1.6 .1 一元一次不等式组(一) Word 文档
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
八年级一元一次不等式(教师讲义带答案).

第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
初中数学重点梳理:一元一次不等式(组)

一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。
知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
一元一次不等式选择方案问题及答案Microsoft Word 文档

选择方案1、一种节能灯的功率为10瓦(即0.01千瓦)售价为60元,一种白炽灯功率为60瓦(即0.06千瓦)售价为3元。
两种灯的照明效果一样,使用寿命也相同(3000小时以上)如果电费价格为0.5元/千瓦·时,消费者选用哪种灯省钱?解:节能灯的总费用=0.5×0.01x+60白炽灯的总费用=0.5×0.06x+30.5×0.01x+60=0.5×0.06x+3x=22800.5×0.01x+60>0.5×0.06x+3x<22800.5×0.01x+60<0.5×0.06x+3x>2280答:当x=2280时选用两种灯总费用一样当x<2280时选用白炽灯总费用省当x>2280时选用节能灯总费用省2、某单位要制作一批宣传材料,甲公司提出,每份材料收费20元,另收3000元设计费;乙公司提出,每份材料收费30元,不收设计费。
问,哪家公司制作这批宣传材料比较合算?解:设制作材料x份,则甲公司所收费用=20x+3000乙公司所收费用=30x20x+3000=30xx=30020x+3000>30xx<30020x+3000<30xx>300答:当x=300时选用两公司总费用一样。
当x<300时选用乙公司总费用省。
当x>300时选用甲公司总费用省。
3、某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。
问刻录这批电脑光盘,该校如何选择,才能使费用较少?解:设这批电脑光盘有x张,根据题意:到电脑公司刻录的费用为8x,学校自刻的费用为:120+4x①若8x=4x+120,x=30,当您刻录的光盘数等于30张光盘时花钱是一样的;②若8x>4x+120解得x>30。
当您刻录的光盘数多于30张时,学校自刻合算③若8x<4x+120解得x<30。
2015-1-7一元一次不等式(组)基础讲义含答案

一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。
一元一次不等式知识点总结
一元一次不等式知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
一元一次不等式(苏教版)基础练习(一).docx
实用文案一元一次不等式基础练习(一)一.选择题(共24 小题)1.下列不等式变形正确的是()A.由 a>b ,得 ac> bc B.由 a>b ,得 a﹣2<b ﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b2.若 a>b ,则下列各式中一定成立的是()A. a+2 <b+2 B. a﹣ 2< b ﹣2 C.> D .﹣ 2a >﹣ 2b3.如图,是关于x 的不等式 2x ﹣a≤﹣1 的解集,则 a 的取值是()A. a≤﹣1 B.a≤﹣2 C.a= ﹣1 D .a= ﹣24.小聪用 100 元钱去购买笔记本和钢笔共15 件,已知每本笔记本 5 元,每支钢笔 7 元,小聪最多能买()支钢笔.A.10 B.11 C.12 D.135.甲、乙两人从相距24km 的 A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在 2 小时以内相遇,则甲的速度()A.小于 8km/h B.大于 8km/h C.小于 4km/h D.大于 4km/h6.某市出租车的收费标准是:起步价8 元(即行驶距离不超过 3 千米都需付 8元车费),超过 3千米以后,每增加 1千米,加收 2.6元(不足 1 千米按 1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为 21.5 元,那么 x 的最大值是()A.11 B.8 C.7 D.57.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.不等式组的解集是()A. x>﹣ 3 B.x <﹣ 3 C.x>2 D .无解9.如果不等式组恰有3个整数解,则a的取值范围是()A. a≤﹣1 B.a<﹣ 1 C.﹣ 2≤a<﹣ 1 D .﹣ 2<a≤﹣110 .不等式组的最小整数解是()A.0 B.﹣1 C.﹣ 2 D.311 .如果不等式 ax> 1 的解集是,则()A. a≥0B.a≤0C.a>0 D .a<012 .如果( a+1 )x<a+1 的解集是 x >1,那么 a 的取值范围是()A. a< 0B.a<﹣ 1C. a>﹣ 1 D . a 是任意有理数13 .如果 m < n< 0 ,那么下列结论错误的是()A. m ﹣9 <n ﹣9 B.2m >2n C.﹣ m >﹣ n D .>114 .如果 x<y ,那么下列各式中正确的是()A. x﹣1 > y﹣ 1 B.﹣ 2x <﹣ 2y C.﹣ x>﹣ y D.>15 .已知 a、b 为任意实数, a>b ,则下列变形一定正确的是()....A. a﹣ 1> b﹣ 1B.﹣ a>﹣ b C.|a| >|b| D .﹣>﹣16 .解不等式的变形过程中,正确的是()A.不等式﹣ 2x > 4 的两边同时除以﹣ 2 ,得 x> 2B.不等式 1﹣ x> 3 的两边同时减去1,得 x>2C.不等式 4x ﹣ 2< 3﹣ x 移项,得 4x+x < 3﹣ 2D.不等式<1﹣去分母,得2x<6﹣3x17 .若不等式( a+1 )x >2 的解集为 x<,则a的取值范围是()A. a< 1B.a>1C.a<﹣ 1 D .a>﹣ 118 .不等式 2x ﹣1 ≥3x﹣ 3 的正整数解的个数是()A.1 个B.2 个 C.3 个D.4 个19 .若三个连续正奇数的和不大于27 ,则这样的奇数组有()A.3 组B.4 组 C.5 组D.6 组20 .在“人与自然”知识竞赛中,共有25 道选择题,对于每道题,答对者得4分,不答或答错者倒扣 2 分,得分不低于 60 分者得奖,那么要得奖至少应答对的题数是()A.18 B.19 C.20 D.2121 .式子:① 2 > 0;② 4x+y ≤1 ;③ x+3=0 ;④ y ﹣7 ;⑤ m ﹣2.5 > 3.其中不等式有()A.1 个B.2 个 C.3 个D.4 个22 .下列说法中,错误的是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>﹣ 5 的负整数解集有限个C.不等式﹣ 2x<8 的解集是 x<﹣ 4D.﹣ 40 是不等式 2x <﹣ 8 的一个解23 .已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.24 .如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.二.填空题(共9 小题)25 .不等式组:的解集是.26 .如果不等式 3x ﹣ m ≤0 的正整数解是 1,2 ,3 ,那么 m 的范围是.27 .已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.28 .写出不等式组的解集为.29 .若不等式组的解集为﹣1<x<1,则a=,b=.30 .不等式 5 ( x﹣2 )+8 < 6( x﹣ 1) +7 的最小整数解为.31 .不等式组的解集是.32 .不等式组的解集是.33 .若 a> 1 ,则 a+20162a+2015 .(填“>”或“<”)三.解答题(共7 小题)34 .若不等式组的解集为1<x<6,求a,b的值.35.解下列不等式,并把它的解集在数轴上表示出来.4﹣2 (x﹣3 )≥4( x+1 )36 .已知整数 x 满足不等式 3x ﹣4≤6x ﹣2 和不等式﹣1<.并且满足方程 3 (x+m )﹣ 5m+2=0,求m的值.37 .解不等式﹣1≤,并把解集在数轴上表示出来.38 .解不等式组:.39 .解不等式组:.40 .解不等式组,并把解集在数轴上表示出来.一元一次不等式基础练习(一)参考答案与试题解析一.选择题(共24 小题)1.(2017 ? 宝丰县一模)下列不等式变形正确的是()A.由 a>b ,得 ac> bc B.由 a>b ,得 a﹣2<b ﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b【分析】分别利用不等式的基本性质判断得出即可.【解答】解: A、由 a>b ,得 ac> bc (c>0 ),故此选项错误;B、由 a>b ,得 a﹣2 >b ﹣2 ,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由 a>b ,得 c﹣a<c﹣b ,此选项正确.故选: D.【点评】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.2.(2017 ? 乐清市模拟)若 a>b ,则下列各式中一定成立的是()A. a+2 <b+2 B. a﹣ 2< b ﹣2 C.> D .﹣ 2a >﹣ 2b【分析】根据不等式的性质即可求出答案.【解答】解:(A)a+2 >b+2 ,故 A 错误;( B) a﹣ 2>b ﹣2 ,故 B 错误;(D)﹣ 2a <﹣ b ,故 D 错误;故选( C)【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.3.(2017 ? 威海一模)如图,是关于x 的不等式 2x ﹣a≤﹣1 的解集,则 a 的取值是()A. a≤﹣1 B.a≤﹣2 C.a= ﹣1 D .a= ﹣2【分析】先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a 的方程,求出 a 的取值范围即可.【解答】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤﹣1,解不等式 2x ﹣ a≤﹣1 得, x≤,即= ﹣ 1,解得 a= ﹣ 1.故选 C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.(2017 ? 杭州模拟)小聪用 100 元钱去购买笔记本和钢笔共15 件,已知每本笔记本 5 元,每支钢笔 7 元,小聪最多能买()支钢笔.A.10 B.11 C.12 D.13【分析】设小聪买了x 支钢笔,则买了( 15 ﹣x)本笔记本,根据总价 = 单价×数量结合总钱数不超过100 元,即可得出关于x 的一元一次不等式,解之取最大的正整数即可得出结论.【解答】解:设小聪买了 x 支钢笔,则买了( 15 ﹣x)本笔记本,根据题意得: 7x+5 ( 15 ﹣x )≤100 ,解得: x≤.故选 C.【点评】本题考查了一元一次不等式的应用,根据总价= 单价×数量结合总钱数不超过 100 元列出关于 x 的一元一次不等式是解题的关键.5.(2017 ? 贾汪区一模)甲、乙两人从相距 24km 的 A、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于 8km/h B.大于 8km/h C.小于 4km/h D.大于 4km/h【分析】设甲的速度为xkm/h ,则乙的速度为x km/h ,根据两地相距24km以及二人 2 小时以内相遇即可得出关于x 的一元一次不等式,解不等式即可得出结论.【解答】解:设甲的速度为xkm/h ,则乙的速度为xkm/h ,由已知得: 2×(x+x)> 24 ,解得: x>8.故选 B.【点评】本题考查了一元一次不等式的应用,解题的关键是根据数量关系得出不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式是关键.6.(2017 ? 石家庄模拟)某市出租车的收费标准是:起步价8 元(即行驶距离不超过 3 千米都需付 8 元车费),超过 3 千米以后,每增加 1 千米,加收 2.6 元(不足 1 千米按 1 千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为 21.5元,那么 x 的最大值是()A.11 B.8 C.7 D.5【分析】根据出租车费≥ 8+2.6 ×超出 3 千米的路程结合出租车费为21.5 元,即可得出关于 x 的一元一次不等式,解之即可得出 x 的取值范围,取其整数即可得出结论.【解答】解:根据题意得:8+2.6 (x﹣3 )≤21.5 ,解得: x≤8.19 ,∵不足 1 千米按 1 千米计,∴x 的最大值是 8 .故选 B.【点评】本题考查了一元一次不等式的应用,根据出租车费≥8+2.6 ×超出 3 千米的路程结合出租车费为21.5 元列出关于 x 的一元一次不等式是解题的关键.7 .( 2017 ? 耒阳市模拟)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:解不等式 3x+2 >﹣ 4,得x>﹣ 2,解不等式﹣( x﹣4)≥1,得x≤3 ,∴不等式组的解集为﹣ 2 <x≤3 ,把不等式的解集在数轴上表示为:故选: B.【点评】本题主要考查对解一元一次不等式(组),不等式的性质,在数轴上表示不等式的解集等,能根据不等式的解集找出不等式组的解集是解此题的关键.8.(2017 ? 宜兴市一模)不等式组的解集是()A. x>﹣ 3 B.x <﹣ 3 C.x>2 D .无解【分析】根据一元一次不等式组的解法即可求出x 的解集【解答】解:①﹣ 2x< 6x>﹣ 3②x﹣ 2>0 x>2∴不等式组的解集为: x>2故选( C)【点评】本题考查不等式组的解法,解题的关键是熟练一元一不等式的解法,本题属于基础题型.9.(2017 ? 东明县二模)如果不等式组恰有3个整数解,则a的取值范围是()A. a≤﹣1 B.a<﹣ 1 C.﹣ 2≤a<﹣ 1 D .﹣ 2<a≤﹣1【分析】首先根据不等式恰好有 3 个整数解求出不等式组的解集为﹣1 ≤x< 2,继而可得 a 的取值范围.【解答】解:如图,由图象可知:不等式组恰有 3 个整数解,需要满足条件:﹣ 2≤a<﹣ 1 .故选 C.【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10 .(2017 ? 茂县一模)不等式组的最小整数解是()A.0 B.﹣1 C.﹣ 2 D.3【分析】首先解不等式组确定不等式组的解集,即可确定不等式组的最小整数解.【解答】解:解不等式( 1)得: x>﹣,则不等式组的解集是:﹣<x≤3,故最小的整数解是:﹣ 1.故选 B.【点评】本题主要考查了不等式组的整数解的确定,关键是正确解得不等式组的解集.11 .(2017 春 ? 简阳市期中)如果不等式 ax> 1 的解集是,则()A. a≥0B.a≤0C.a>0 D .a<0【分析】根据不等式的性质解答,由于不等号的方向发生了改变,所以可判定a 为负数.【解答】解:不等式 ax >1 两边同除以 a 时,若 a>0 ,解集为 x>;若 a<0 ,则解集为 x;故选 D.【点评】本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.12 .(2017 春 ? 定安县期中)如果( a+1 ) x< a+1 的解集是 x>1 ,那么 a 的取值范围是()A. a< 0B.a<﹣ 1C. a>﹣ 1 D . a 是任意有理数【分析】根据不等式的性质 3 ,可得答案.【解答】解:如果( a+1 )x <a+1 的解集是 x >1,得 a+1 <0 ,a<﹣ 1,故选: B.【点评】本题考查了不等式的性质,不等式的两边都乘以或除以同一个负数,不等号的方向改变.13 .(2017 春 ? 东明县期中)如果 m <n < 0,那么下列结论错误的是()A. m ﹣9 <n ﹣9 B.2m >2n C.﹣ m >﹣ n D .>1【分析】 A:等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可;B:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可;C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可;D:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.【解答】解:因为 m < n< 0 ,所以 m ﹣ 9 <n ﹣9,A 正确;因为 m < n <0 ,所以 2m < 2n ,B 错误;因为 m < n <0 ,所以﹣ m >﹣ n ,C 正确;因为 m < n <0 ,所以,D 正确.故选: B.【点评】此题主要考查了不等式的基本性质:(1 )不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2 )不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3 )等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.14 .(2017 春 ? 山亭区期中)如果 x<y ,那么下列各式中正确的是()A. x﹣1 > y﹣ 1 B.﹣ 2x <﹣ 2y C.﹣ x>﹣ y D.>【分析】根据不等式的性质,可得答案.【解答】解: A、不等式的两边都减1,不等号的方向不变,故 A 错误;B、不等式的两边都乘以﹣2,不等号的方向改变,故 B 错误;C、不等式的两边都乘以﹣1,不等号的方向改变,故 C 正确;D、不等式的两边都除以2,不等号的方向不变,故 D 错误;故选: C.【点评】本题考查了不等式的基本性质,“0 ”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0 ”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.15 .(2017 春 ? 漳浦县期中)已知 a、b 为任意实数, a>b ,则下列变形一定正...确的是().A. a﹣ 1> b﹣ 1B.﹣ a>﹣ b C.|a| >|b| D .﹣>﹣【分析】根据不等式的性质即可求出答案.【解答】解:(B)﹣ a<﹣ b,故 B 错误;(C)若 a=0 ,b= ﹣1,则 |a|<|b| ,故 C 错误;(D)﹣<﹣,故 D 错误;故选( A)【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.16 .(2017 春 ? 太原期中)解不等式的变形过程中,正确的是()A.不等式﹣ 2x > 4 的两边同时除以﹣ 2 ,得 x> 2B.不等式 1﹣ x> 3 的两边同时减去1,得 x>2C.不等式 4x ﹣ 2< 3﹣ x 移项,得 4x+x < 3﹣ 2D.不等式<1﹣去分母,得2x<6﹣3x【分析】根据不等式的性质即可求出答案.【解答】解:( A )不等式﹣ 2x >4 的两边同时除以﹣ 2 ,得 x<﹣ 2 ,故 A 错误;(B)不等式 1 ﹣x>3 的两边同时减去 1,得﹣ x>2 ,故 B 错误;(C)不等式 4x ﹣2 <3﹣x 移项,得 4x+x < 3+2 ,故 C 错误;故选( D)【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.17 .(2017 春 ? 仁寿县期中)若不等式( a+1 )x >2 的解集为 x<,则a的取值范围是()A. a< 1B.a>1C.a<﹣ 1 D .a>﹣ 1【分析】根据不等式的性质可得a+1 < 0 ,由此求出 a 的取值范围.【解答】解:∵不等式( a+1 )x>2 的解集为 x<,∴不等式两边同时除以( a+1 ))时不等号的方向改变,∴a+1 <0 ,∴a<﹣ 1.故选: C.【点评】本题考查了不等式的性质:在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变.本题解不等号时方向改变,所以a+1 <0 .18 .( 2017 春 ? 南安市期中)不等式 2x ﹣ 1 ≥3x ﹣3 的正整数解的个数是()A.1 个B.2 个 C.3 个D.4 个【分析】移项、合并同类项,然后系数化成 1 即可求得不等式组的解集,然后确定正整数解即可.【解答】解:移项,得: 2x﹣3x ≥﹣3+1 ,合并同类项,得:﹣ x≥﹣2 ,则 x≤2.则正整数解是: 1, 2.故选 B.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.19 .(2017春?薛城区期中)若三个连续正奇数的和不大于27 ,则这样的奇数组有()A.3 组B.4 组 C.5 组D.6 组【分析】设中间的正奇数为x,则另外两个正奇数为x﹣1 ,x+1 ,根据三个数之和不大于 27 ,列不等式,求出符合题意的奇数.【解答】解:设中间的奇数为x,则另外两个奇数为x﹣1 , x+1 ,由题意得, x+x ﹣1+x+1 ≤27 ,解得: x≤9 ,∵三个奇数都为正,∴x﹣1 >0 ,x>0,x+1 >0 ,即 x>1 ,则奇数 x 的取值范围为: 1< x ≤9,则 x 可取 3 ,5,7 ,9 共 4 组.故选 B.【点评】本题考查一元一次不等式的应用,与数学思想联系起来,读懂题列出不等式关系式即可求解.20 .(2017 春 ? 黄岛区期中)在“人与自然”知识竞赛中,共有25 道选择题,对于每道题,答对者得 4 分,不答或答错者倒扣 2 分,得分不低于 60 分者得奖,那么要得奖至少应答对的题数是()A.18 B.19 C.20 D.21【分析】设要得奖应答对的题数为x 道,则不答或答错的题数为(25 ﹣x)道,根据总分 =4 ×答对题目数﹣ 2×答错(或不答)题目数结合得分不低于60 分者得奖,即可得出关于 x 的一元一次不等式,解不等式即可得出x 的取值范围,取其内的最小整数即可.【解答】解:设要得奖应答对的题数为x 道,则不答或答错的题数为(25 ﹣ x)道,根据题意得: 4x ﹣2 (25 ﹣x)≥60 ,解得: x≥18,∵x 为整数,∴x≥19 .故选 B.【点评】本题考查了一元一次不等式的应用,根据总分=4 ×答对题目数﹣ 2×答错(或不答)题目数结合得分不低于60 分者得奖,列出关于x 的一元一次不等式是解题的关键.21 .(2017 春 ? 昌平区月考)式子:① 2 >0 ;② 4x+y ≤1 ;③ x+3=0 ;④ y ﹣7;⑤ m ﹣2.5 >3 .其中不等式有()A.1 个B.2 个 C.3 个D.4 个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共 3 个,故选 C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.22 .(2017 春 ? 崇仁县校级月考)下列说法中,错误的是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>﹣ 5 的负整数解集有限个C.不等式﹣ 2x<8 的解集是 x<﹣ 4D.﹣ 40 是不等式 2x <﹣ 8 的一个解【分析】正确解出不等式的解集,就可以进行判断.【解答】解: A、正确;B、不等式 x>﹣ 5 的负整数解集有﹣ 4,﹣ 3 ,﹣ 2,﹣ 1 .C、不等式﹣ 2x<8 的解集是 x>﹣ 4D、不等式 2x <﹣ 8 的解集是 x<﹣ 4 包括﹣ 40 ,故正确;故选 C.【点评】解答此题的关键是要会解不等式,明白不等式解集的意义.注意解不等式时,不等式两边同时除以同一个负数时,不等号的方向改变.23 .(2016 ? 东营)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得: x>3 ,解不等式②得: x≥﹣1 ,∴不等式组的解集为: x>3 ,在数轴上表示不等式组的解集为:故选: B.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.24 .(2016 ? 河池)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.【解答】解:由①得, x>﹣ 2,由②得, x≤2 ,故此不等式组的解集为:﹣2<x≤2.故选: B.【点评】本题考查了在数轴上表示不等式的解集.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二.填空题(共9 小题)25 .(2017 ? 绍兴模拟)不等式组:的解集是x >5.【分析】分别解两个不等式得到x> 1 和 x>5 ,然后根据同大取大确定不等式组的解集.【解答】解:,解①得 x> 1,解②得 x> 5,所以不等式组的解集为x> 5.故答案为 x>5 .【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.26 .(2017 ? 仁寿县模拟)如果不等式 3x ﹣m ≤0 的正整数解是 1 ,2,3 ,那么m 的范围是9 ≤m < 12.【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式 3x ﹣m ≤0 得到: x≤,∵正整数解为 1,2,3,∴3≤<4,解得 9 ≤m < 12 .故答案为: 9≤m <12 .【点评】本题考查了一元一次不等式的整数解,根据x 的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.27 .(2017 ? 南城县校级模拟)已知不等式组的解集是2<x<3,则关于 x 的方程 ax+b=0的解为﹣.【分析】根据不等式组的解集即可得出关于a、b 而愿意方程组,解方程组即可得出 a、b 值,将其代入方程ax+b=0中,解出方程即可得出结论.【解答】解:∵不等式组的解集是2<x<3,∴,解得:,∴方程 ax+b=0为2x+1=0,解得: x= ﹣.故答案为:﹣.【点评】本题考查了解一元一次不等式以及一元一次方程的解,解题的关键是求出 a、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.28 .( 2017 ? 东昌府区一模)写出不等式组的解集为﹣1≤x<3.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集【解答】解:不等式①的解集为x<3 ,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣1≤x<3.故答案为:﹣ 1≤x <3.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29 .(2017 春 ? 东港市期中)若不等式组的解集为﹣1<x<1,则a=1, b= ﹣2 .【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出解集,根据已知的解集即可得到 a 与 b 的值.【解答】解:,由①解得: x<,由②解得: x>2b+3 ,∴不等式解集为: 2b+3 <x<,可得 2b+3= ﹣1 ,=1 ,则 a=1 , b= ﹣2.故答案为: 1;﹣ 2【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.30 .(2017 春 ? 章丘市校级月考)不等式5(x﹣2 )+8 <6 (x﹣1)+7 的最小整数解为﹣2.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式 5 ( x﹣2) +8 < 6( x﹣ 1) +7 ,整理得, x>﹣ 3,其最小整数解是﹣ 2;∴不等式的最小整数解是﹣ 2.故答案为:﹣ 2.【点评】此题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.31 .(2016 ? 呼伦贝尔)不等式组的解集是x> 3.【分析】分别解出题中两个不等式组的解,然后根据口诀求出x 的交集,就是不等式组的解集.【解答】解:由( 1)得, x> 2由( 2)得, x> 3所以解集是: x>3.【点评】此题主要考查了一元一次不等式组的解法,比较简单.32 .(2016 ? 抚顺)不等式组的解集是﹣7<x≤1.【分析】分别解出不等式组中两个不等式的解,合在一起即可得出不等式组的解集.【解答】解:.解不等式①,得x≤1;解不等式②,得x>﹣ 7 .∴不等式组的解集为﹣ 7 <x≤1 .故答案为:﹣ 7<x≤1.【点评】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法.本题属于基础题,难度不大,解集该题型题目时,熟练掌握解不等式(或不等式组)的方法是关键.33 .(2016 ? 高邮市一模)若 a>1,则 a+2016<2a+2015 .(填“>”或“<”)【分析】先在不等式 a>1 两边都加 a,再两边都加 2015 ,即可得出 2a+2015>2016+a .【解答】解:∵a>1 ,∴两边都加 a,得2a >1+a两边都加 2015 ,得2a+2015 >2016+a ,即 2016+a <2a+2015 .故答案为:<【点评】本题主要考查了不等式的基本性质,解题时注意:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三.解答题(共7 小题)34 .(2017 ? 河北区校级模拟)若不等式组的解集为1<x<6,求a,b 的值.【分析】先把 a、 b 当作已知把 x 的取值范围用 a、b 表示出来,再与已知解集相比较得到关于a、b 的二元一次方程组,再用加减消元法或代入消元法求出a、b的值.【解答】解:原不等式组可化为∵它的解为 1<x<6 ,∴,解得.【点评】本题考查的是解一元一次不等式组及二元一次方程组,根据题意得到关于 a、b 的二元一次方程组是解答此题的关键.35 .(2017 春 ? 资中县期中)解下列不等式,并把它的解集在数轴上表示出来.4﹣2 (x﹣3 )≥4( x+1 )【分析】去分母,然后移项、合并同类项,系数化成 1 即可求解.【解答】解:去括号,得: 4﹣2x+6 ≥4x+4 ,移项,得:﹣ 2x ﹣4x ≥4 ﹣4 ﹣ 6,合并同类项,得:﹣ 6x ≥﹣6,系数化成 1 得: x≤1..【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.36 (.2017 春 ? 全椒县期中)已知整数 x 满足不等式 3x ﹣4≤6x﹣2 和不等式﹣ 1<.并且满足方程3( x+m )﹣ 5m+2=0,求m的值.【分析】求得两个不等式的公共部分,从而求得整数 x 的值,代入方程 3(x+m )﹣5m+2=0 ,即可求得 m 的值.【解答】解:两不等式组成不等式组:∵解不等式①得: x≥﹣,解不等式②得: x<1,∴整数 x=0 ,∴3 (0+m )﹣ 5m+2=0,3m ﹣ 5m+2=0,m=1 .【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集,难度适中.37 .(2016 ? 宁德)解不等式﹣1≤,并把解集在数轴上表示出来.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时× 6 得: 3x ﹣ 6≤14 ﹣2x ,移项得: 5x≤20 ,解得: x≤4 .将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.38 .(2016 ? 莆田)解不等式组:.【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.【解答】解:.由①得 x≤1;由②得 x< 4;所以原不等式组的解集为:x≤1.【点评】考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).39 .(2016 ? 丹东模拟)解不等式组:.【分析】本题可根据不等式组分别求出x 的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交集,则不等式无解.【解答】解:不等式组可以转化为:,在坐标轴上表示为:∴不等式组的解集为 x<﹣ 7.【点评】求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40 .( 2016 ? 广州一模)解不等式组,并把解集在数轴上表示出来.【分析】先求出不等式组组中的不等式①、②的解集,它们的交集就是该不等式组的解集;然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将解集在数轴上表示出来.【解答】解:由①得 x>2 (2 分)由②得 x< 3( 4 分)∴不等式组的解集为 2<x<3 (7 分)把解集在数轴上表示(9 分)【点评】本题考查了一元一次不等式组的解法、在数轴上表示不等式的解集.不实用文案等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” ,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.标准文档。
一元一次不等式(组)及其应用
模块二 方程(组)与不等式(组)第四讲 一元一次不等式(组)及其应用知识梳理 夯实基础知识点1:不等式及其基本性质1、定义:用不等号(>,≥,<,≤或≠)表示不等关系的式子叫做不等式。
2、基本性质性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,即如果a b >,那么a c ±>性质2不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a b >,0c >,那么ac bc >,a b c c>性质3不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即如果a b >,0c <,那么ac bc <,a b c c <性质4如果a b >,那么b a<性质5如果a b >,b c >,那么a c>知识点2:一元一次不等式及其解法定义含有一个未知数,未知数的次数是1、且不等号两边都是整式的不等式叫做一元一次不等式。
一般地,能够使不等式成立的未知数的值,叫做这个不等式的解,所有这些解的全体称为这个不等式的解集。
求不等式解集的过程叫做解不等式。
解法步骤一般步骤:去分母→去括号→移项→合并同类项→系数化为1。
一元一次不等式的解法和一元一次方程的解法类似,不同的是当不等式的两边都乘以或除以同一个负数时,不等号方向要改变。
x a<x a ≤x a>解集在数轴上表示x a≥“两定”定边界定方向例题:解不等式2132134x x -+≤-,并在数轴上表示解集。
解:()()42133212x x -≤+-849612x x -≤+-896124x x -≤-+2x -≤-2x ≥解集在数轴上表示为知识点3:一元一次不等式组及其解法1、定义由几个含有同一个未知的一元一次不等式组成的不等式组,叫做一元一次不等式组。
这几个一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集。
一元一次不等式(组)知识总结及经典例题分析
二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a x a ³£或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以或除以))同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321£---x x 解不等式: 解:去分母,得解:去分母,得 6)13(2)13£---x x ((不要漏乘!每一项都得乘) 去括号,得去括号,得去括号,得 62633£+--x x (注意符号,不要漏乘!)移移 项,得项,得项,得 23663-+£-x x (移项,每一项要变号;但符号不改变) 合并同类项,得合并同类项,得合并同类项,得 73£-x (计算要正确)系数化为系数化为1, 得 37-³x (同除负,不等号方向要改变,分子分母别颠倒了)三、一元一次不等式组含有同一个未知数的含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、个、33个、个、44个或更多.个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) a a a a x <ax >a x ≤a x ≥a 一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.6 .1 一元一次不等式组(一)
●学习目标:
知识与技能:理解一元一次不等式组及其解的意义。
过程与方法:总结解一元一次不等式组的步骤及情形.
情感态度与价值观 :通过总结解一元一次不等式组的步骤,培养学生全
面系统的总结概括能力.
●学习重点:
1. 利用数轴,正确求出一元一次不等式的解集
2.巩固解一元一次不等式组.
●学习难点:
讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的
观点.
●学习过程:
一.知识回顾:
同桌互说解一元一次不等式的步骤及数轴表示不等式解集时应注意的问题
二.新知探究:
1.关于________________________的几个一元一次不等式合在一起,就组成了
一元
一次不等式组。
2.一元一次不等式组里各个不等死的解集的___________________,叫做这个一
元一次不等式组的解集。
3.求不等式组解集的过程叫做_____________________。
4.填表:
不等式组
0201xx 0201xx 0201xx
0201x
x
数轴表示 (用阴影部分表示公共部分)
解集
5.两个一元一次不等式所组成的不等式组的解集有以下四种情形:设a<b,那
么
(1)不等式组bxax的解集是x>b; 同大取( )
(2)不等式组bxax的解集是x<a; 同小取( )
(3)不等式组bxax的解集是a<x<b; 大小小大( )找
(4)不等式组bxax的解集是无解. 大大小小( )
这是用式子表示,也可以用语言简单表述为:
6.说出下面不等式组的解集:
(1) x<4 (2) x>-1.5
x<-1 x>-4.7
二.练习题
.1.如果一元一次不等式组 x>3 的解集为x>3,那么你能求出a的取值范围。
x>a
2、若不等式组3xmx的解集是无解,则m的取值范围是________________
3、如果不等式组nxxx737的解集是7x,则n的取值范围是
____________________
4、若不等式组2210xxax有解,则 a的取值范围____________________