16年初二数学下册期中考试卷
人教版数学八年级下册《期中考试试卷》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( ) A. 4 B. 5 C. 0.2 D. 132. 使二次根式2x -有意义的x 的取值范围是( )A. x≠2B. x >2C. x≤2D. x≥2.3. 下列计算正确的是( )A. 103=7-B. 23=5+C. 333=23-D. 22=22+ 4. 下列各组数中,以a 、b 、c 为边三角形不是直角三角形的是( )A. a =1,b =2,c =3B. a =32,b =2,c =52C. a =5,b =12,c =13D. a =7,b =24,c =255. 在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠C 的度数为( )A 60° B. 70° C. 80° D. 110°6. 在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A. AB =BC ,CD =DAB. AB //CD ,AD =BCC. AB //CD ,∠A =∠CD. ∠A =∠B ,∠C =∠D7. 如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )A 13 B. 4 C. 17 D. 58. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A72B. 3C.512D.539. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B. 22C. 255D. 522- 二、填空题(每小题3分,共18分)11. 化简:()()2255-+=_____. 12. 若a =2+3,b =2﹣3,则ab 的值为_____.13. 点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.三、解答题(共72分)17. 计算:(1)1 27123-+=(2)(3622)2-÷=18. 已知:如图,点E,F分别在□ABCD的AB,DC边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.19. 已知=51-,求代数式256x x+-的值.20. 如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.22. 在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BP A沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC的中点,直接写出MN的最大值:.答案与解析一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是()B. C. D.A.[答案]B[解析][分析]根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.[详解]解:A.=2,故不符合题意;B.C.,故不符合题意;5D. ,故不符合题意故选:B.[点睛]本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.2. x的取值范围是( )A. x≠2B. x>2C. x≤2D. x≥2.[答案]D[解析][分析]根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.[详解]解:由题意得,x-2≥0,解得x≥2,故选:D.[点睛]本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3. 下列计算正确的是( )C. D. 2[答案]C[解析][分析]先把各个二次根式化成最简二次根式再合并判断即可.[详解]解:A,故该选项不符合题意;B不能计算,故该选项不符合题意;C、正确,符合题意;D,故该选项不符合题意;故选:C.[点睛]此题考查二次根式的加减,关键是先把各个二次根式化成最简二次根式再合并解答.4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A. a=1,b,cB. a=32,b=2,c=52C. a b,cD. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.[详解]解:A、12+2=2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+(32)2=(52)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、2+)2≠2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为( )A. 60°B. 70°C. 80°D. 110°[答案]D[解析][分析]根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.[详解]画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=110°.故选D.[点睛]此题考查了平行四边形的性质.理解平行四边形的对角相等,邻角互补是解题的关键.6. 在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB=BC,CD=DAB. AB//CD,AD=BCC. AB//CD,∠A=∠CD. ∠A=∠B,∠C=∠D[答案]C[解析]分析]根据平行四边形的判定定理,分别进行判断,即可得到答案.[详解]解:如图:A、根据AB=BC,AD=DC,不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB∥CD,AD=BC不能推出四边形ABCD平行四边形,故本选项错误;C、由AB∥CD,则∠A+∠D=180°,由∠A=∠C,则∠D+∠C=180°,则AD∥BC,可以推出四边形ABCD是平行四边形,故本选项正确;D、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;故选:C.[点睛]本题考查了对平行四边形判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7. 如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为( )13 B. 417 D. 5[答案]A[解析][分析]正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短、勾股定理即可求出最短路径长.[详解]一.如图,它运动的最短路程22(22)21721AB⎛⎫=++⨯=⎪⎝⎭二、如图,它运动的最短路程2222+21312AB⎛⎫=+⨯=⎪⎝⎭故选:A.[点睛]本题考查了正方体的侧面展开图、两点之间线段最短、勾股定理,掌握正方体的侧面展开图是解题关键.8. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A723 C.512D.53[答案]A [解析][分析]连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、DF的长,进而可得PB的长.[详解]解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,3∴OB∴FB3∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF227DB BF ,∵点P为FD的中点,∴PB =12DF =72. 故选:A .[点睛]本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.9. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.[答案]B[解析][分析]直接验证三角形三边的平方之间的关系即可作出判断.[详解]解:对于A 选项,((2255160100+=>,三角形为锐角三角形,合理;对于B 选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C 选项,(22210839+>,说明边长为239,三角形为锐角三角形,合理; 对于D 选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B .[点睛]本题主要考查了正方形的性质和勾股定理,正确判断各三角形的形状是解答的关键.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B.22C.255D.522-[答案]A[解析][分析]连接HF,直线HF与AD交于点P,根据正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH 与五边形MCNGF的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD的面积为24x2,进而求出FM,最后求得结果.[详解]如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF22GF=2,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM 2=24x 2,∴PM =x ,∴FM =PH =12(PM ﹣HF )=12(x ﹣x )=)x ,∴FM GF = 故选:A .[点睛]本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(每小题3分,共18分)11. 2=_____. [答案]10[解析][分析]根据二次根式的性质计算.[详解]2 =5+5=10.故答案为:10.[点睛]本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 若a =,b =2则ab 的值为_____.[答案]1[解析][分析]直接利用平方差公式计算得出答案.[详解]解:∵22a b ==∴ab =(22+=4﹣3=1.故答案为:1.[点睛]此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.13. 点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.[答案]8.[解析][分析]据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.[详解]如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴DF+FE+DE12=BC12+AB12+AC12=(AB+BC+CA)12=⨯16=8.故答案为8.[点睛]本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为_____.[答案]37[解析][分析]由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.[详解]解:连接AB ,AD ,如图所示:∵AD =AB =222222+=,∴DE =()222217-=,∴CD =37-.故答案为:37-.[点睛]本题考查了勾股定理,由勾股定理求出AB 、DE 是解题的关键.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.[答案]222[解析][分析]如图所示,连接HG ,设EG 交DH 于点K ,先证明△GDE 是等腰直角三角形,再证明∠GKD =90°,从而在Rt △GHK 中,由勾股定理得x 2+22)x x -=4,求得x 2的值,再根据菱形的面积等于底乘以高,得出菱形BGDH 的面积,即菱形AEDF 的面积.[详解]如图所示,连接HG ,设EG 交DH 于点K ,则HG =2,∵三个菱形全等,∴GD =ED ,∠ADE =∠BDG ,∵AD ⊥BC 于D ,∴∠ADB =∠ADE+∠BDE =90°,∴∠GDE =∠BDG+∠BDE =90°,∴△GDE 是等腰直角三角形,∴∠EGD =∠GED =45°,∵四边形AEDF 为菱形,∴AE ∥DF ,∴∠EDF =∠GED =45°,∴∠GDK =45°,∴∠GKD =90°,设GK =DK =x ,则GD =DH 2x ,HK 2x ﹣x ,在Rt △GHK 中,由勾股定理得:x 2+2(2)x x =4,解得:x 2=2∴菱形BGDH 的面积为:DH•GK 2x•x 2x 2=2+2,∴菱形AEDF 的面积为:2+2.故答案为:2+2.[点睛]本题考查了菱形的性质、菱形的面积计算、等腰直角三角形的判定及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.[答案]2242-m n m n[解析][分析]延长BC 至E ,使CE =AC ,连接AE ,根据三角形的外角性质、等腰三角形的性质得到∠B =∠BAC ,得到BC =AC =n ,根据勾股定理、三角形的面积公式计算即可.[详解]延长BC 至E ,使CE =AC ,连接AE ,则∠CAE =∠E ,∵∠ACB =∠CAE+∠E ,∴∠CAE =∠E =12∠ACB , ∵∠ACB =2∠BAD ,∴∠E =∠BAD ,∵AD ⊥BC ,∴∠B+∠BAD =90°,∴∠B+∠E =90°,即∠BAE =90°,∴∠BAC+∠CAE =90°,∵∠B+∠E =90°,∠CAE =∠E ,∴∠B =∠BAC ,∴BC =AC =n ,由勾股定理得,AE 22BE AB -224n m -S △BAE =12×AB×AE =12×BE×AD ,即m×224n m -=2n×AD ,解得:AD 224-m n m , 224-m n m . [点睛]本题考查的是等腰三角形的性质、直角三角形的性质、勾股定理,掌握三角形的外角性质、灵活运用三角形的面积公式是解题的关键.三、解答题(共72分)17. 计算:(1127123= (2)(3622)2÷=[答案](1)33;(2)332. [解析][分析](1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.[详解](1)原式323333= 433=; (2)原式362222=332=.[点睛]本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.18. 已知:如图,点E ,F 分别在□ABCD 的AB ,DC 边上, 且AE=CF ,联结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]见解析[解析][分析]由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,再说明EB=DF ,从而根据一组对边既平行又相等的四边形是平行四边形即可得证.[详解]∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,即EB ∥DF.∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴四边形DEBF 是平行四边形.[点睛]本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形的性质定理与判定定理是解答本题的关键.19. 已知51,求代数式256x x +-的值.[答案]535-+[解析][分析]把x 的值代入多项式进行计算即可.[详解]当51时,256x x +-=))2515516+-=6255556--=535-+[点睛]本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.20. 如图,在每个小正方形边长为1的网格中,点A 、B 、C 均在格点上.(1)直接写出AC 的长为 ,△ABC 的面积为 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD ,并保留作图痕迹;(3)求BD 的长.[答案](1)29,9;(2)见解析;(3)182929[解析][分析](1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD即可;(3)根据三角形的面积公式即可得到结论.[详解](1)AC=2225+=29,S△ABC=4×5﹣12×2×4﹣12×2×5﹣12×1×4=9,故答案为:29,9;(2)如图所示,BD即为所求,(3)∵S△ABC=12AC•BD=1292BD=9,∴BD 1829.[点睛]本题考查了作图﹣应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED 是菱形.[答案]见解析[解析][分析]首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.[详解]证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC=OD=12AC=12BD ∴四边形OCED 是菱形.22. 在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.[答案](1)103;(2)见解析 [解析][分析] (1)如图1,过作AD BC ⊥于,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论; (2)如图2,过作AE BC ⊥于,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.[详解]解:(1)如图1,过作AD BC ⊥于,5AB AC ==,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点与点重合,AM CM ∴=,1522AN AC ==, 设AM CM x ==,3MD x ∴=-,222AD DM AM +=,2224(3)x x ∴+-=, 解得:256x , 222225510()()623MN AM AN ∴=-=-=; (2)如图2,过作AE BC ⊥于, AB AC =,12BE CE BC ∴==, :2:3BC CD =,设2BC t =,3CD t =,AE h =,BE CE t ∴==, 5AB =,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,5t =(负值舍去),55BD ∴=222222510125(55)AB AD BD+=+===,ABD∴∆是直角三角形.[点睛]本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.[答案](1)见解析;(2)见解析;(339[解析][分析](1)根据菱形的判定定理得到平行四边形ABCD为菱形,得到△ACD为等边三角形,证明△F AC≌△EAB,根据全等三角形的性质得到AF=AE,根据等边三角形的判定定理证明结论;(2)延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,根据菱形的判定定理得到四边形ABHN为平行四边形,根据(1)中结论解答;(3)延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,求出PE的长,证明△F AE≌△P AE,根据全等三角形的性质得到EF=PE,得到答案.[详解](1)证明:当n=1时,AD=AB,∴平行四边形ABCD 为菱形,∴∠ACD =12∠BCD =60°,∠CAB =60°, ∴△ACD 为等边三角形,∴AC =AD =AB ,∵∠EAF =60°,∴∠F AE =∠CAB ,∴∠F AC =∠EAB ,在△F AC 和△EAB 中,FAC EAB AC ABFCA EBA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△F AC ≌△EAB (ASA )∴AF =AE ,又∵∠EAF =60°,∴△AEF 为等边三角形;(2)证明:如图2,延长AF 至N ,使DN =AD ,延长AF 至P ,使FP =AF ,延长BC 、NP 交于点H ,∵DN =AD ,FP =AF ,∴DF 是△ANP 的中位线,∴NP ∥AB ,又AN ∥BH ,∴四边形ABHN 为平行四边形,∵AB =AN ,∴平行四边形ABHN 为菱形,由(1)可知,△APE 为等边三角形,∵AF =FP ,∴EF ⊥AP ,∴∠AFE =90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=12DF=2,由勾股定理得,MF2223DF DM-=∴GF=3∴PH=GF=3,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=12PH=3∴EN=EH﹣NH3,由勾股定理得,PN22PH NH-6, ∴PE2239PN EN-=∵∠F AE =60°,∠BAD =120°,∴∠DAF +∠EAB =60°,∴∠HAP +∠EAB =60°,即∠EAP =60°,∴∠F AE =∠EAP ,在△F AE 和△P AE 中,AF AP FAE PAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△P AE (SAS )∴EF =PE =39, 故答案为:39.[点睛]本题考查的是菱形的判定和性质、全等三角形的判定和性质、等边三角形的性质、旋转变换的应用,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A 3、A 4、A 5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD 长与宽之比也满足以上条件,其中宽AB =2.①点P 是AD 上一点,将△BP A 沿BP 折叠得到△BPE ,当BE 垂直AC 时,求AP 的长; ②若将长方形ABCD 绕点B 旋转得到长方形A 1BC 1D 1,直线CC 1交DD 1于点M ,N 为BC 的中点,直接写出MN 的最大值: .[答案](1)2a b;(2)①232231 [解析][分析] (1)设长方形的长与宽分别为a ,b .根据对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等,构建关系式解决问题即可;(2)①如图1中,延长PE 、BC 交于点G ,证明AC =PG ,PG =BG 即可解决问题;②如图2中,连接BM ,取BD的中点O ,连接OM ,ON ,延长CC 1到K ,使得C 1K =CC 1在MK 的延长线上取一点J ,使得D 1J =D 1K .想办法证明DM =MD 1,推出BM ⊥DD 1,求出OM ,ON 即可解决问题.[详解](1)设长方形的长与宽分别为a ,b . 由题意:2a b a b =,∴a 2=2b 2,∴2a b=; (2)①如图1中,延长PE 、BC 交于点G ,∵∠PEB =90°,∴PE ⊥BE ,∵BE ⊥AC ,BE ⊥PE ,∴PG ∥AC ,∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =2,AD ∥BG ,∠ABC =90°, ∴四边形APGC 是平行四边形,∴PG =AC 22AB BC +222(22)+23∵AD ∥BC , ∴∠APB =∠GBP ,∵∠APB =∠GPB ,∴∠GBP =∠GPB ,∴GP =GB =3,∴AP =CG =BG =BC =32;②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=12BD3∵BO=OD,BN=CN,∴ON=12CD=1,∵MN≤OM+ON,∴,∴MN+1..[点睛]本题属于几何变换综合题,考查了矩形的性质,旋转变换,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考压轴题.。
人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
人教版八年级下册数学期中考试试题及答案

人教版八年级下册数学期中考试试卷一、单选题1.二次根式有意义,则x 的取值范围为()A .x >-2B .x≥-2C .x≠-2D .x≥22.下列运算正确的是()A 3=±B 5=-C .2(7=D .23=-3.下列各组线段中,能够组成直角三角形的是()A .6,7,8.B .5,6,7.C .4,5,6.D .7,24,25.4.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A .88°,108°,88°B .88°,104°,108°C .88°,92°,92°D .88°,92°,88°5.已知△ABC 中,11A B C 23∠∠∠==,则它的三条边之比为()A .B .2C .D .1:4:16.如图所示,数轴上点A 所表示的数为a ,则a 的值是()A-1B C D .-27.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A .4cm,6cmB .6cm,8cmC .8cm,12cmD .20cm,30cm8.在□ABCD 中,对角线AC 和BD 交于点O ,点E 是AD 的中点,AB=6,BC=8,BD=12,则△DOE 的周长是()A .24.B .13.C .10.D .8.9.点,,,在同一平面内,从四个条件:①B =B ;②B//B ;③B =B ;④B//B 中任选两个,使四边形BB 是平行四边形,这样的选法有()A .3种B .4种C .5种D .6种10.△ABC 中,AB =15,AC =20,BC 边上的高AD =12,则BC 的长为()A .25B .7C .25或7D .14或4二、填空题11=__________.12.在四边形ABCD 中,已知AB ∥CD ,再增加一个条件可以得到□ABCD ,你添加的条件是__________________.13.在Rt ∆ABC 中,有两条边的长是3和4,则第三边的长是____________.14.已知5y =+-,则2019()x y +=____________.15.如图,在▱ABCD 中,∠DAB 的角平分线交CD 于E ,若DE :EC=3:1,AB 的长为8,则BC 的长为______16.如图,在平面直角坐标系中点A 、B 、O 是平行四边形的三个顶点,则第四个顶点的坐标是_______________.三、解答题17.(1)计算:(2)计算:2+18.已知y=2+求代数式x2+xy+y2的值。
初二年级数学下期中考试试卷

初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。
每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。
人教版数学八年级下册《期中考试卷》(带答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列计算结果正确的是:( ) A. 257+= B. 3223-= C. 2510+= D. 21055= 2. 下列二次根式中,不能与2合并的是( )A. 12B. 8C. 18D. 123. 如图,x 轴、y 轴上分别有两点A (3,0)、B (0,2),以点A 为圆心,AB 为半径的弧交x 轴负半轴于点C ,则点C 的坐标为( )A. (﹣1,0)B. (250)C. (13,0)D. (130) 4. 校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A. 10米B. 11米C. 12米D. 13米5. 下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A. AB CD ∥,AD BC ∥B. AB CD ∥,AD BC =C. AB CD ∥,AB CD =D. AB CD =,AD BC =6. 矩形、菱形、正方形都具有性质是( )A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线互相平分且相等7. 若一直角三角形的两边为5和12,则它第三边的长为( )A. 13B. 119C. 13或129D. 13或1198. 如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△P AE周长的最小值是( )A. 3B. 4C. 5D. 69. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为( )A 12 B. 10C. 8D. 610. 如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A. 1B. 2C. 3D. 4二.填空题(共10小题)x ,则x可以取最小整数是_________.11. 3512. 若y =2x -+2x -﹣3,则x+y =_____.13. 已知x +y =﹣5,xy =4,则y x+x y =_____. 14. 下列命题中逆命题成立的有_____(填序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形对应边相等;④如果两个实数相等,那么它们平方相等.15. 如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______16. 如图,四边形ABCD 是菱形,AC =16,DB =12,DH ⊥AB 于点H ,则DH 等于____.17. 如图,ABC 中,BD 平分ABC ∠,且AD BD ⊥,为AC 的中点,6AD cm =,8BD cm =,16BC cm =,则DE 的长为_______.18. 如图,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为_______cm .19. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为F ,则EF 的长为______.20. 如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标___.三.解答题(共4小题)21. 在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?22. 如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,求证:∠AEF=90°.23. 如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:(1)AC⊥BD;(2)四边形ABCD是菱形.24. 如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7.求四边形EFGH 的周长.答案与解析一.选择题(共10小题)1. 下列计算结果正确的是:()A. =B.= C. = D. =3[答案]D[解析][分析]按照二次根式的运算法则进行计算即可.[详解]解:,不能合并,故A错误;=-=,所以B错误;B.(31C. ,不能合并,故C错误;==故D正确.[点睛]本题考查二次根式的加减运算和化简.需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.2. 下列二次根式中,合并的是( )[答案]D[解析][分析]先化简二次根式,相同,可得答案.[详解]A,故A合并;2B=故B合并;C、18=32,故C能与2合并;D、12=23,故D不能与2合并;故选D[点睛]本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.3. 如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为( )A. (﹣1,0)B. (25,0)C. (13,0) D. (130)[答案]D[解析][分析]根据勾股定理求得AB13然后根据图形推知AC=AB,则OC=AC﹣OA,所以由点C位于x轴的负半轴来求点C的坐标.[详解]解:如图,∵A(3,0)、B(0,2),∴OA=3,OB=2,∴在直角△AOB中,由勾股定理得AB2232+13又∵以点A为圆心,AB为半径的弧交x轴负半轴于点C,∴AC=AB,∴OC=AC﹣OA133.又∵点C在x轴的负半轴上,∴C(3130).故选:D .[点睛]本题考查了勾股定理,坐标与图形性质.解题时,注意点C 位于x 轴负半轴,所以点C 的横坐标为负数. 4. 校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A. 10米B. 11米C. 12米D. 13米[答案]D[解析][分析]如图所示,AB ,CD 为树,且AB =13,CD =8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE =BD =12,AE =AB ﹣CD =5,在直角三角形AEC 中利用勾股定理即可求出AC .[详解]解:如图所示,AB ,CD 为树,且AB =13,CD =8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE =BD =12,AE =AB ﹣CD =5,在直角三角形AEC 中,AC =22AE EC +=22125+=13.故选:D .[点睛]本题考查勾股定理解直角三角形,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.5. 下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A. AB CD ∥,AD BC ∥B. AB CD ∥,AD BC =C. AB CD ∥,AB CD =D. AB CD =,AD BC =[答案]B[解析][分析]根据平行四边形的判定:A、C、D可判定为平行四边形,而B不具备平行四边形的条件,即可得出答案.[详解]A、两组对边分别平行的四边形是平行四边形,故A正确;B、一组对边平行,另一组对边相等的四边形是等腰梯形不一定是平行四边形,故B不正确;C、一组对边平行且相等的四边形是平行四边形, 故C正确;D、两组对边分别相等的四边形是平行四边形,故D正确只.[点睛]本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法并能进行推理论证是解决问题的关键.6. 矩形、菱形、正方形都具有的性质是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线互相平分且相等[答案]B[解析][分析]矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.[详解]解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选B.[点睛]本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.7. 若一直角三角形的两边为5和12,则它第三边的长为( )A. 13 C. 13 D. 13[答案]D[解析][分析]存在两种情况,第一种为:5和12为直角边,另一边为斜边;第二种为:5和另一边为直角边,12是斜边. [详解]情况一:5和12为直角边根据勾股定理,设另一边为x ,则:222512x =+解得:x=13情况二:5和另一边为直角边,12为斜边根据勾股定理,设另一边为x ,则:222125x =+ x=119故选:D[点睛]本题考查勾股定理,多解是本题的关键,切不可遗漏.8. 如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△P AE 周长的最小值是( )A. 3B. 4C. 5D. 6[答案]D[解析][分析] 连接AC 、CE ,CE 交BD 于P ,此时AP +PE 的值最小,求出CE 长,即可求出答案.[详解]解:连接AC 、CE ,CE 交BD 于P ,连接AP 、PE ,∵四边形ABCD 是正方形,∴OA =OC ,AC ⊥BD ,即A 和C 关于BD 对称,∴AP =CP ,即AP +PE =CE ,此时AP +PE 的值最小,所以此时△P AE 周长的值最小,∵正方形ABCD 的边长为4,点E 在边AB 上,AE =1,∴∠ABC =90°,BE =4﹣1=3,由勾股定理得:CE =5,∴△P AE 的周长的最小值是AP +PE +AE =CE +AE =5+1=6,故选D .[点睛]本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型.9. 如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A. 12B. 10C. 8D. 6[答案]B[解析][分析] 已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求,于是得到CF CD DF =-,即可得到答案.[详解]解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:.△≌△是解题的[点睛]本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB关键.10. 如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A. 1B. 2C. 3D. 4[答案]D[解析][分析]分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.[详解]证明:如图:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.[点睛]此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.二.填空题(共10小题)11. ,则x可以取的最小整数是_________.[答案]2[解析]由二次根式的意义得3x-5 0,x 53,最小整数是212. 若y3,则x+y=_____.[答案]﹣1[解析][分析]直接利用二次根式有意义的条件得出x的值,进而得出答案.[详解],∴x﹣2≥0,2﹣x≥0,∴x=2,∴y =﹣3,∴x+y =﹣1.故答案为:﹣1.[点睛]本题考查二次根式成立的条件,掌握二次根式的被开方数为非负数是本题的解题关键.13. 已知x +y =﹣5,xy =4,则y x +x y =_____. [答案]52. [解析][分析]先化简y x x y+,再代入求值即可. [详解]∵x +y =﹣5,xy =4,∴x <0,y <0,y x x y +=﹣(xy xy x y +)=﹣()xy x y xy+, ∵x +y =﹣5,xy =4,∴原式=﹣()4(5)542xy x y xy +⨯-=-=. 故答案为52. [点睛]本题考查了二次根式的化简求值:先把二次根式进行化简或变形,然后运用整体思想进行计算. 14. 下列命题中逆命题成立的有_____(填序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.[答案]①③[解析][分析]根据逆命题的概念得出原命题的逆命题,判断即可.[详解]解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②如果两个角是直角,那么它们相等逆命题是如果两个角相等,那么这两个角是直角,是假命题;③全等三角形的对应边相等的逆命题是三条边对应相等的两个三角形全等,是真命题;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么两个实数相等,是假命题;故答案为:①③.[点睛]本题考查的是逆命题的概念以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15. 如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______[答案]15°[解析][分析]由正方形的性质和等边三角形的性质可得BC=CD=AD=AB、∠ADC=∠BCD=∠CBA =∠BAD= 90°,AE=DE=AD, ∠ADE=∠DEA=∠EAD=60°;再说明△ABE是等腰三角形,最后根据等腰三角形的性质解答即可.[详解]解:∵正方形ABCD∴BC=CD=AD=AB, ∠ADC=∠BCD=∠CBA =∠BAD= 90°∵等边三角形ADE∴AE=DE=AD, ∠ADE=∠DEA=∠EAD=60°∴AB=AE,∠BAE=∠BAD+∠EAD=150°∴∠AEB=1801801501522BAE -∠-== . 故答案为15°.[点睛]本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质以及等量代换思想,掌握运用等量代换思想是解答本题的关键.16. 如图,四边形ABCD 是菱形,AC =16,DB =12,DH ⊥AB 于点H ,则DH 等于____.[答案]485. [解析][分析]先根据菱形的性质得OA =OC ,OB =OD ,AC ⊥BD ,再利用勾股定理计算出AB =10,然后根据菱形的面积公式得到12•AC •BD =DH •AB ,再解关于DH 的方程即可. [详解]∵四边形ABCD 是菱形,∴OA =OC =8,OB =OD =6,AC ⊥BD ,在Rt △AOB 中,AB 22AO BO +10, ∵S 菱形ABCD =12•AC •BD , S 菱形ABCD =DH •AB ,∴DH •10=12×12×16, ∴DH =485. 故答案为485. [点睛]本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.17. 如图,ABC 中,BD 平分ABC ∠,且AD BD ⊥,为AC 的中点,6AD cm =,8BD cm =,16BC cm =,则DE 的长为_______.[答案]3cm[解析][分析]如图(见解析),先利用勾股定理可得10AB cm =,再根据等腰三角形的三线合一可得10BF AB cm ==,AD DF =,从而可得6CF cm =,然后根据三角形中位线定理即可得.[详解]如图,延长AD ,交BC 于点F ,AD BD ⊥,6AD cm =,8BD cm =, 2210AB AD BD cm ∴=+=,BD 平分ABC ∠,且AD BD ⊥,ABF ∴是等腰三角形,10BF AB cm =∴=,且BD 是AF 边上的中线,16BC cm =,6CF BC BF cm ∴=-=,又点为AC 的中点,DE ∴是ACF 中位线,231DE C c F m ∴==, 故答案为:3cm .[点睛]本题考查了等腰三角形的三线合一、勾股定理、三角形中位线定理,通过作辅助线,构造等腰三角形是解题关键.18. 如图,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为_______cm .[答案];[解析][分析]根据正方形的面积可用对角线进行计算解答即可.[详解]因为正方形AECF的面积为50cm2,所以25010cmAC=⨯=,因为菱形ABCD的面积为120cm2,所以212024cm10BD⨯==,所以菱形的边长=22102413cm 22⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭.故答案为:13.[点睛]此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.19. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为______.[答案]422-[解析]∵四边形ABCD是正方形,其边长为4,BD是其对角线,∴∠BAD=90°,∠ABD=∠ADB=45°,BD=2又∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°=∠DAE, ∴DE=AD=4,∴BE=424-,∵EF⊥AB于点F,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=424422 2-=-故答案为422-.20. 如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标___.[答案](2,4)或(8,4).[解析]试题分析:∵A(10,0),C(0,4),∴OA=10,OC=4,∵点D是OA的中点,∴OD=12OA=5,过点P作PE⊥x轴于E,则PE=OC=4,∵P(3,4),∴OP=5,∴此时,OP=OD,∴DE=3,若点E在点D的左边,OE=5﹣3=2,此时,点P坐标为(2,4),若点E在点D的右边,则OE=5+3=8,此时,点P的组别为(8,4),综上所述,其余的点P的坐标为(2,4)或(8,4).故答案是(2,4)或(8,4).考点:1.矩形的性质2.坐标与图形性质3.等腰三角形的判定.三.解答题(共4小题)21. 在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?[答案]2秒后四边形ABQP是平行四边形.[解析][分析]由运动时间为t秒,则AP=t,QC=2t,而四边形ABQP是平行四边形,所以AP=BQ,则得方程t=6﹣2t求解.[详解]解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6﹣2t,∵AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6﹣2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合,综上所述,2秒后四边形ABQP是平行四边形.[点睛]此题主要考查的是平行四边形的性质,难度不大,注意一组对边平行且相等的四边形是平行四边形.22. 如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,求证:∠AEF=90°.[答案]证明见解析.[解析]试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是BC的中点,且CF=14CD,∴BE=EC=12a,CF=14a.在Rt△ABE中,由勾股定理可得:AE2=AB2+BE2=54a2,同理可得:EF2=EC2+FC2=516a2,AF2=AD2+DF2=2516a2.∵AE2+EF2=AF2,∴△AEF为直角三角形,∴∠AEF=90°.点睛:本题考查了正方形的性质,勾股定理、勾股定理逆定理的运用,注意在正方形中的直角三角形的应用.23. 如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:(1)AC⊥BD;(2)四边形ABCD是菱形.[答案](1)见解析;(2)见解析.[分析](1)证得△BAC是等腰三角形后利用三线合一的性质得到AC⊥BD即可;(2)首先证得四边形ABCD是平行四边形,然后根据对角线互相垂直得到平行四边形是菱形.[详解](1)∵AE∥BF,∴∠BCA=∠CAD,∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形,∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB,∵∠CBD=∠ABD=∠BDA,∴△ABD也是等腰三角形,∴AB=AD,∴DA=CB,∵BC∥DA,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.[点睛]本题考查了菱形的判定,解题的关键是熟练掌握菱形的几个判定方法,难度不大.24. 如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7.求四边形EFGH 的周长.[解析][分析]根据E、F、G、H分别是AD、BD、BC、AC上中点,可得出EF∥AB,GH∥AB,同理EH∥CD,FG∥CD,则四边形EFGH为平行四边形,由三角形的中位线定理得出EF,EH,从而求出四边形EFGH的周长.[详解]解:∵E、F、G、H分别是AD、BD、BC、AC上的中点,AB=5,CD=7.∴EF∥AB,GH∥AB,EF=2.5,EH=3.5,同理EH∥CD,FG∥CD,∴四边形EFGH为平行四边形,∴四边形EFGH的周长=2(EF+EH)=2×6=12.。
八年级下学期数学期中考试试卷第16套真题
八年级下学期数学期中考试试卷一、选择题1. 下列图形中,是中心对称图形但不是轴对称图形的是()A . 等边三角形B . 圆C . 矩形D . 平行四边形2. 某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A . 总体B . 个体C . 样本D . 以上都不对3. 一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是A . 摸出的是白球B . 摸出的是黑球C . 摸出的是红球D . 摸出的是绿球4. 下列各式中,分式的个数是(),,,,, .A . 2B . 3C . 4D . 55. 下列关于x的方程中,是分式方程的是.A .B .C .D . 3x-2y=16. 李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为()A .B .C .D .7. 有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b为实数,那么a+b=b+a.其中是必然事件的有A . 1个B . 2个C . 3个D . 4个8. 如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为A . 3.5B . 3C . 4D . 4.59. 如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形共有多少个?A . 12B . 16C . 24D . 2510. 如图,在▭ABCD中,AB=4,BC=6,∠ABC=60°,点P为▭ABCD内一点,点Q在BC边上,则PA+PD+PQ的最小值为A .B . 6+2C . 5D . 10二、填空题11. 调查乘坐飞机的旅客是否携带了危禁物品, 这种调查适用________.(填“普查”或者“抽样调查”)12. 使有意义的x取值范围是________;若分式的值为零,则x=________;分式的最简公分母是________.13. 若关于x的分式方程有增根,则m的值为________.14. 已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.15. 平行四边形ABCD中,∠C=∠B+∠D,则∠A=________.16. 已知,则=________.17. 已知:如图,AD、CE分别是△ABC的角平分线和中线,AD⊥CE,AD=CE =4,则BC的长等于________.18. 如图,在矩形ABCD中,AB=2,BC= ,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则当OC为最大值时,点C的坐标是________.三、解答题19. 计算:(1);(2)解方程:20. 先化简,再求值:,其中a满足方程a2+4a+1=0.21. 如图,△ABC的顶点坐标分别为A、B、C.(1)①画出△ABC关于点O的中心对称图形△A1B1C1②画出△ABC绕原点O逆时针旋转90°的△A2B2C2,直接写出点C2的坐标为_▲_.(2)若△ABC内一点P绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为________.22. 某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为________,“活动时间为4天”的扇形所对圆心角的度数为________°,该校初一学生的总人数为________;(2)补全频数分布直方图;(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?23. 在等腰△ABC中,AB=AC=8,∠BAC=100°,AD是∠BAC的平分线,交BC于D,点E是AB的中点,连接DE.(1)求∠B的度数;(2)求线段DE的长.24. 已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)当AC、BC满足怎样的数量关系时,四边形AMCN是矩形,请说明理由.25. 某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.26. 甲乙两人玩一种游戏:共20张牌,牌面上分别写有﹣10,﹣9,﹣8,…,﹣1,1,2,…,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会输?(3)结果等于6的可能性有几种?把每一种都写出来.27. 阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形_____________.A . 平行四边形B . 矩形C . 菱形D . 等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是________命题(填“真”或“假”).(3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请求出∠ABC的度数.。
人教版八年级下册数学期中考试试卷含答案
人教版八年级下册数学期中考试试题一、单选题1)A .3B .2C .2D2④中,最简二次根式是()A .①②B .③④C .①③D .①④3x 的取值范围是()A .x >12B .x≥12C .x <12D .x >04.下列各组数中,能够组成直角三角形的是()A .3,4,5B .4,5,6C .5,6,7D .6,7,85.如图,已知四边形ABCD 是平行四边形,下列结论中错误的是()A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当AC=BD 时,它是矩形D .当∠ABC=90°时,它是正方形6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是()A .4B .6C .8D .107.如图,在平行四边形ABCD 中,∠A +∠C =160°,则∠B 的度数是()A .130°B .120°C .100°D .90°8.若1≤x≤4,则化简1x -)A .25x -B .3C .32x-D .—39.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是()A .AD =BCB .AB =CDC .AD ∥BC D .∠A =∠C10.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长()A B .C .D .二、填空题11.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___.12=______.13.如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是_______.14.如图,已知△ABC 中,AB =5cm ,BC =12cm ,AC =13cm ,那么AC 边上的中线BD 的长为____________cm.15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE a ⊥于点E 、BF a ⊥于点F ,若4DE =,3BF =,则EF 的长为______.16.如图,菱形ABCD 的边长为2,∠ABC=45°,则点D 的坐标为_____.三、解答题17.计算:(1)37-()37()2(22)(2)221()-01π-()-|2218.38a -172a -42a x x a --有意义,x 的取值范围是什么?19.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF、BD,求证:四边形ABDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?21.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)22.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.23.在平面内,正方形ABCD与正方形CEFH如图放置,连接DE,BH,两线交于M,求证:(1)BH=DE;(2)BH⊥DE.24.如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.25.如图,在Rt△ABC中,∠B=90°,BC3C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.B【详解】B.2.C【解析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】是最简二次根式;=,被开方数含分母,不是最简二次根式;5=①③是最简二次根式.故选C.【点睛】本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.A【详解】由题意得,2x﹣1>0,解得12x .故选A.点睛:分析:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.根据被开方数大于等于0,分母不等于0列式计算即可得解.4.A【解析】解:A、∵32+42=9+16=25;52=25,∴32+42=52,则此选项线段长能组成直角三角形;B、∵42+52=16+25=41;62=36,∴42+52≠62,则此选项线段长不能组成直角三角形;C、∵52+62=25+36=61;72=49,∴52+62≠72,则此选项线段长不能组成直角三角形;D、∵62+72=36+49=85;82=64,∴62+72≠82,则此选项线段长不能组成直角三角形.故选:A.5.D【解析】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.6.C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.7.C【解析】【分析】根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°,再根据∠A+∠C=160°计算出∠A 的度数,进而可算出∠B的度数.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180︒,∵∠A+∠C=160︒,∴∠A=80︒,∴∠B=180︒−80︒=100︒.故选C.【点睛】本题考查平行四边形的性质,对角相等,对边平行.8.A【解析】分析:根据x 的取值范围可知1-x <0,x-4<0,再根据绝对值的性质和二次根式的性质化简即可.详解:因为2816x x -+=(x-4)2∴原式可化为1x --因为1≤x≤4所以1-x <0,x-4<0,所以1x -=1x --=x-1-(4-x )=x-1-4+x =2x-5故选A.点睛:此题主要考查了的非负数的化简,关键是利用绝对值的性质和二次根式的性质求解即可.9.A 【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】解:A 、当AB ∥CD ,AD =BC 时,四边形ABCD 可能为等腰梯形,所以不能证明四边形ABCD 为平行四边形;B 、AB ∥CD ,AB =DC ,一组对边分别平行且相等,可证明四边形ABCD 为平行四边形;C 、AB ∥CD ,AD ∥BC ,两组对边分别平行,可证明四边形ABCD 为平行四边形;D 、∵AB ∥CD ,∴∠A +∠D =180°,∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 为平行四边形;故选:A .【点睛】本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.C 【解析】【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC 和△DCE 都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C .【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.11.2【解析】【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【详解】解:∵最简二次根式132-+b a 与a b -4是同类二次根式,∴31224b a b a -=⎧⎨+=-⎩,解得:11a b =⎧⎨=⎩,则a+b =2,故答案为:2.【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式.12.1【解析】【详解】分析:先根据二次根式的性质进行化简,再合并同类二次根式即可得解.=21|211=-=|.故答案为1.(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩.13.(5,4).【解析】【分析】利用菱形的性质以及勾股定理得出DO 的长,进而求出C 点坐标.【详解】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,∴AB=5,∴DO=4,∴点C 的坐标是:(5,4).故答案为(5,4).14.132【解析】【分析】先根据勾股定理的逆定理判断形状,即可得到结果.【详解】52+122=132∴△ABC 是直角三角形,∴AC边上的中线BD的长为132 cm.【点睛】解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.同时熟记直角三角形斜边的中线等于斜边的一半.15.1或7【解析】【分析】如图1或2,证明△ABF≌△DAE,得到BF=AE=3,AF=DE=4,即可解决问题.【详解】如图1,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD;∵BF⊥EF,DE⊥EF,∴∠FBA+∠FAB=∠FAB+∠DAE,∴∠FBA=∠DAE;在△ABF与△DAE中,∠FBA=∠DAE,AB=AD,∠BAF=∠ADE,∴△ABF≌△DAE(ASA),∴BF=AE=3,AF=DE=4,∴EF=3+4=7;如图2,同理可证△ABF≌△DAE,∴BF=AE=3,AF=DE=4,∴EF=4−3=1;故答案为:7或1.【点睛】该题以正方形为载体,以考查正方形的性质、全等三角形的判定及其性质的应用为核心构造而成;解题的关键是深入把握题意,准确找出图形中隐含的等量关系.16.(22+,2).【解析】【分析】直接利用菱形的性质结合锐角三角三角函数关系得出D 点坐标即可.【详解】解:过点D 作DE x ⊥轴,垂足为E .∵菱形的边长为2,∠ABC=45°,∴CO=DC=2,∠DCE=45°,在Rt CDE △中,,CE DE =2224CE DE CD +==2,CE DE ∴==22,OE OC CE ∴=+=+∴点D 坐标为()22,2.+故答案为()22,2.+17.(1)2(2)2【解析】【详解】分析:(1)根据平方差公式和二次根式的性质,进行二次根式的求和运算求解即可;(2)根据完全平方公式,零次幂的性质,绝对值的性质求解即可.详解:(1)3(3(2-2(2)21)-01π-()-|2点睛:此题主要考查了实数的运算,关键是利用乘方公式、二次根式的性质、零次幂的性质和绝对值的性质进行计算.18.a =5;5≤x ≤10【解析】【详解】试题分析:先根据二次根式的定义,列方程求出a 次根式的定义列出不等式组,求出x 的取值范围即可.∴3a -8=17-2a∴a =52020{50x x -≥-≥解得:510x ≤≤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,证出AB ∥DF ,即可得出结论.【详解】详解:证明:()1BE FC = ,BC EF ∴=,在ABC 和DFE 中,AB DF AC DE BC EF =⎧⎪=⎨⎪=⎩,ABC ∴≌()DFE SSS ;()2解:如图所示:由()1知ABC ≌DFE ,ABC DFE ∴∠=∠,//AB DF ∴,AB DF = ,∴四边形ABDF 是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.20.2或3秒【解析】【分析】设点P,Q 运动的时间为ts ,分别表示出CQ 、BQ 、AP 、PD 的长,然后分为BQ=AP 和CQ=PD 两种情况构成平行四边形求解即可.【详解】设点P,Q 运动的时间为ts.依题意得:CQ=2t ,BQ=6-2t ,AP=t,PD=9-t.①当BQ=AP 时,四边形APQB 是平行四边形.即6-2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9-t,解得t=3.∴经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.【点睛】此题考查了平行四边形的判定方法及有关面积问题.关键把握“化动为静”的解题思想和分类讨论思想.21.(1)四边形EFGH是平行四边形,证明见解析;(2)当BD=AC且BD⊥AC时,四边形EFGH是正方形.【解析】【分析】(1)根据三角形中位线的性质得出EF∥HG,且EF=HG,从而得出平行四边形;(2)要使邻边相等则需要满足BD=AC,要使有一个角为直角则需要满足BD⊥AC,从而得出正方形.【详解】解:(1)四边形EFGH是平行四边形.∵E,F分别是边AB、BC的中点,∴EF∥AC,且EF=12 AC同理:HG∥AC,且HG=12 AC∴EF∥HG,且EF=HG∴四边形EFGH是平行四边形.(2)同(1)得到四边形EFGH为平行四边形,且EH=GH=12AC=12BD,∠EHG=90°,∴平行四边形EFGH为正方形.【点睛】此题考查了中点四边形,以及正方形的判定,熟练掌握中位线定理是解本题的关键.22.(1)见解析;(2)当BC=AF时,四边形ABFC是矩形,理由见解析【解析】【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC 是矩形.【详解】(1)证明:∵四边形ABCD 是平行四边形∴AB ∥CD ,AB=CD∴BAE CFE ∠=∠,ABE FCE∠=∠∵E 为BC 的中点∴BE=EC∴△ABE ≌△FCE∴AB=CF.(2)解:当BC=AF 时,四边形ABFC 是矩形.理由如下:∵AB ∥CF ,AB=CF∴四边形ABFC 是平行四边形∵BC=AF∴四边形ABFC 是矩形.23.(1)证明见解析(2)证明见解析【解析】【详解】试题分析:(1)根据正方形的性质可得BC =CD ,CE =CH ,∠BCD =∠ECH =90°,然后求出∠BCH =∠DCE ,再利用“边角边”证明△BCH 和△DCE 全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH =∠CDE ,然后根据三角形的内角和定理求出∠DMB =∠BCD =90°,再根据垂直的定义证明即可.试题解析:(1)在正方形ABCD 与正方形CEFH 中,BC =CD ,CE =CH ,∠BCD =∠ECH=90°,∴∠BCD +∠DCH =∠ECH +∠DCH ,即∠BCH =∠DCE ,在△BCH 和△DCE 中,{BC CDBCH DCE CE CH∠∠===,∴△BCH≌△DCE(SAS),∴BH=DE;(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.【点睛】本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.24.(1)见详解;(2)【解析】【分析】(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF.(2)证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.【详解】解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D.∵点E、F分别是边BC、AD的中点,∴BE=DF.在△ABE和△CDF中,∵AB=CD,∠B=∠D,BE=DF,∴△ABE≌△CDF(SAS).(2)∵∠B=60°,AB=BC,∴△ABC是等边三角形.∵点E是边BC的中点,∴AE ⊥BC .在Rt △AEB 中,∠B=60°,AB=4,∴.25.(1)证明见解析;(2)能,103t =;(3)52t =或4时,△DEF 为直角三角形.【解析】【分析】()1在DFC △中,90DFC ∠= ,30C ∠= ,根据30°角直角三角形的性质及已知条件即可证得结论;()2先证得四边形AEFD 为平行四边形,使▱AEFD 为菱形则需要满足的条件为AE=AD ,由此即可解答;() 390EDF ①∠=时,四边形EBFD 为矩形.在Rt △AED 中求可得2AD AE =,由此即可解答;90DEF ∠= ②时,由()2知//EF AD ,则得90ADE DEF ∠=∠= ,求得cos60AD AE =⋅ ,由此列方程求解即可;90EFD ∠= ③时,此种情况不存在.【详解】()1在DFC △中,90DFC ∠= ,30C ∠= ,2DC t =,DF t ∴=.又AE t = ,AE DF ∴=.()2能,AB BC ⊥ ,DF BC ⊥,//AE DF ∴.又AE DF =,∴四边形AEFD 为平行四边形.tan305AB BC =⋅== ,210AC AB ∴==.102AD AC DC t ∴=-=-.若使▱AEFD 为菱形,则需AE AD =,即102t t =-,103t =.即当103t =时,四边形AEFD 为菱形.()390EDF ∠= ①时,四边形EBFD 为矩形.在Rt AED △中,30ADE C ∠=∠= ,2AD AE ∴=.即1022t t -=,52t =.90DEF ∠= ②时,由()2四边形AEFD 为平行四边形知//EF AD ,90ADE DEF ∴∠=∠= .9060A C ∠=-∠= ,cos60AD AE ∴=⋅ .即11022t t -=,4t =.90EFD ∠= ③时,此种情况不存在.综上所述,当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.。
人教版数学八年级下册《期中考试试卷》含答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、填空题1.实数2-的相反数是__________.2.分解因式:2x 2﹣8=_____________3.一直角三角形的一直角边及斜边长分别是6cm 和8,cm 则这个三角形的第三边长_____cm .4.菱形周长为40 cm ,它的一条对角线长12 cm ,则菱形的面积为___________cm 25.如图,在Rt ABC ∆中,B 90∠=︒,AB 30=,BC 40=,将ABC ∆折叠,使点恰好落在边AC 上,与点重合,AE 为折痕,则EB'=_________.6.已知点为水平直线AB 上一点(不与点A B 、重合),点D E 、在直线AB 的上方,OD OE ⊥,若50AOD ,则∠BOE 的度数为____________________.二、选择题7.3x -有意义,则的取值范围是( )A 3x ≠ B. 3x > C. 3x ≤ D. 3x ≥8.下列根式中,12为同类二次根式的是( )A. 3B. 2C. 6D. 329.若a b ,为实数,且110a b +-=,则()2020ab 的值是 ( ) A. B. C. D.10.若等边△ABC 的边长为4,那么△ABC 的面积为( ). A. 23 B. 43 C. 8 D. 411.如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为20cm ,则四边形EFGH 的周长是( )A. 80cmB. 40cmC. 20cmD. 10cm12. 如图,在▱ABCD 中,已知AD=12cm,AB=8cm,AE 平分∠BAD 交BC 边于点E,则CE 的长等于( )A 8cm B. 6cm C. 4cm D. 2cm13.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 长为( )A. 23B. 43C. 22D. 4214.如图是“赵爽弦图”,由个全等的直角三角形拼成,若大正方形的面积是13,小正方形的面积是1,设直角三角形较长直角边为a ,较短直角边为.则+a b 的值是( )A. B. C. D.三、解答题15.计算:(1)11263483(2042020321+.16.已知:a =2+3,b =2﹣3,求:①a 2+b 2,②a b b a-的值. 17.如图,已知平行四边形ABCD 中,AE 平分BAD CF ∠,平分BCD ∠,分别交BC AD 、于点E F 、,求证:AE CF =.18.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示. (1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.19.已知某开发区有一块四边形空地ABCD ,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问要多少投入?20.先化简,再求值:(1﹣12x +)÷22124x x x +++,其中2﹣1. 21.“褚橙”是云南特色水果之一,不仅味道独具一格,营养价值也十分高.某水果店在开业期间购进甲、乙两种型号的“褚橙”共200箱.为了提升销量,对这两种“褚橙”进行打折出售.打折后甲型号“褚橙”每箱188元,乙型号“褚橙”每箱148元,这两种“褚橙”全部销售完后.销售总收入为32800元.请问甲、乙两种型号的“褚橙”各有多少箱?22.如图,平行四边形ABCD 的对角线AC ,BD 相交于,过点的直线EF 分别交AB ,CD 于,,连结DE ,BF .求证:四边形DEBF 是平行四边形.23.如图,在矩形ABCD中,AB=1cm,AD=3cm,点Q从A点出发,以1cm/s的速度沿AD向终点D运动,点P从点C出发,以1cm/s的速度沿CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t秒.(1)当0<t<3,判断四边形BQDP的形状,并说明理由;(2)求四边形BQDP面积S与运动时间t的函数关系式;(3)求当t为何值时,四边形BQDP为菱形.答案与解析一、填空题1.实数的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数为互为相反数进行解答.[详解]解:根据相反数的定义,可得..[点睛]此题主要考查了实数的性质,关键是掌握相反数的定义.2.分解因式:2x2﹣8=_____________[答案]2(x+2)(x﹣2)[解析][分析]先提公因式,再运用平方差公式.[详解]2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).[点睛]考核知识点:因式分解.掌握基本方法是关键.cm则这个三角形的第三边长_____cm.3.一直角三角形的一直角边及斜边长分别是6cm和8,[答案][解析][分析]根据勾股定理,直接代入即可求得结果.[详解]∵直角三角形斜边的长是8cm ,一条直角边长为6cm , ∴另一条直角边的长为:228627-=(cm),故答案为:27.[点睛]本题考查了勾股定理的运用,比较简单.4.菱形周长为40 cm ,它的一条对角线长12 cm ,则菱形的面积为___________cm 2[答案]96[解析][分析]首先根据菱形周长为40 cm ,可求出菱形的边长为10 cm ,已知一条对角线长12cm ,则可求出另一条对角线长16cm ,菱形的面积等于对角线积的一半,即可求出.[详解]解:∵菱形周长为40 cm ,∴菱形的边长为10 cm ,又∵一条对角线长12cm ,根据勾股定理,可得出另一条对角线长16cm ,∴菱形的面积为11216962=cm 2 [点睛]此题主要考查菱形对角线和面积的性质,熟练掌握即可解题.5.如图,在Rt ABC ∆中,B 90∠=︒,AB 30=,BC 40=,将ABC ∆折叠,使点恰好落在边AC 上,与点重合,AE 为折痕,则EB'=_________.[答案]15[解析][分析]根据折叠的性质可设BE=EB ′=x ,EC=40﹣x ,然后再利用勾股定理在Rt △ABC 中求得AC ,进而在Rt △B ′EC 中求解x 即可.[详解]解:根据折叠的性质可得BE=EB ′,AB ′=AB=30,设BE=EB ′=x ,则EC=40﹣x ,∵∠B=90°,AB=30,BC=40,∴在Rt △ABC 中,由勾股定理得,AC=50,∴B ′C=50﹣30=20,在Rt △B ′EC 中,由勾股定理得,x 2+202=(40﹣x )2,解得x=15.故答案是15.[点睛]勾股定理和翻折变换是本题的考点,熟练掌握勾股定理和折叠的性质是解题的关键.6.已知点为水平直线AB 上一点(不与点A B 、重合),点D E 、在直线AB 的上方,OD OE ⊥,若50AOD ,则∠BOE 的度数为____________________.[答案]40°[解析][分析]依据OD ⊥OE ,∠AOD=50°,即可得到∠BOE 的度数.[详解]如图所示,∵OD ⊥OE ,∴∠DOE=90°,又∵∠AOD=50°,∴∠BOE=180°-90°-50°=40°,故答案为:40°.[点睛]本题主要考查了垂线,直角和平角.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.二、选择题7.有意义,则的取值范围是( )A. 3x ≠B. 3x >C. 3x ≤D. 3x ≥ [答案]D[解析][分析]根据二次根式有意义的条件进行求解即可.[详解]∵有意义∴30x -≥解得3x ≥故答案为:D .[点睛]本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.8.下列根式中,为同类二次根式的是( )[答案]A[解析][分析]根据同类二次根式的定义来逐一判断即可,几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.[详解],∴ ,故本题答案为:A.[点睛]同类二次根式的定义是本题的考点,正确化简二次根式是解题的关键.9.若a b ,为实数,且10a +=,则()2020ab 的值是 ( ) A. B. C. D.[答案]A[解析][分析]由“绝对值,算术平方根总是大于等于0”的特点即可求解.[详解]解:由题意知:10+=a 且10-=b ,∴1,1a b =-=,故()20202020(11)1=-⨯=ab ,故选:A .[点睛]本题考查了绝对值、算术平方根的非负性,熟练掌握绝对值和算术平方根的性质是解决本题的关键. 10.若等边△ABC 的边长为4,那么△ABC 的面积为( ).A. 23B. 43C. 8D. 4 [答案]B[解析][分析]根据等边三角形三线合一的性质,根据勾股定理即可求AD 的值,根据AD 、BC 即可计算△ABC 的面积.[详解]解:∵等边三角形三线合一,∴D 为BC 的中点,∴BD=DC=2cm ,AB=4cm ,在Rt △ABD 中,AD=22AB BD 23cm , ∴△ABC 的面积为12BC•AD=12×4×23cm 2=43cm 2, 故选:B .[点睛]本题考查了等边三角形三线合一的性质,考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,本题中根据勾股定理计算AD的长是解题的关键.11.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是( )A. 80cmB. 40cmC. 20cmD. 10cm[答案]B[解析]利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.12. 如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )A. 8cmB. 6cmC. 4cmD. 2cm[答案]C[解析]试题分析:解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为C .考点:平行四边形的性质.13.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( ) A. 23 B. 43 C. 22 D. 42[答案]B[解析][分析] 根据线段垂直平分线的性质得到AE=BE ,由等腰三角形的性质得到∠B=∠BAE ,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B ,求得∠C=30°,根据三角函数的定义即可得到结论.[详解]∵DE 垂直平分AB 于点D ,∴AE=BE ,∴∠B=∠BAE ,∴∠AEC=∠B+∠BAE=2∠B ,∵AB=AC ,∴∠AEC=2∠C ,∵AE ⊥AC ,∴∠EAC=90°,∴∠C=30°,∴CE=43cos303AC ==︒ 故选:B .[点睛]本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.14.如图是“赵爽弦图”,由个全等的直角三角形拼成,若大正方形的面积是13,小正方形的面积是1,设直角三角形较长直角边为a,较短直角边为.则+a b的值是()A. B. C. D.[答案]C[解析][分析]根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.[详解]解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:12ab×4=13-1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.所以a+b=5(舍去负值).故选:C.[点睛]本题考查勾股定理,以及完全平方式公式变形运用,正确根据图形的关系求得a2+b2和ab的值是关键.三、解答题15.计算:(1)11263483(2042020321+.[答案](1)143;(2)23.[解析][分析](1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可;(2)将式中二次根式化简,再根据绝对值的性质和零指数幂运算法则进行计算即可求解.[详解]解:()12633=⨯⨯+⨯==(2202021+(2121=+-+2121=+-2=[点睛]本题考查了二次根式的加减混合运算,先将二次根式化为最简二次根式,再将被开方数相同的进行合并,本题还考查了绝对值的性质及零指数幂运算法则.16.已知:a=,b=2,求:①a2+b2,②a bb a-的值.[答案]①14;②.[解析][分析]先计算出a+b=4,ab=4-3=1,①先把原式分解,然后利用整体代入的方法计算;②先通分,再把分子分解得到原式=()()a b a bab+-,然后利用整体代入的方法计算.[详解]解:当a=b=2﹣,a+b=4,a﹣b==ab=(2=4﹣3=1,①a2+b2=(a+b)2﹣2ab=42﹣2×1=14;②a bb a -22a b ab -= (a b)(a b)ab +-=4231⨯= 83=.[点睛]本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.17.如图,已知平行四边形ABCD 中,AE 平分BAD CF ∠,平分BCD ∠,分别交BC AD 、于点E F 、,求证:AE CF =.[答案]证明见解析.[解析][分析]根据平行四边形的对角相等,以及角平分线的性质即可证得∠3=∠6,则AE ∥CF ,证得四边形AECF 是平行四边形,即可证明结论.[详解]证明:如图所示:∵已知▱ABCD 中,∠BAD=∠DCB ,又∵∠1=∠2,∠3=∠4∴∠2=∠3,∵已知▱ABCD 中,AD ∥BC ,∴∠2=∠6,∴∠3=∠6,∴AE ∥CF ,又∵AF ∥BC ,∴四边形AECF 是平行四边形,∴AE=CF .[点睛]本题考查了平行四边形的性质的判定和性质,正确证明∠3=∠6,得到AE ∥CF 是证明的关键. 18.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示. (1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.[答案](1)证明见解析(2)菱形[解析]分析:(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF 是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明:(1)∵四边形ABCD 是正方形,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE 与△ADF 中AB AD ABE ADF BE DF ⎧⎪∠∠⎨⎪⎩===, ∴△ABE ≌△ADF.(2)如图,连接AC,四边形AECF是菱形.理由:在正方形ABCD中,OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.点睛:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.19.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?[答案]7200元[解析][分析]仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD 和Rt△DBC构成,则容易求解.[详解]连接BD,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC=90°,S 四边形ABCD =S △BAD +S △DBC =12⋅AD ⋅AB+12DB ⋅BC=12×4×3+12×12×5=36. 所以需费用36×200=7200(元). [点睛]此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.20.先化简,再求值:(1﹣12x +)÷22124x x x +++,其中2﹣1. [答案]221x +;[解析][分析]根据分式的减法和除法可以化简题目中的式子,再将的值代入即可解答本题. [详解]解:原式()()22221,221x x x x x ++⎛⎫=-⋅ ⎪++⎝⎭+ ()()22221,21x x x x ++-=⋅++ ()()2221,21x x x x ++=⋅++ 21x =+ 当21x =时,221211x ==+-+21.“褚橙”是云南特色水果之一,不仅味道独具一格,营养价值也十分高.某水果店在开业期间购进甲、乙两种型号的“褚橙”共200箱.为了提升销量,对这两种“褚橙”进行打折出售.打折后甲型号“褚橙”每箱188元,乙型号“褚橙”每箱148元,这两种“褚橙”全部销售完后.销售总收入为32800元.请问甲、乙两种型号的“褚橙”各有多少箱?[答案]购进甲型号的“褚橙”箱,购进乙型号的“褚橙”120箱.[解析][分析]设甲种型号的“褚橙”有x 箱,乙种型号的“褚橙”有y 箱,根据“甲、乙两种型号的“褚橙”共200箱”、“打折后销售总收入为32800元”列出方程组并解答.[详解]解:设购进甲型号的“褚橙”箱,购进乙型号的“褚橙”箱.由题意得:20018814832800x y x y +=⎧⎨+=⎩, 解得:80120x y =⎧⎨=⎩, 故答案为为:购进甲型号的“褚橙”箱,购进乙型号的“褚橙”120箱.[点睛]考查了二元一次方程组应用和一元一次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程.22.如图,平行四边形ABCD 对角线AC ,BD 相交于,过点的直线EF 分别交AB ,CD 于,,连结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]证明见解析.[解析][分析]由平行四边形的性质得到//AB CD ,OD OB =,AO OC =,根据全等三角形的性质得到OE OF =,由平行四边形的判定定理即可得到结论.//AB CD ∴,OD OB =,AO OC =,DCO BAO ∴∠=∠,在AEO ∆与CFO ∆中FCO EAO CO AOCOF AOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AEO CFO ASA ∴∆≅∆,OE OF ∴=,OD OB =,四边形DEBF 是平行四边形.[点睛]本题考查了平行四边形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键. 23如图,在矩形ABCD 中,AB=1cm ,AD=3cm ,点Q 从A 点出发,以1cm/s 的速度沿AD 向终点D 运动,点P 从点C 出发,以1cm/s 的速度沿CB 向终点B 运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t 秒.(1)当0<t <3,判断四边形BQDP 的形状,并说明理由;(2)求四边形BQDP 的面积S 与运动时间t 的函数关系式;(3)求当t 为何值时,四边形BQDP 为菱形.[答案](1)四边形BQDP 为平行四边形;理由见解析; (2)S=-t+3 ; (3)当43t s =时,四边形BQDP 为菱形. [解析][分析](1)先判断出AD ∥BC ,AD=BC=3,再由运动知,AQ=PC=t ,即可得出结论;(2)利用平行四边形的面积公式即可得出结论;(3)利用勾股定理表示出BQ ,再由BQ=BP 建立方程求解即可得出结论.∴AD∥BC,AD=BC=3,由运动知,AQ=t,PC=t,∴AQ=PC,∴AD-AQ=BC-PC,∴DQ=BP,∵AD∥BC,∴四边形BQDP为平行四边形,(2)由(1)知,四边形BQDP平行四边形,∵PC=t,∴BP=BC-PC=3-t,∴S=BP×AB=(3-t)×1=-t+3(3)如图,在Rt△ABQ中,AQ=t,AB=1,根据勾股定理得,222AQ AB t1, 由运动知,CP=t,∴BP=3-t,∵平行四边形BQDP菱形,∴BQ=BP,2t13t∴t=43,当t=43s时,四边形BQDP为菱形.[点睛]此题是四边形综合题,主要考查了矩形的性质,平行四边形的判定和性质,菱形的性质,解(1)的关键是得出AQ=PC,解(2)的关键是利用平行四边形的面积公式求解,解(3)的关键是表示出BQ,用BQ=BP建立方程求解,是一道中等难度的题目.。
人教版数学八年级下册《期中考试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页
16年初二数学下册期中考试卷
在竞争中就要不断学习,接下来查字典数学网初中频道
为大家推荐初二数学下册期中考试卷,请大家一定仔细阅
读,希望会对大家的学习带来帮助!
一、选择题(共8小题,共24分.在每小题所给出的四个选
项中,恰有一项是符合题目要求的,请将正确选项前的字母
代号填在答题纸相应格子里)
1. 下列图形中,既是中心对称图形又是轴对称图形的是
2. 下列调查中,可用普查的是
A.了解某市学生的视力情况 B.了解某市中学生的课外阅读
情况
C.了解某市百岁以上老人的健康情况 D.了解某市老年人参
加晨练的情况
3.今年我市有近4万名考生参加中考,为了解这些考生的数
学成绩,从中抽取1000名考生的数学成绩进行统计分析,
以下说法正确的是
A.这1000名考生是总体的一个样本B.近4万名考生是总体
C.每位考生的数学成绩是个体D.1000名学生是样本容量
4. 下列成语所描述的事件是必然事件的是
A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖
5. 课间休息,小亮与小明一起玩剪刀、石头、布的游戏,
小明出剪刀的概率是
第 2 页
6. 下列特征中,平行四边形不一定具有的是
A.邻角互补 B.对角互补 C.对角相等 D.内角和为360
7. 在代数式 中,分式的个数有
A.2个 B.3个 C.4个 D.5个
8. 如图,正方形ABCD的边长为8,M在DC上,且DM=2,N
是AC上一动点,
则DN+MN的最小值为
A、8 B、8 C、20 D、10
二、填空题:(每题3分,共30分)
9. 调查市场上某种食品的色素含量是否符合国家标准,这
种调查适合用
(填普查或抽样调查)。
10. 在□ABCD中,若 则 _ ___
11.对某班组织的一次考试成绩进行统计,已知80.5~90.5
分这一组的频数是8,频率是0.2,那么该班级的人数是
_____ 人。
12. 如图,_____个扇形所表示的数据个数的比是 ,则扇形
的圆心角的度数_____。
13. 一个样本的50个数据分别落在5个小组内,第1、2、3、
4组的
数据的个数分别为2、8、15、5,则第5组的频率为 _____ 。
14.一个平行四边形的一边长是8,一条对角线长是6,则它
第 3 页
的另一条对角线x的取值范围为____________.
15.从超市货架上任意取一盒月饼进行检验,结果合格这一
事件是_______.(填必然 事件不可能事件随机事件)
16.一个平行四边形的周长为60cm,两边的差是10cm,
则平行四边形最长边是___________cm。
17.如图,在△ABC中,AB=6,AC=8,BC=10,P为边
BC上一动点,PEAB于E,PFAC于F,M为EF中点,则AM的
最小值为 _____
18.下面图形都是由同样大小的平行四边形按一定的规律组
成,其中,第①个图形一共有1个平行四边形,第②个图形
一共有5个平行四边形,第③个图形一共有11个平行四边
形,,则第⑩个图形中平行四边形的个数为 .
图① 图② 图③ 图④
三、解答题:(共9题,共 96分)
19. (本题10分) (1) (2)
20.(9分) 已知图形B是一个正方形,图形A由三个图形B
构成,如右图所示,请用图形A与B拼接,并分别画在从左
至右的网格中.
(1)拼得图形是轴对称图形而不是中心对称图形(图1完成);
(2)拼得图形是中心对称图形而不是轴对称图形;(图2完成)
(3)拼得图形既是轴对称图形也是中心对称图形。(图3完成)
21.(7分)先化简,再求值: ,请你在-2, 0,2中取一个喜
第 4 页
欢的 值代入求值。
22. (8分)已知:如图,在□ABCD中,点E、F分别
在AD、BC上, 且AE=CF。
求证:BE=DF。
23. (8分)小强和小明两个同学设计一种同时抛出两枚1元
硬币的游戏,游戏规则如下:如果抛出的硬币落下后朝上的
两个面都为1元,则小强得1分,其余情况小明得1分,谁
先得到10分谁就赢得比赛。你认为这个游戏规则公平吗?若
不公平,怎样改正?
24. (10分)如图,D、E、F分别是△ABC三边的中点.
⑴ 求证:AD与EF互相平分.
⑵ 若BAC=90,试说明四边形AEDF的形状,并简要说明理由.
25. (10分)在结束了初中阶段数学内容的教学后,唐老师计
划安排60课时用于总复习,根据数学内容所占课时比例,绘
制如下统计图表(图1~图3),请根据图表提供的信息,回答
下列问题:
(1)图1中统计与概率所在扇形的圆心角为 _____(2分)
(2)图2、3是初中阶段数学总学时,其中的 _____ , _____(4
分)
(3)在60课时的总复习中,唐老师应安排多少课时复习数与
代数内容?(4分)
26. (12分)如图,将□ABCD沿过点A的直线 折叠,使点D
第 5 页
落到AB边上的点 处,折痕 交CD边于点E,连接BE
(1)求证:四边形 是平行四边形
(2)若BE平分ABC,求证:
27. (10分)如图,在边长为4的正方形ABCD中,请画出以
A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边
长为3的所有大小不同的等腰三角形.(要求:只要画出示意
图,并在所画等腰三角形长为3的边上标注数字3)
28. 操作与证明:(12分)
如图1,把一个含45角的直角三角板ECF和一个正方形ABCD
摆放在一起,使三角板的直角顶点和正方形的顶点C重合,
点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,
EF的中点N,连接MD、MN.
(1)连接AE,求证:△ AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断线段MD与MN的关系,得出结论;
结论:DM、MN的关系是:_____
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转
180,其他条件不变,则(2)中的结论还成立吗?若成立,请
加以证明;若不成立,请说明理由.
精品小编为大家提供的初二数学下册期中考试卷就到这里
第 6 页
了,愿大家都能在学期努力,丰富自己,锻炼自己。