条件概率知识点、例题、练习题

条件概率知识点、例题、练习题
条件概率知识点、例题、练习题

条件概率专题

一、知识点

① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中---

)

()()()()(A B A A P B A P A B P μμ==

A B A =

事件包括的基本事件(样本点)数

事件包括的基本事件(样本点)数 ③ 在几何概型中---

)

()()()()(A B A A P B A P A B P μμ==

(,,)

(,,)A B A =

区域的几何度量长度面积体积等区域的几何度量长度面积体积等 条件概率及全概率公式

3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ).

答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令

A ={抽到一数字是3的倍数};

B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么

P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )>

P (A |B 1), P (A )<P (A |B 2).

3.2.以下两个定义是否是等价的.

定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立.

答:不是的.因为条件概率的定义为

P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A )

自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ).

因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.

3.3.对任意事件A、B, 是否都有 P(AB)≤P(A)≤P(A+B)≤P(A)+P(B).

答:是的.由于P(A+B)=P(A)+P(B)-P(AB) (*)

因为 P(AB)≥0, 故P(A+B)≤P(A)+P(B).

由P(AB)=P(A)P(B|A), 因为0≤P(B|A)≤1,故P(AB)≤P(A);

同理P(AB)≤P(B), 从而 P(B)-P(AB)≥0, 由(*)知P(A+B)≥P(A).

原命题得证.

3.4.在引入条件概率的讨论中, 曾出现过三个概率: P(A|B), P(B|A), P(AB). 从事件的角度去考察, 在A、B相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?

答:概率的不同主要在于计算时所取的样本空间的差别:

P

(A|B)的计算基于附加样本空间ΩB;

P(B|A)的计算基于附加样本空间Ω

A

;

P(AB)的计算基于原有样本空间Ω.

3.5.在n个事件的乘法公式:

P(A

1A

2

…A n)=P(A1)P(A2|A1)P(A3|A1A2)…P(A n|A1A2…A n-1)

中,涉及那么多条件概率, 为什么在给出上述乘法公式时只提及

P(A

1A

2

…A n-1)>0呢?

答:按条件概率的本意, 应要求

P(A

1

)>0, P(A1A2)>0, …,P(A1A2…A n-2)>0, P(A1A2…A n-1

)>0.

事实上, 由于A 1A2A3…A n-2A1A2A3…A n-2A n-1, 从而便有P(A1A2…A n-2)

≥P(A1A2…A n-1)>0. 这样, 除P(A1A2…A n-1)>0作为题设外, 其余条件概率所要求的正概率, 如P(A1A2…A n-2) >0, …,P(A1A2) >0, P(A1)>0便是题设条件P(A1A2…A n-1)>0的自然结论了.

3.6.计算P(B)时, 如果事件B的表达式中有积又有和, 是否就必定要用全概率公式.

答:不是. 这是对全概率公式的形式主义的认识, 完全把它作为一个”公式”来理解是不对的. 其实, 我们没有必要去背这个公式, 应着眼于

A

1

,A2,…,A n的结构. 事实上, 对于具体问题, 若能设出n个事件A i, 使之满足

(*)

就可得

.

(**) 这样就便于应用概率的加法公式和乘法公式.

因此, 能否使用全概率公式, 关键在于(**)式, 而要有(**)式, 关键又在于适当地对Ω进行一个分割, 即有(*)式.

3.7.设P(A)≠0,P(B)≠0, 因为有

(1)若A、B互不相容, 则A、B一定不独立.

(2)若A、B独立, 则A、B一定不互不相容.

故既不互不相容又不独立的事件是不存在的. 上述结论是否正确.

答:不正确. 原命题中的结论(1)(2)都是正确的. 但是由(1)(2)(它们互为逆否命题, 有其一就可以了)只能推出在P(A)≠0,P(B)≠0的前提下, 事件A、B既互不相容又独立是不存在的, 并不能推出“A、B既不独立又不互不相容是不存在的”. 事实上, 恰恰相反, 既不互不相容又不独立的事件组是存在的, 下面举一例.

5个乒乓球(4新1旧), 每次取一个, 无放回抽取三次, 记A i={第i次取到新球}, i=1, 2, 3. 因为是无放回抽取, 故A1、A2、A3互相不独立, 又

A 1A

2

A

3

={三次都取到新球}, 显然是可能发生的, 即A1、A2、A3可能同时发

生, 因此A1、A2、A3不互不相容.

3.8.事件A、B的“对立”与“互不相容”有什么区别和联系? 事件A、B“独立”与“互不相容”又有什么区别和联系?

答:“对立”与“互不相容”区别和联系, 从它们的定义看是十分清楚的, 大体上可由如下的命题概括: “对立” →“互不相容”,反之未必成立.

至于“独立”与“互不相容”的区别和联系, 并非一目了

然.

事件的互不相容性只考虑它们是否同时发生,是纯粹的事

件的关系, 丝毫未涉及它们的概率, 其关系可借助图直观

显示.

事件的独立性是由概率表述的, 即当存在概率关系P(A|B)=P(A)或P(B|A)=P(B)时, 称A、B是相互独立的.

它们的联系可由下述命题概括: 对于两个非不可能事件A、B, 则有“A、B 互不相容” →“A、B不独立”.其等价命题是: 在P(A)>0与P(B)>0下, 则

有“A、B独立” →“A、B不互不相容”(相容). 注意, 上述命题的逆命题不成立.

3.9.设A、B为两个事件,若

0

则A、B相互独立,A、B互不相容, , 这三种情形中的任何两种不能同时成立.

答:在条件(*)下

当A、B相互独立时, 有P(AB)=P(A)P(B);

当A、B互不相容时, 有P(AB)

当时, 有P(AB)>P(A)P(B).

在条件(*)下, 上述三式中的任何两个不能同时成立. 因此, A、B相互独立,A、B互不相容,这三种情形中的任何两种不能同时成立.

此结论表明: 在条件(*)下,若两个事件相互独立时, 必不互不相容,也不一个包含另一个,而只能是相容了.

3.10.证明: 若P(A)=0或P(A)=1, 则A与任何事件B相互独立.

答:若P(A)=0, 又, 故0≤P(AB)≤P(A)=0.

于是P(AB)=0=P(A)P(B),所以A与任何事件B相互独立.

若P(A)=1, 则.由前面所证知,与任何事件B相互独立. 再由事件独立性的性质知, 与B相互独立, 即A与B相互独立.另种方法证明: 由P(A)=1知, 进而有.

又且AB与互不相容, 故

.

即A与B相互独立.

3.11.设A、B是两个基本事件, 且00, , 问事件A与B是什么关系?

[解1]由已知条件可得.

由比例性质, 得.

所以P(AB)=P(A)P(B).因此事件A与B相互独立.

[解2]由得

.

因而.

又,

所以P(B|A)=P(B).

因此事件A与B相互独立.

3.12.是不是无论什么情况, 小概率事件决不会成为必然事件.

答:不是的. 我们可以证明, 随机试验中, 若A为小概率事件, 不妨设P(A)=ε(0<ε<1为不论多么小的实数 ), 只要不断地独立地重复做此试验, 则A迟早要发生的概率为1.

事实上, 设A k={A在第k次试验中发生}, 则P(A k)=ε,, 在前n次试验中A都不发生的概率为:

.

于是在前n次试验中, A至少发生一次的概率为

.

如果把试验一次接一次地做下去, 即让n→∞, 由于0<ε<1, 则当n→∞时, 有p

→1.

n

以上事实在生活中是常见的, 例如在森林中吸烟, 一次引起火灾的可能性是很小的, 但如果很多人这样做, 则迟早会引起火灾.

3.13.只要不是重复试验, 小概率事件就可以忽视.

答:不正确. 小概率事件可不可以忽视, 要由事件的性质来决定, 例如在森林中擦火柴有1%的可能性将导致火灾是不能忽视的, 但火柴有1%的可能性擦不燃是不必在意的.

3.1

4.重复试验一定是独立试验, 理由是: 既然是重复试验就是说每次试验

的条件完全相同, 从而试验的结果就不会互相影响, 上述说法对吗?

答:不对. 我们举一个反例就可以证明上述结论是错误的.

一个罐子中装有4个黑球和3个红球, 随机地抽取一个之后, 再加进2个与抽出的球具有相同颜色的球, 这种手续反复进行, 显然每次试验的条件是相同的. 每抽取一次以后, 这时与取出球有相同颜色的球的数目增加,而与取出球颜色不同的球的数目保持不变,从效果上看,每一次取出的球是什么颜色增加了下一次也取到这种颜色球的概率,因此这不是独立试验,此例是一个如同传染病现象的模型,每一次传染后都增加再传染的概率.

3.15.伯努利概型的随机变量是不是都服从二项分布.

答:不一定. 例如某射手每次击中目标的概率是p,现在连续向一目标进行射击,直到射中为止. 此试验只有两个可能的结果:A={命中}; ={未命中},且P(A)=p.并且是重复独立试验,因此它是伯努利试验(伯努利概型),设X k={第k次射中},X

显然是一个随机变量,但

k

P(X

=k)=q k-1p,k=1,2,…,其中q=p-1,

k

可见X k是服从参数为p的几何分布,而不是二项分布.

3.16.某人想买某本书, 决定到3个新华书店去买, 每个书店有无此书是等可能的. 如有, 是否卖完也是等可能的. 设3个书店有无此书, 是否卖完是相互独立的. 求此人买到此本书的概率.

答:(37/64).

3.17.在空战中, 甲机先向乙机开火, 击落乙机的概率是0.2; 若乙机未被击落, 就进行还击, 击落甲机的概率是0.3, 则再进攻乙机, 击落乙机的概率是0.

4. 在这几个回合中,

(1) 甲机被击落的概率是多少?

(2) 乙机被击落的概率是多少?

答:以A表示事件“第一次攻击中甲击落乙”, 以B表示事件“第二次攻击中乙击落甲”, 以C表示事件“第三次攻击中甲击落乙”.

(1)甲机被击落只有在第一次攻击中甲未击落乙才有可能, 故甲机被击落的概率为

.

(2)乙机被击落有两种情况. 一是第一次攻击中甲击落乙, 二是第三次攻击中甲击落乙, 故乙机被击落的概率是

=0.2+(1-0.2)(1-0.3)×0.4=0.424.

3.18.某个问题, 若甲先答, 答对的概率为0.4; 若甲答错, 由乙答, 答对的概率为0.5. 求问题由乙答出的概率.

答:(0.3)

3.19.有5个人在一星期内都要到图书馆借书一次, 一周内某天借书的可能性相同, 求

(1)5个人都在星期天借书的概率;

(2)5个人都不在星期天借书的概率;

(3)5个人不都在星期天借书的概率.

答:(1)(1/75);

(2)(65/77);

(3)(1-1/75).

1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 二、例题

解.设事件A表示“甲取到的数比乙大”,

设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).

根据公式

而P(B)=3/15=1/5 ,

,

∴P(A|B)=9/14.

2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”,

设事件B表示“掷出的三个点数都不一样”.

则显然所要求的概率为P(A|B).

根据公式

,

,

P( A|B)=1/2.

3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N)

则根据题意P(A1)=1/2 , P(A2|A1)=2/3,

由乘法公式可知:

P(A1A2)=P(A2|A1)P(A1)=1/3.

而P(A3|A1A2)=3/4 ,

P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 .由数学归纳法可以知道

P(A1A2…

A N)=1/(N+1).

4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,

事件B表示“最后取到的是白球”.

根据题意: P(B|A)=5/12 ,

,

P(A)=1/2.

.

5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件A i表示“从甲袋取的2个球中有i个

白球”,其中i=0,1,2 .

事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意

P(A

)=1/10 , P(A1)=3/5 ,

P(A

2

)=3/10 ;

P(B|A

)=2/5 , P(B|A1)=1/2 ,

P(B|A

2

)=3/5 ;

由全概率公式

P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)

P(A2)

=2/5×1/10+1/2×3/5+3/5×

3/10=13/25.

6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”;

事件B表示“最后取到的是2号球”.

然P(A)=1/N,

,

且P(B|A)=1/(N-1),

;

=1/(N-1)×1/N+1/N ×(N-1)/N

=(N2-N+1)/N2(N-1).

7. 袋中装有8只红球, 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.

(1)取出的两只球都是红球;

(2)取出的两只球都是黑球;

(3)取出的两只球一只是红球,一只是黑球;

(4)第二次取出的是红球. 解.设事件A1表示“第一次取到的是红球”,

设事件A2表示“第二次取到的是红球”.

(1)要求的是事件A1A2的概率.

根据题意P(A1)=4/5,

,

P(A2|A1)=7/9,

∴P(A1A2)=P(A1)P(A2|A1)=4/5×7/9=28/45.

(2)要求的是事件的概率.

根据题意:,

,

.

(3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件的概率.

,,

,

,

.

(4)要求第二次取出红球,即求事件A2的概率.

由全概率公式:

=7/9×4/5+8/9×1/5=4/5.

8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人.

一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率.

解.设事件A表示“射手能通过选拔进入比赛”,

设事件B i表示“射手是第i级射手”.(i=1,2,3,4)

显然,B1、B2、B3、B4构成一完备事件组,且

P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20;

P(A|B1)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2.

由全概率公式得到

P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4 )P(B4)

=0.9×4/20+0.7×8/20+0.5×7/20+0.2×

1/20=0.645.

9.轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、0.1 .求目标被命中的解.设事件A1表示“飞机能飞到距目标400米处”,

设事件A2表示“飞机能飞到距目标200米处”,

设事件A3表示“飞机能飞到距目标100米处”, 用事件B表示“目标被击中”.

由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2,

概率为多少? 且A

1

、A2、A3构成一完备事件组.

又已知P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1.

由全概率公式得到:

P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)

=0.01×0.5+0.02×0.3+0.1×0.2=0.031.

10. 加工某一零件共需要4道工序,设第一﹑第二﹑第三﹑第四道工序的次品率分别为2%﹑3%﹑5%﹑3%, 假定各道工序的加工互不影响, 求加工出零件的次品率是多少? 解.设事件A i表示“第i道工序出次品”, i=1,2,3,4

因为各道工序的加工互不影响,因此A i是相互独立的事件.

P(A1)=0.02, P(A2)=0.03, P(A3)=0.05, P(A4)=0.03,

只要任一道工序出次品,则加工出来的零件就是次品.所以要求的是(A1+A2+A3+A4)这个事件的概率.

为了运算简便,我们求其对立事件的概率

= (1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876.

∴P(A1+A2+A3+A4)=1-0.876=0.124.

11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求

(1)射击三次皆中目标的概率;

(2)射击三次有且只解.设事件A i表示“第i次命中目标”, i=1,2,3

根据已知条件P(A i)=0.8,,i=1,2,3

某人每次射击是否命中目标是相互独立的,因此事件A i是相互独立的.

(1)射击三次皆中目标的概率即求P(A1A2A3).

有2次命中目标的概率;

(3)射击三次至少有二次命中目标的概率. 由独立性:

P(A1A2A3)=P(A1)P(A2)P(A3)=0.83=0.512.

(2)“射击三次有且只有2次命中目标”这个事件用B表示.

显然,

又根据独立性得到:

.

(3)“射击三次至少有2次命中目标”这个事件用C表示. 至少有2次命中目标包括2次和3次命中目标,所以C=B+A1A2A3 P(C)=P(B)+P(A1A2A3)=0.384+0.512=0.896.

12. 三人独立译某一密码, 他们能译出的概率分别为1/3, 1/4, 1/5, 求能将密码译出的概率. 解.设事件A i表示“第i人能译出密码”, i=1,2,3.

由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P(A1+A2+A3).

已知P(A1)=1/3,P(A2)=1/4,P(A3)=1/5,

=(1-1/3)(1-1/4)(1-1/5)=0.4.

∴P(A1+A2+A3)=1-0.4=0.6.

13. 用一门大炮对某目标进行三次独立射击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 若命中此目标一、二、三弹, 该目标被摧毁的概率分别为0.2、0.6和0.8, 试求此目标被摧毁的概率. 解.设事件A i表示“第i次命中目标”, i=1,2,3.

设事件B i表示“目标被命中i弹”, i=0,1,2,3.

设事件C表示“目标被摧毁”.

由已知P (A1)=0.4,P(A2)=0.5,P(A3)=0.7;

P(C|B0)=0,P(C|B1)=0.2,P(C|B2)=0.6,P(C|B3)=0.8. 又由于三次射击是相互独立的,所以

,

=0.6×0.5×0.7+0.6×0.5×0.3+0.4×0.5×0.3=0

.36,

=0.6×0.5×0.7+0.4×0.5×0.3+0.4×0.5×0.7

=0.41,

.

由全概率公式得到

P (C )=P (C |B 0)P (B 0)+P (C |B 1)P (B 1)+P (C |B 2)P (B 2)+P (C |B 3)P (B 3)

=0×0.09+0.2×0.36+0.6×0.41+0.8×0.14=0.43.

三、练习题

1.已知P(B|A)=

103,P(A)=5

1

,则P(AB)=( ) A .21 B.23 C .32 D.503

2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( )

A.21

B.31

C.41

D.8

1 3.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为15

2

既刮风又下雨的概率为10

1

,则在下雨天里,刮风的概率为( ) A.

225

8

B.21

C.83

D.4

3

4.设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是.

5.一个口袋内装有2个白球,3个黑球,则

(1)先摸出1个白球后放回,再摸出1个白球的概率? (2)先摸出1个白球后不放回,再摸出1个白球的概率?

6.某种元件用满6000小时未坏的概率是43

,用满10000小时未坏的概率是2

1,

现有一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率

7.某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。如果要在班内任选一人当学生代表

(1)求这个代表恰好在第一小组内的概率(2)求这个代表恰好是团员代表的概率

(3)求这个代表恰好是第一小组内团员的概率

(4)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率

8.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品合格率是95%,乙厂合格率是80%,则(1)市场上灯泡的合格率是多少?

(2)市场上合格品中甲厂占百分之几?(保留两位有效数字)

9.一个家庭中有两个小孩,已知其中一个是女孩,问这时另一个小孩也是女孩的概率?(每个小孩是男孩和女孩的概率相等)

10.在一批电子元件中任取一件检查,是不合格品的概率为0.1,是废品的概率为0.01,已知取到了一件不合格品,它不是废品的概率是多少?

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 --- ) ()()()()(A B A A P B A P A B P μμ== A B A =事件包括的基本事件(样本点)数 事件包括的基本事件(样本点)数 ③ 在几何概型中 --- ) ()()()()(A B A A P B A P A B P μμ== (,,) (,,)A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 条件概率及全概率公式 3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ). 答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令 A ={抽到一数字是3的倍数}; B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么 P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )> P (A |B 1), P (A )<P (A |B 2). 3.2.以下两个定义是否是等价的. 定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立. 答:不是的.因为条件概率的定义为 P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A ) 自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ). 因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.

考点38 正态分布和条件概率——2021年高考数学专题复习真题练习

考点38 正态分布与条件概率 【题组一条件概率】 1.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A,“第2次拿出的是白球”为事件B,则事件A发生的条件下事件B发生的概率是() A.4 7 B. 5 16 C. 5 8 D. 5 14 2.一个袋中装有大小相同的3个白球和3个黑球,若不放回地依次取两个球,设事件A为“第一次取出白球”,事件B为“第二次取出黑球”,则概率() P B A=() A.5 6 B. 3 5 C. 1 2 D. 2 5 3.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A=“第一次取到的是奇数”,事件B=“第二次取到的是奇数”,则() P B A=() A.1 2 B. 2 5 C. 3 10 D. 1 5 4.下图展现给我们的是唐代著名诗人杜牧写的《清明》,这首诗不仅意境极好,而且还准确地描述出了清明时节的天气状况,那就是“雨纷纷”,即天气多阴雨.某地区气象监测资料表明,清明节当天下雨的概率是0.9,连续两天下雨的概率是0.63,若该地某年清明节当天下雨,则随后一天也下雨的概率是()

A .0.63 B .0.7 C .0.9 D .0.567 5.袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是( ) A .310 B .35 C .12 D .14 【题组二 正态分布】 1.已知随机变量X 服从正态分布()5,4N ,且()()4P X k P X k >=<-,则k 的值为( ) A .6 B .7 C .8 D .9 2.随机变量ξ服从正态分布()21,N σ,若()20.8P ξ<=,则()01P ξ<<的值( ) A .0.6 B .0.4 C .0.3 D .0.2 3.某地区有10000名高三学生参加了网上模拟考试,其中数学分数服从正态分布()120,9N ,成绩在(117,126]之外的人数估计有( ) (附:若X 服从2(,)N μσ,则()0.6827P X μσμσ-<≤+=,()220.9545P X μσμσ-<≤+=) A .1814人 B .3173人 C .5228人 D .5907人 4.已知随机变量ξ服从正态分布N (3,σ2),且P (ξ>2)=0.85,则P (3<ξ<4)=_____.

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

专题10 条件概率(原卷版)

专题10 条件概率 例1.小智和电脑连续下两盘棋,已知小智第一盘获胜概率是0.5,小智连续两盘都获胜的概率是0.4,那么小智在第一盘获胜的条件下,第二盘也获胜的概率是() A.0.8B.0.4C.0.2D.0.5 例2.某种灯泡的使用寿命为2000小时的概率为0.85,超过2500小时的概率为0.35,若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为() A.17 20B. 7 17 C. 7 20 D. 3 17 例3.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制(无平局),甲在每局比赛中获胜的概 率均为2 3 ,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为() A.1 3 B. 2 5 C. 2 3 D. 4 5 例4.盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是() A.1 5B. 2 9 C. 7 9 D. 7 10 例5.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A表示事件“抽到的两名医生性别相同”,B表示事件“抽到的两名医生都是女医生”,则(|)( P B A=) A.1 3 B. 4 7 C. 2 3 D. 3 4 例6.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不完全相同”,事件B为“小赵独自去一个景点”,则(|)( P B A=) A.3 7B. 4 7 C. 5 7 D. 6 7 例7.口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为. 例8.已知 1 (|) 2 P B A=, 3 () 10 P AB=,则P(A)=. 例9.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件A=“取出的两个球颜色不同”,事件B=“取出一个红球,一个白球”,则(|) P B A=. 例10.某种疾病的患病率为0.50,患该种疾病且血检呈阳性的概率为0.49,则已知在患该种疾病的条件下血检呈阳性的概率为.

最新条件概率练习题

选修2-3 2.2.1 条件概率补充练习 广水一中:邓文平 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

谈条件概率常见问题解题方法

谈条件概率常见问题解题法 摘要:条件概率是高中概率知识较难学的知识点之一,本文在于如何通过条 件概率的概念及性质来总结和概括条件概率的解题方法和常见的应用问题,以利于教师和学生更好地学习条件概率知识。 关键词:条件概率,事件、样本空间 1.条件概率的概念 一般地,设B A ,为两个事件,且0)(>A P ,称=)|(A B P ) ()(A P AB P 为在事件A 发生的条件下,事件B 发生的条件概率。 关于条件概率,有下面的定理: 定理1:设事件A 的概率0)(>A P ,则在事件A 已经发生的条件下事件B 的 条件概率等于事件AB 的概率除以事件A 的概率所得的商: =)|(A B P ) ()(A P AB P 推论:二事件的交的概率等于其中一事件的概率与另一事件在前一事件已发生的条件概率的乘积: )|()()|()()(B A P B P A B P A P AB P == 性质:1. ()P B A =1- )|(A B P 2.条件概率P(B ∣A)与积事件P(AB)概率的区别 )|(A B P 与)(AB P 这是两个截然不同的事件概率.设B A ,是随机试验对应的样本空间Ω中的两个事件,)(AB P 是事件B A ,同时发生的概率,而)|(A B P 是在事件A 已经发生的条件下事件B 的概率。从样本空间的角度看,这两种事件所对应的样本空间发生了改变, 求)(AB P 时,仍在原来的随机试验中所对应的样本空间Ω中进行讨论;而求)|(A B P 时,所考虑的样本空间就不是Ω了,这是因为前提条件中已经知道了一个条件(即A 已经发生),这样所考虑的样本空间的范围必然缩小了,当然乘法公式)(AB P =)|(A B P )(A P )0)((>A P 给出了它们之间的联系。 3.条件概率的解题方法: 解答条件概率问题,首先要判明问题的性质,确定所解的问题是不是条件概率问题。如果所要考虑的事件是在另一事件发生的前提下出现的,那么这一事件的概率,必须按条件概率来处理。求解简单条件概率问题,有五种基本方法: (1) 化为古典概型解决 )()(n )()()(A n B A A P B A P A B P ==A B A =事件包括的基本事件(样本点)数事件包括的基本事件(样本点)数 (2) 化为几何概型解决 )()()()()(A B A A P B A P A B P μμ==(,,)(,,) A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 (3) 条件概率公式法 如果0)(>A P ,则先在原样本空间Ω中计算)(AB P 和)(A P ,再按公式 =)|(A B P ) ()(A P AB P 计算

事件的独立性与条件概率练习专题

事件的独立性与条件概率专题 1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为 ( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34

C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的 概率为13,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13 ,视力合格的概率为16,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( )

条件概率练习题56626

条件概率 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

概率论易错点

概率易错知识点总结(原创) 1、“非等可能”与“等可能”的区别 如果一次随机实验中可能出现的结果有N个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/N;如果其中某个事件A包含的结果有M个,则事件A的概率为M/N。 2、互斥与对立 对立一定互斥,但是互斥不一定对立。不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P(A+B)=P(A)+P(B),必有一个发生的互斥事件叫做对立事件,如果A,B对立则满足两个条件(1)P(AB)=空集;(2)P(A+B)=1。 3、互斥与独立 不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P(A+B)=P(A)+P(B),事件A(或者B)是否发生不影响事件B(或者A)发生的概率,则A和B独立。此时P(AB)=P (A)p(B);概率为0或者1的事件与任何事件都独立,如果两个事件存在包含关系,则两个事件不独立;如果0〈P(A)〈1,0〈P(B)〈1,如果A,B互斥则不独立,如果A,B独立则不互斥(注意条件)。 4、排列与组合 这一点还是比较简单的,不过还是有部分同学不太清楚。排列与顺序有关,组合与顺序无关。还有一点要注意;同类相乘有序,不同类相乘无序。

5、不可能事件与概率为0的随机事件 这两者之间的关系为:不可能事件的概率P(Ф)=0,但是反过来,概率为零的随机事件A未必是不可能事件,也就是说,由P(A)=0推不出A=Ф,例如连续型随机变量在任何一点的概率都为0。 6、必然事件Ω与概率为1的事件 即必然事件的概率为1,但是概率为1的事件未必是必然事件,即由P(A)=1推不出A=Ω,对于一般情形,由P(A)=P(B)同样不能推得A=B即A=B仅仅是(A)=P(B)的充分条件。 7、有关条件概率, 一般记为P(A|B)表示 B事件的发生条件下A发生的概率,这里我要说明的是如果"B是A的子集"那么P(B|A)=P(B)是不对的,按推导P(B|A)=P(AB)/P(A)只有当P(A)=1时原式才等于P(B);同样可以理解P(A|B)=1如果我写出P(A|B)=1那么会有一半多的朋友会认为B是A的真子集,其实这是一道93年的真题,事实上这是一道错题,错就错在“B是A的真子集”是P(A|B)=1的充分条件,而不是必要条件,举个例子P(A|B)=P(AB)/P(B)(这里P(AB)是服从0~1分布的在区间为(0,1/2)的概率,P(B)是服从0~1分布的在区间为[0,1/2] 概率,他们的比也是1但是A 不是B的真子集

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

最新-条件概率示范教案

2.2.1 条件概率(1) 教材分析 本节内容是数学选修2-3 第二章 随机变量及其分布第二节 二项分布及其应用的起始课,是对概率知识的拓展,为了导出二项分布需要条件概率和事件的独立性的概念,条件概率是比较难理解的概念,教材利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过两个思考比较抽奖前和在第一名同学没有中奖的条件下,最后一名同学的中奖概率,引出条件概率的概念,给出了两种计算条件概率的方法,给出了条件概率的两个性质.本课题的重点是条件概率的概念,难点是件概率计算公式的应用.通过探究条件概率的概念的由来过程,可以很好地培养归纳、推理,学生分析问题、解决问题的能力,要求学生有意识地运用特殊与一般思想,在解决新问题的过程中,又要自觉的运用化归与转化思想,体现解决数学问题的一般思路与方法. 课时分配 本节内容用1课时的时间完成,主要讲解条件概率概念、性质及计算公式,并利用公式解决简单的概率问题. 教学目标 重点: 条件概率的概念. 难点:条件概率计算公式的应用. 知识点:条件概率. 能力点:探寻条件概率的概念、公式的思路,归纳、推理、有特殊到一般的数学思想的运用. 教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何理解条件概率的内涵. 考试点:求解决具体问题中的条件概率. 易错易混点:利用公式时()n A 易计算错. 拓展点:有放回.抽球时(|)P B A 与()P B 的关系 教具准备 多媒体课件和三角板 课堂模式 学案导学 一、引入新课 在生活中我们有些问题不好解决时经常采用抽签的办法,抽签有先后,对每个人公平吗? 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 【师生活动】师:如果三张奖卷分别用12,,X X Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有几种可能?能列举出来吗? 生:有六种可能:121221211221,,,,,X X Y X YX X X Y X YX YX X YX X . 师:用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 包含几个基本事件?

高考概率知识点及例题(供参考)

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件 4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨

的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=. (4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1 P A B=. 3.2 古典概型

高三数学专题复习-条件概率问题

数学专题复习 一个很有趣的条件概率问题:三扇门问题 昨天看一片电影《玩转21点》,片中有一个很趣的概率问题。 片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目 “Let's Make a Deal”。问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。 这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。 明确的限制条件如下: 参赛者在三扇门中挑选一扇。他并不知道内里有什么。 主持人知道每扇门后面有什么。 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。 主持人永远都会挑一扇有山羊的门。 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。 如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。 请问如果是你,你会做哪种选择,哪个选择得到车的概率会更大呢? 讨论: ?当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。 解释如下: 有三种可能的情况,全部都有相等的可能性(1/3)︰ 参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。 参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。 参赛者挑汽车,主持人挑两头山羊的任何一头。转换将失败。 在头两种情况,参赛者可以通过转换选择而赢得汽车。第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。 ?历史上这个问题刚被提出的时候却引起了相当大的争议。这个问题源自美国电视娱乐节目Let’s Make a Deal,内容如前所述。作为吉尼斯世界纪录中智商最高的人,Savant在Parade Magazine对这一问题的解答是应该换,因为换了之后有2/3的概率赢得车,不换的话概率只有1/3。她的这一解答引来了大量读者信件,认为这个答案太荒唐了。因为直觉告诉人们:如果被打开的门后什么都没有,这个信息会改变剩余的两种选择的概率,哪一种都只能是1/2。持有这种观点的大约有十分之一是来自数学或科学研究机构,有的人甚至有博士学位。还有大批报纸专栏作家也加入了声讨

人教版 高中数学 2.2.1条件概率学案 选修2-3

人教版高中数学精品资料 高中数学 2.2.1条件概率学案 新人教A 版选 修 2-3 基础梳理 1.条件概率. 条件 设A ,B 为两个事件,且P (A )>0 含义 在事件A 发生的条件下,事件B 发生的条件概率 记作 P (B |A ) 读作 A 发生的条件下B 发生的概率 计算 公式 ①缩小样本空间法:P (B |A )=n (AB ) n (A ) ②公式法:P (B |A )=P (AB ) P (A ) P (B |A )与P (AB )的区别:P (B |A )的值是AB 发生相对于事件A 发生的概率的大小;而P (AB )是AB 发生相对于原来的总空间而言. 2.条件概率的性质. (1)有界性:0≤P (B |A )≤1; (2)可加性:如果B 和C 是互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ). 自测自评 1.下列说法中正确的是(B ) A .P (B |A )<P (AB ) B .P (B |A )= P (B ) P (A ) 是可能的 C .0<P (B |A )<1 D .P (A |A )=0

2.已知P (AB )=310,P (A )=3 5,则P (B |A )等于(B ) A.950 B.12 C.910 D.1 4 3.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则P (B |A )=(A ) A.13 B.15 C.16 D.112 解析:出现点数互不相同的共有6×5=30种,出现一个5点共有5×2=10种, 所以P (B |A )=1030=1 3 .故选 A. 不注意区分条件概率P (B |A )与积事件的概率P (AB )致误 【典例】 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率. 解析:记“第一次取到白球” 为事件A ,“第二次取到黄球” 为事件B ,“在第一次取到白球的条件下第二次取到黄球” 为事件C . 在事件A 已经发生的条件下,袋中只有9个球,其中3个白球,故此时取到黄球的概率为P (C )=P (B |A )=69=23或者P (C )=P (B |A )=P (AB )P (A )=4 1525 =2 3 . 【易错剖析】应注意P (AB )是事件A 和B 同时发生的概率,而P (B |A )是在事件A 已经发生的条件下事件B 发生的概率.若混淆这两个概念,就会出现如下错解: 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“在第一次取到白球的条件下第二次取到黄球”为事件C , ∴P (C )=P (AB )= 4×610×9=4 15 . 基础巩固 1.已知P (B |A )=13,P (A )=2 5,则P (AB )=(C ) A. 56 B.910 C.215 D.1 15 解析:P (AB )=P (B |A )·P (A )=13×25=2 15 .故选C. 2.把一枚硬币抛掷两次,事件B 为“第一次出现正面”,事件A 为“第二次出现反面”,则P (A |B )等于(B )

相关文档
最新文档