7.6一元一次不等式组(1)

合集下载

7.6一元一次不等组(2)教案 苏科版八年级下

7.6一元一次不等组(2)教案 苏科版八年级下
7.6
主备人:叶军
教学目标
1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。
2、知道一元一次不等式组及其解集的意义,会解由两解集。
3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.
新知教学
问题1、如何设未知数?如何找到表达实际问题的两个不等关系?
问题2、用一元一次不等式组解决实际问题的步骤是什么?
例1、把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?
例2、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
6、某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.6℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为0m).
小结与作业
课堂小结
利用一元一次不等式组解决实际问题,需要找出2个不等关系
本课作业
课后评注(课堂设计理念,实际教学效果及改进设想)
A.11辆B.10辆C.9辆D.8辆
4、(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:
船型
每只限载人数(人)
租金(元)
大船
5
3
小船
3
2
那么,怎样设计租船方案才能使所付租金最少?(严禁超载)
5、(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?

八年级数学下册 一元一次不等式组-苏科版 ppt

八年级数学下册 一元一次不等式组-苏科版 ppt
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
x 4
同小取小
例4. 求下列不等式组的解集:
x 3, (9) x 7. x 2, (10) x 5.
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
3 x 7
解:原不等式组的解集为
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
x3
解:原不等式组的解集为
-7 -6 -5 -4 -3 -2 -1 0
x 5
解:原不等式组的解集为
5
x 1, (7) x 4. x 0, (8) x 4 .
-3 -2 -1 0
1
2
3
4
x 1
2x-1> -x 例1 解不等式组: 1 x<3 2 1 解:解不等式①,得 x> 3
{
① ②
解不等式②,得
x<6 在同一条数轴上表示不等式①②的解集, 如下图
-1 0 1 2 3 4 5 6 7


因此,不等式组的解集为
3 <x<6
1
x 2, x 3.
① ②
在同一数轴上表示不等式①,②的解集:
1、同大取大,2.同小取小;3.大小小大中间找,4.大大小小找不到。
• .
作业: P26 习题1.8 1. 2 3+x <4+2x 解不等式组 5x-3<4x-1 7+2x>6+3x
思考 题
{
2x+3<5
随堂练习
2. 解下列不等式组 x +3 <5 (1) 3 x -1> 8 (2)

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。

②能根据条件列出不等式。

③能用实际生活背景和数学背景解释简单不等式的意义。

2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。

3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。

教学重点:①通过探寻实际问题中的不等式关系,认识不等式。

②根据实际问题建立合理的不等关系。

教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。

设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为6cm,以后树围每年增加约3cm。

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。

】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。

4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。

” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。

2.不等式与一次函数的关系,可以利用函数图像来分析解答。

如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。

专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。

7.6一元一次不等式组(1)

7.6一元一次不等式组(1)

初中数学八年级下册7.6一元一次不等式组(1)【学习目标】1.了解一元一次不等式组和它的解集的概念;掌握一元一次不等式组的解法,会应用数轴确定一元一次不等式组的解集.2.让学生经历知识的拓展过程,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法。

3.在学习过程中培养学生观察、分析和解决问题的能力,培养学生认真学习的态度和科学的学习方法。

【学习重点】两个一元一次不等式所组成的一元一次不等式组的解法【学习难点】确定两个不等式解集的公共部分【学习过程】一.创设情境:某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每上升100m,气温下降0.6℃,现测出山脚下的平均气温是23℃.估计适宜种植这种杜鹃花的山坡的高度。

交流:估计适宜种植这种杜鹃花的山坡的高度.1.气温为“17ºC-20ºC”的含义是什么?2.气温与山的高度(可设为xºC)存在怎样的数量关系?3.可以用什么式子表达这个问题?二.新知教学由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组试一试:你能写出两个一元一次不等式组吗?讨论:如何求一元一次不等式组的解集?三.例题讲解例1. 求下列不等式组的解集(在同一数轴上表示出两个不等式的解集,并写出不等式组的解集):方法总结:例3.解不等式组:解一元一次不等式组的步骤:先求出不等式组中每一个不等式的解集,再求出它们的公共部分.找公共部分时,可以借助于数轴来帮助我们直观表示一元一次不等式组的解集.⎩⎨⎧>>.7,3)1(x x ⎩⎨⎧->>.3,2)2(x x ⎩⎨⎧->->.5,2)3(x x ⎩⎨⎧->>.4,0)4(x x ⎩⎨⎧<<.7,3)5(x x ⎩⎨⎧-<-<.5,2)6(x x ⎩⎨⎧<-<.4,1)7(x x ⎩⎨⎧-<<.4,0)8(x x ⎩⎨⎧<>.7,3)9(x x ⎩⎨⎧->-<.5,2)10(x x ⎩⎨⎧<->.4,1)11(x x ⎩⎨⎧-><.4,0)12(x x ⎩⎨⎧><.7,3)13(x x ⎩⎨⎧-<->.5,2)14(x x ⎩⎨⎧>-<.4,1)15(x x ⎩⎨⎧-<>.4,0)16(x x 第一组第二组第三组第四组例2、解不等式组:⎩⎨⎧+>++<-145123x x x x ⎪⎩⎪⎨⎧-≥-+>-x x x x 237121)1(3257.6一元一次不等式组(1) 课后作业班级 ____ ____姓名____ _____ 等第1.【05温州】不等式组⎩⎨⎧x -2≤0x +1>0的解是( )A 、x ≤2B 、x ≥2C 、-1<x ≤2D 、x >-12.【05台州】不等式组⎩⎨⎧≤-->75342x x 的解集在数轴上可以表示为( )(A ) (B ) (C ) (D )3.【05泰州】不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A .1个B .2个C .3个D .4个4.【05东营】不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是(A) m ≤2 (B) m ≥2 (C) m ≤1 (D) m >15.【05黄岗】不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( )A 、2-<xB 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16. 不等式组⎪⎩⎪⎨⎧-≤-->xx x 28432的最小整数解是( ) A 、0 B 、1 C 、-1 D 、47.一元一次不等式组⎩⎨⎧<<b x ax 且 b a ≠,若它的解集是 a x <,则a ,b 的关系是( )A 、 b a >B 、 b a <C 、 0>>b aD 、0<<b a8.【05内江】不等式组⎩⎨⎧<+≥+3201x x 的整数解是 。

苏教版七年级下册数学[一元一次不等式组(基础) 知识点整理及重点题型梳理]

苏教版七年级下册数学[一元一次不等式组(基础) 知识点整理及重点题型梳理]

苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①② (2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2.其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x <解②得:12x ≥- 故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树; 第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

《一元一次不等式组》说课稿

《一元一次不等式组》说课稿

《一元一次不等式组》说课稿《一元一次不等式组》说课稿1各位评委老师:大家好!我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。

下面我就分别从教材、教法、学法、教学过程设计四个方面来说明我对这节课的教学设想。

一、教材分析教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。

只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。

同时,学习本节课时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。

日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。

可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。

教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:知识与技能1.了解一元一次不等式、2.利用不等式性质解一元一次不等式,并通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤,体会“比较”和“转化”的数学学习方法、3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握、过程与方法1.通过类比一元一次方程的解法,引导启发学生掌握一元一次不等式的解法、2.通过练习巩固,能正确应用不等式性质解一元一次不等式、情感、态度与价值观3.在教学过程中引导学生体会数学中“比较”和“转化”的思想方法、4.通过本节的学习让学生体会不等式解集的奇异的数学美,激发学生学习数学的兴趣、教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:初步掌握一元一次不等式的解法;掌握解一元一次不等式的一般步骤,并能用数轴表示解集、为突出重点,本节课让学生积极参与、自主探索并掌握一元一次不等式的解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 7. 4 2 .
例2、解不等式组:
3x 2 x 1 x 5 4x 1
① ②
例3、解不等式组:
5 x 2 3( x 1) 1 3 2 x 1 7 2 x
① ②
选择题: x≥2, (1)不等式组 的解集是( D ) x≤2 A. x ≥2, B. x≤2, D. x =2. C. 无解, x 0.5, (2)不等式组 的整数解是( C ) x≤1 A. 0, 1 , B. 0 , D. x ≤1. C. 1, x ≥-2, (3)不等式组 的负整数解是( C ) x 3 A. -2, 0, -1 , B. -2 , C. -2, -1, D.不能确定. x ≥-2, (4)不等式组 的解集在数轴上表示为( B ) x 5
A. -5
(5)如图,
-2
B. -5
2.5 4
-2
C.
-5
-2
D. -5
-2
A. 1 x 2.5
-1
则其解集是( C )
B. 1 x 4
C. 2.5 x 4
D. 2.5 x 4
(1)分别解不等式组中的各个不等式 , (2)再求出这几个不等式解集的公共部分.
不等式的解集情况:
第二组
x 3, (5) x 7. x 2, (6) x 5. x 1, (7) x 4. x 0, (8) x 4.
第三组
x 3, (9) x 7. x 2, (10) x 5. x 1, (11) x 4. x 0, (12) x 4.
5 x 2
解:原不等式组的解集为
-3 -2 -1 0
1
2
3
4
5
1 x 4
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
4 x 0
大小小大中间找
例1. 求下列不等式组的 解集:
x 3, (13) x 7.
0 1 2 3 4 5 6 7 8 9
试一试:你能写出两个一元一次不等式组吗? 讨论:如何求一元一次不等式组的解集? 由几个含有同一个未知数的一次不等式组成的 不等式组叫做一元一次不等式组.
例1. 求下列不等式组的解集(在同一数轴上表示出 两个不等式的解集,并写出不等式组的解集):
第一组
x 3, (1) x 7. x 2, (2) x 3. x 2, (3) x 5. x 0, (4) x 4.
0
1
解:原不等式组无解.
大大小小解不了
比一比:看谁反应快
1. 同大取大,
2.同小取小;
3.大小小大中间找,
运用规律求下列不等式组的解集:
4.大大小小解不了。
x x 11 3 3 x 20 x 33,,1 , x1, 60 xx,0,,0 (16 ) (10) 24 ) (3))) ((((7 11x 5. 12 7 8 5 9 xx .4. x70 4 x 2 3.40 2 .. 2
第四组
x 3, (13) x 7. x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
例1. 求下列不等式组的解集:
x 3, (1) x 7. x 2, (2) x 3. x 2, (3) x 5. x 0, (4) x 4.
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
x3
解:原不等式组的解集为
-7 -6 5
解:原不等式组的解集为
-3 -2 -1 0
1
2
3
4
5
x 1
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
x 4
同小取小
例1. 求下列不等式组的解集:
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
x7
解:原不等式组的解集为
-3 -2 -1 0 1 2 3 4
x2
解:原不等式组的解集为 -5 -4
-3
-2
-1
0
x 2
解:原不等式组的解集为
-5 -4 -3 -2 -1
0 1 2
x0
同大取大
例1. 求下列不等式组的解集:
x 3, (5) x 7. x 2, (6) x 5. x 1, (7) x 4. x 0, (8) x 4.
小结
• 你有哪些收获?说出来,大家共同 分享 • 你还有什么疑惑?提出来,我们一 起讨论
x 3, (9) x 7. x 2, (10) x 5. x 1, (11) x 4. x 0, (12) x 4.
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
3 x7
解:原不等式组的解集为
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
7.6 一元一次不等式组(1)
• 交流:
某种杜鹃花适宜生长在平均气温为 17º -20º C C(包括17º 、20º C C)的山 区, 已知这一地区海拔每上升100m, 气 温下降0.6º C,现测出山脚下的平均气温 是23º C.
估计适宜种植这种杜鹃花的山
坡的高度. • 1.气温为“17º C-20º C”的含义是什么? • 2.气温与山的高度(可设为xº C)存在怎样的 数量关系? • 3.可以用什么式子表达这个问题?
相关文档
最新文档