点及电阻率操纵
第三节硅的异质外延
第七章化合物半导体的外延生长
第一节气相外延生长(VPE)
第二节金属有机物化学气相外延生长(MOCVD)
第三节分子束外延生长(MBE)
第四节其他外延生长技术
第八章化合物半导体材料(一):第二代半导体材料
第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用
第三节 GaAs单晶中杂质操纵及搀杂
第四节 InP、GaP等的制备及应用
第九章化合物半导体材料(二):第三代半导体材料
第一节氮化物半导体材料特性及应用
第二节氮化物半导体材料的外延生长
第三节碳化硅材料的特性及应用
第十章其他半导体材料
第一节半导体金刚石的制备及应用
第二节低维半导体材料及应用
第三节有机半导体材料
(一)教学方式与学时分派
依照教材中的内容,通过板书和ppt进行讲解。
并进行课后辅导与答疑。
以学生把握要紧半导体材料制备为主,辅助半导体物理和器件知识,使学生了解材料的用途,激发学生的学习爱好。
为以后工作和科研打好基础。
课时分派如下:第一章(2学时)、第二章(4学时)、第三章(8学时)、第四章(8学时)、第五章(6学时)、第六章(6学时)、第七章(6学时)、第八章(6学时)、第九章(4学时)、第十章(4学时)
要紧内容:
【重点把握】:区熔原理、晶体生长大体原理、Si、Ge单晶制备、Si外延制备、Si、Ge材料搀杂与操纵。
【把握】:VPE、MBE、MOCVD等外延方式、晶体中的缺点、缺点操纵、III-V化合物InP、GaN、SiC等大体性质与制作方式。
【了解】:半导体金刚石的制备、性质、低维半导体、有机半导体材料的性质及引用
【一样了解】:半导体材料分类
【难点】:区熔原理、晶体生长大体原理
(重点把握、把握、了解、一样了解四个层次可依照教学内容和对学生的具体要求适当减少,但不得少于两个层次)
制定人:刘贵鹏
审定人:
批准人:
日期:。