随机变量及其分布列概念公式总结

合集下载

离散型随机变量及其分布列

离散型随机变量及其分布列
(4)体积为1 000 cm3的球的半径长.
【精彩点拨】利用随机变量的定义判断.
【自主解答】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.
(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.
(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.
X
0
1

m
P

如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.
练习:
1.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P =________.
【解析】设二级品有k个,∴一级品有2k个,三级品有 个,总数为 个.∴分布列为
ξ
1
2
3
P
P =P(ξ=1)= .【答案】
2.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X=3)=________.【解析】P(X=3)= = .【答案】
分布列及其性质的应用
设随机变量X的分布列为P(X=i)= (i=1,2,3,4),求:(1)P(X=1或X=2);(2)P .
因此随机变量Y的分布列为
Y
0
10
20
50
60
P
1.两点分布的几个特点
X
x1
x2

xi

xn
P
p1
p2

pi

pn
这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.
为了简单起见,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.

2离散型随机变量的分布列

2离散型随机变量的分布列

X的所有可能取值是0,1,2,3.
P(X=0)=
C36 C130
=
20 120
=
1 6
,
P(X=1)=
C62C14 C130
=
60 120
=
1 2
,
P(X=2)=
C
2 4
C16
C130
=
36 120
=
3 10
,
P(X=3)=
C34 C130
=
4 120
=
1 30
.
∴X的分布列为
X
0
1
2
3
1
1
3
1
P
6
栏目索引
X
x1
x2

xi

xn
P
p1
p2

pi

pn
此表称为离散型随机变量X的概率分布列,简称为X的分布列,有时
也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
(2)分布列的性质
(i)pi③ ≥0 ,i=1,2,3,…,n;
n
(ii) pi 1. i 1
栏目索引
3.常见的离散型随机变量的概率分布
η
0
1
2
P
0.1
0.3
0.3
栏目索引
3 0.3
栏目索引
1-2 (2015北京朝阳一模改编)如图所示,某班一次数学测试成绩的茎叶 图和频率分布直方图都受到了不同程度的污损,其中,频率分布直方图 的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答以 下问题. (1)求全班人数及分数在[80,100]之间的频率; (2)现从分数在[80,100]之间的试卷中任取3份分析学生的失分情况,设 抽取的试卷分数在[90,100]的份数为X,求X的分布列.

第二章 随机变量及其分布 - 浙江大学邮件系统

第二章 随机变量及其分布 - 浙江大学邮件系统

例:某人骑自行车从学校到火车站, 一路上要经过3个独立的交通灯,设各 灯工作独立,且设各灯为红灯的概率 为p,0<p<1,以X表示首次停车时所通 过的交通灯数,求X的概率分布律。
解:设Ai={第i个灯为红灯},则P(Ai)=p, i=1,2,3 且A1,A2,A3相互独立。
P( X 0) P( A1) p ; P( X 1) P( A1A2 ) (1 p) p ;
例:有一大批产品,其验收方案如下: 先作第一次检验,从中任取10件,经检 验无次品接受这批产品,次品数大于2 拒收;否则作第二次检验,从中任取5 件,仅当5件中无次品便接受这批产品, 设产品的次品率为p.求这批产品能被 接受的概率.
解:设A={接受该批产品}。 设X为第一次得 的次品数,Y为第2次抽得的次品数.
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
c e
几个重要的离散型随机变量
一、0-1分布
若X的分布律为:
X 01 P qp
随机变量只可能 取0、1 两个值
(p+q=1,p>0,q>0)
则称X服从参数为p的0-1分布,或两点分布.
记为
X ~ 0 1( p) 或 B(1, p)
则X~B(10,p),Y~B(5,p),且{X=i}与{Y=j}独立。
P( A) P(X 0) P(1 X 2且Y=0)
P(X 0) P(1 X 2) P(Y 0)
P(X 0) (P(X 1) P(X 2)) P(Y 0)
(1 p)10 [10 p(1 p)9 45 p2 (1 p)8] (1 p)5
X 解1:) 设P该(社X区10200)人中0有.8X7个60人患病,则 X ~ B(1000, p),其中

高考数学-随机变量及其分布-1-离散型随机变量及其分布

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列知识点1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11=∑=ni ip3.常见的离散型随机变量的分布列 (1)两点分布若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.题型一离散型随机变量的理解【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数XB .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度XC .某超市一天中来购物的顾客数XD .小马登录QQ 找小胡聊天,设X =⎩⎪⎨⎪⎧1,小胡在线0,小胡不在线【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ;(2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数.【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6D .ξ≤5【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25【过关练习】1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度.2.某人射击的命中率为p (0<p <1),他向一目标射击,若第一次射中目标,则停止射击,射击次数的取值是( ) A .1,2,3,…,n B .1,2,3,…,n ,… C .0,1,2,…,nD .0,1,2,…,n ,…3.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________.4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.5.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ, (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.题型二 离散型随机变量分布列的求法及性质【例1】某一随机变量ξ的概率分布列如表,且m +2n =1.2,则m -n2的值为( )A.-0.2 C .0.1D .-0.1【例2】已知离散型随机变量X 的分布列如下:则P (X =10)A.239 B.2310 C.139 D.1109 【例3】已知随机变量X 只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围为________.【过关练习】1.随机变量ξ的分布列如下:则ξ为奇数的概率为2.若离散型随机变量X 的分布列为:则常数c 的值为( ) A.23或13 B.23 C.13D .13.由于电脑故障,随机变量X 的分布列中部分数据丢失,以代替,其表如下: 0.50.1根据该表可知题型三 两种特殊分布的应用【例1】某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X 表示4人中的团员人数,则P (X =3)=( ) A.421 B.921 C.621 D.521【例2】一个袋中有形状、大小完全相同的3个白球和4个红球.从中任意摸出两个球,用“X =0”表示两个球全是白球,用“X =1”表示两个球不全是白球,求X 的分布列.【过关练习】1.从装有除颜色外其余均相同的3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,随机变量ξ的概率分布列如下:则x 1,x 2,x 3的值分别为________.2.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.课后练习【补救练习】1.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ) A .6 B .7 C .10D .252.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.3.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X 的分布列.【巩固练习】1.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x≥1的解集所对应的ξ的值为( )A .1B .0C .-1D .1或02.若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于( ) A .(1-a )(1-b ) B .1-a (1-b ) C .1-(a +b )D .1-b (1-a )3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)4.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员投中3分的概率是________5.在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场. (1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.【拔高练习】1.随机变量ξ的概率分布列为P (ξ=n )=an (n +1),n =1,2,3,4,其中a 是常数,则P ⎝⎛⎭⎫12<ξ<52的值为( ) A.23 B.34 C.45D.562.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),每个问题回答正确与否相互之间没有影响,用X 表示小王所获奖品的价值,写出X 的所有可能取值及每个值所表示的随机试验的结果.。

第四章 随机变量及其分布

第四章 随机变量及其分布

第一节 随机变量及其分布函数
一、 随机变量的概念
1、含义:用来表示随机现象结果的变量。 ①样本点本身是用数量表示的; T ②样本点本身不是用数量表示的。 H 总之,不管随机试验的结果是否具有数量的性 质,都可以建立一个样本空间和实数空间的对 应关系,使之与数值发生联系,用随机变量的 取值来表示事件。 2、定义:定义在样本空间Ω={ω}上的实值 函数X=X(ω)称为随机变量,常用大写英文字 母或小写希腊字母来表示,相应地,用小写英 文字母表示其取值。
为了方便地表示随机事件的概率及其运算,我 们引入了分布函数的概念。
定义:设X 是一随机变量,对x R,
称F ( x ) P ( X x )为随机变量X的分布函数;
并称X 服从分布F ( x ),记为X ~ F ( x ).
注:(1)分布函数表示的是随机事件的概率。 (2)分布函数与微积分中的函数没有区别。
P ( X 0) F (0) F (0 0) 0.8 0.3 0.5 P ( X 1) F (1) F (1 0) 1 0.8 0.2
X P
1 0.3
0 0.5
1 0.2
思考:X还能取 到其他数值吗?
例4 一汽车沿一街道行驶,需要经过三个设有红绿信号 灯的路口,且信号灯的工作相互独立,以X表示汽车首 次遇到红灯已通过的路口数,求X的概率分布列。 解:记Ai—汽车在第i个路口遇到红灯,i=1,2,3. 1 P ( Ai ) P ( Ai ) , 且A1 , A2 , A3相互独立. 2 X的可能取值为 0, 1, 2, 3.
共有10个不同的样本点
记X表示“空格个数”,则有
X ( ) 2
X ( ) 1 X ( ) 0

§2.2离散型随机变量及其分布列

§2.2离散型随机变量及其分布列

1, x a F ( x) 0, x a
1
例2.2.9 若
.
服从两点分布
0
P
q

的分布函数
解: P( x) 0 当 x 0时,F(x) F(x) P( x) P( 0) q 当 0 x 1 时, F ( x) P( x) P( 0) P( 1) 1 当 x 1 时, 例2.2.10 设 的分布列为
0 1 2 3 4 5
k 5 k 5k
k=0,1,2,3,4,5.
q 5 5 pq 4 10 p 2 q 3 10 p 3 q 2 5 p 4 q p 5
3.分布列的性质
由概率的性质可知,任一离散型随机变量 的分布列 p i 都具有下述性质:
非负性:1)pi 0, i 1, 2, 规范性:2) pi 1
k 6 k 6
5000
5000
其中b(k;5000,1/1000)= C
k 5000
1 k 1 5000 k ( ) (1 ) 1000 1000
这时如果直接计算P 5 ,计算量较大。由于n很大 ,p较小,而np=5不很大 ,
可以利用 Poisson定理
5 P( 5) 1 P 5 1 e k 0 k !
i
例2.2.11 设随机变量
的分布函数为 的分布列。
解: 依题意可得
0, x 1 0.4, 1 x 1 F ( x) ,求 0.8,1 x 3 1, x 3
的可能取值为-1,1,3
P 1 F 1 0 F 1 0.4,
P 3 F 3 0 F 3 0.2
所以 的分布列为

分布律和分布列

分布律和分布列分布律和分布列是概率论中非常重要的概念,它们被广泛应用于各个领域,包括统计学、工程学、金融学等。

本文将详细介绍分布律和分布列的概念、性质及其在实际应用中的意义。

一、分布律的定义与性质分布律又称分布函数,通常用F(x)来表示。

假设随机变量X的取值范围为实数轴上的所有实数,F(x)表示X小于等于x的概率,即:F(x) = P{X ≤ x}其中,P表示概率。

分布律具有以下性质:1. F(x)是一个非降函数,即F(x)在定义域内具有单调性。

2. F(x)的取值范围在[0,1]之间。

3. F(x)是一个右连续函数,即对于任意的x,F(x)在右侧连续。

4. F(x)在x处的导数等于X=x处的概率密度函数f(x),即F'(x) = f(x)。

二、分布列的定义与性质分布列是离散随机变量的分布函数,通常用p(x)来表示。

假设随机变量X的取值范围为{x1,x2,…,xn},则p(x)表示X等于x的概率,即:p(xi) = P{X=xi}分布列具有以下性质:1. 对于所有的i,有0 ≤ p(xi) ≤ 1。

2. ∑_i=1^n p(xi) = 1。

3. p(x)是一个非降函数。

三、分布律与分布列的区别分布律用来描述连续随机变量的概率分布,而分布列则用来描述离散随机变量的概率分布。

因为连续随机变量可以取无限多个值,所以概率密度函数f(x)是用来表示概率分布的。

分布律F(x)是f(x)的积分,表示随机变量小于等于某个值的概率。

而离散随机变量只能取有限个取值,所以概率可以用一个列表来表示。

分布列p(x)就是这个列表,它表示随机变量取某一特定值的概率。

四、分布律与分布列的应用分布律和分布列是概率论中非常重要的概念,它们被广泛应用于各个领域。

例如,在统计学中,分布律和分布列常常用来描述样本数据的概率分布,从而进行统计推断;在工程学中,分布律和分布列常常用来描述工程系统的性能分布,从而进行系统设计和优化;在金融学中,分布律和分布列常常用来描述金融资产的风险分布,从而进行投资决策和风险控制等。

第七节 离散型随机变量及其分布列


【解析】 由已知得 X 的所有可能取值为 0,1, 且 P(X=1)=2P(X=0), 1 由 P(X=1)+P(X=0)=1,得 P(X=0)= . 3
离散型随机变量分布列的性质 设离散型随机变量X的分布列为
X P 0 0.2 1 0.1 2 0.1 3 0.3 4 m
求随机变量η=|X-1|的分布列.

(1)由题意,得 X 取 3,4,5,6, 1 2 C3 5 C · C 10 5 4 5 且 P(X=3)= 3= ,P(X=4)= 3 = , C9 42 C9 21 1 3 C2 · C 5 C 1 4 5 4 P(X=5)= 3 = ,P(X=6)= 3= , C9 14 C9 21
1 .利用分布列中各概率之和为 1 可求参数的值, 此时要注意检验,以保证每个概率值均为非负数. 2.若 X是随机变量,则η=|X- 1|等仍然是随机变
量,求它的分布列可先求出相应随机变量的值,再根
据对应的概率写出分布列.
设离散型随机变量X的分布列为
X P 0 0.2 1 0.1 2 0.1 3 0.3 4 m
是二项式[(1-p)+p]n的展开式中的第k+1项.
随机变量X服从二项分布
特点: (1)每次试验只有两种结果,要么发生,要么不发 生; (2)任何一次试验中,A事件发生的概率相同,即 相互独立,互不影响试验的结果。
5. 二项分布与两点分布、超几何分布有什么区别和联系?
1.两点分布是特殊的二项分布 (1 p)
(1)由统计数据得到离散型随机变量分布列; (2)由古典概型求出离散型随机变量分布列; (3)由互斥事件、独立事件的概率求出离散型随机变 量分布列. (4)由三种分布(两点分布、超几何分布、二项分布) 求出离散型随机变量分布列。

6 第6讲 离散型随机变量及其分布列

第6讲 离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表X x 1 x 2 … x i … x n Pp 1p 2…p i…p n的概率分布列,简称为的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 3.两点分布若随机变量X 服从两点分布,则其分布列为X 0 1 P1-pp=P (X =1)称为成功概率[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)由下表给出的随机变量X 的分布列服从两点分布.( )X 2 5 P0.30.7[教材衍化]1.(选修2-3P77A 组T1改编)设随机变量X 的分布列如下:解析:由分布列的性质知,112+16+13+16+p =1, 所以p =1-34=14.答案:142.(选修2-3P49A 组T1改编)有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是________.解析:因为次品共有3件,所以在取到合格品之前取到次品数为0,1,2,3. 答案:0,1,2,33.(选修2-3P49A 组T5改编)设随机变量X 的分布列为解析:由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4) =14+16=512. 答案:512[易错纠偏]随机变量的概念不清.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数D .取到的球的个数解析:选C.A ,B 两项表述的都是随机事件,D 项是确定的值2,并不随机;C 项是随机变量,可能取值为0,1,2.故选C.离散型随机变量的分布列的性质设离散型随机变量X的分布列为X 01234P 0.20.10.10.3m(2)|X-1|的分布列.【解】由分布列的性质知:0.2+0.1+0.1+0.3+m=1,解得m=0.3.(1)2X+1的分布列为2X+113579P 0.20.10.10.30.3(2)|X-1|的分布列为|X-1|012 3P 0.10.30.30.3(变问法)在本例条件下,求P(1<X≤4).解:由本例知,m=0.3,P(1<X≤4)=P(X=2)+(X=3)+P(X=4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X为随机变量,则2X+1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X等可能地取1,2,3,…,n,若P(X<4)=0.3,则n的值为() A.3B.4C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n =0.3,所以n =10.2.随机变量X 的分布列如下:X -1 0 1 Pabc解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎡⎦⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容) 角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:日销售量(件)0 1 2 3 频数1595当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为X 2 3 P1434角度二 古典概型的离散型随机变量的分布列(2020·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A ,P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45.(2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920;P (X =5)=C 25C 36=12,所以随机变量X 的分布列为X 3 4 5 P12092012离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列.解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为X 0 1 2 P522611522[基础题组练]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13D.23解析:选C.设X 的分布列为X1即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A.14B.12C.34D.23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝⎛⎭⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34. 3.设随机变量X 的概率分布列如下表所示:若F (x )=P A.13 B.16 C.12D.56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56. 4.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A. 5.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:166.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎨⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎡⎦⎤-13,13 7.若离散型随机变量X 的分布列为则常数c =________,P (X 解析:由分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 138.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2.P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:9.(1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为 P (X ≥2)=P (X =2)+P (X =3)=38+18=12.10.(2020·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列.解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故X 的分布列为X 0 10 20 50 60 P1325115215 1151.(2020·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584,P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184.所以X 的分布列为X 1 2 3 4 P71225843281842.O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为3.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率.解:(1)设袋中原有n 个白球,由题意知17=C 2n C 27=n (n -1)27×62=n (n -1)7×6, 所以n (n -1)=6,解得n =3或n =-2(舍去).即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635; P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135. 所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A ,则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。

概率统计知识点

离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果不同而①变化的变量,常用字母x,Yg,n,...表示.(2)离散型随机变量:所有取值可以②一一列出的随机变量.2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X可能取的不同值为X],x2,…些,...,x n,X取每一个值X i(i=1,2,...,n)的概率P(X=x i)=p i以表格的形式表示如下:Xx1x2…x i…x nPp1p2.p i.p n则此表称为离散型随机变量X的概率分布列,简称为X的分布列,有时也用等式卩以=即=卩」=1,2,...』表示X的分布列.(2)分布列的性质(i)P i③>0,i=1,2,3,.,n;n,(ii)》耳1.i13.常见的离散型随机变量的概率分布(1)两点分布X01P④1-Pp若随机变量X的分布列具有上表的形式,则称X服从两点分布,并称卩二⑤P(x=1)为成功概率.(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,...,m,其中m=min{M,n},且n<N,M<N,n,M,N G N*.若随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.⑦c M c N-M⑧q M^N-M一C N一-CN C m C n-mMN-MC n二项分布1.条件概率(1)定义对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做①条件概率,用符号②P(BIA)来表示,其公式为P(BIA)=③巴也P⑷(P(A)>0).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(BIA)=丛也.n(A)(2)性质(i)④O W P(BIA於1;(ii)如果B和C是两个互斥事件,那么P(B U CIA)=⑤P(BIA)+P(CIA).2.相互独立事件(1)对于事件A、B,若A的发生与B的发生互不影响,则称⑥A、B是相互独立事件.⑵若A与B相互独立,则P(BIA)=⑦P(B),P(AB)=P(BIA)・P(A)=⑧P(A)P(B).⑶若A与B相互独立,则⑨A与P,⑩万与Bj A^B_也都相互独立.⑷若P(AB)=P(A)P(B),则:A与B相互独立.3•独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中事件发生的概率都是一样的(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=⑭心p k(1-p)n-k(k=0,1,2,...,n),此时称随机变量X服从二项分布,记为峪X〜B(n,p),并称p为成功概率.离散型随机变量的均值与方差、正态分布1.离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2.xi.x nPp1p2.p i.p n⑴均值:称EX=©x1p1+x2p2+.+x i p i+.+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的②平均水平.(2)称DX=I(x.-EX)2p.为随机变量X的方差,它刻画了随机变量X与其均值i1 EX的平均程度,其算术平方根畑为随机变量X的标准差.平均数的性质(1)若一组数据X],x2,...,x n的平均数为无,则aX],ax2,...,ax n的平均数为a x.(2)若一组数据X],x2,...,x n的平均数为无,则aX]+b,ax2+b,...,ax n+b的平均数为a 无+b.(3)若M个数的平均数是X,N个数的平均数是Y,则这(M+N)个数的平均数是MXNY,若两组数据xx2,...,x n和y1,y2,.,y n的平均数分别是x和歹,则MN12n12nX i+y i,x2+y2,...,x n+y n的平均数是无+歹.2.均值与方差的性质(1)E(aX+b)=®aEX+b(a,b为实数).(2)D(aX+b)=®a2DX(a,b为实数).(3)E(k)=k(k为常数).(4)E(X1+X2)=E(X1)+E(X2).(5)D(X)=E(X2)-(E(X))2.(5)D(X)=E(X2)-(E(X))2.(6)若X1,X2相互独立,则E(X1X2)=E(X1)^E(X2).(7)D(k)=0(k为常数).(8)若给定一组数据X],x2,...,x n,其方差为S2,则aX],ax2,...,ax n的方差为a2s2.(9)若给定一组数据X],x2,...,x n,其方差为s2,则aX]+b,ax2+b,...,ax n+b的方差为a2s2,特别地,当a=1时,有X]+b,x2+b,...,x n+b的方差为s2,这说明将一组数据的每一个数据都加上一个相同的常数,方差是不变的,即不影响数据的波动性.(10)方差的一个简化公式是s2=i[(%2+%2+.+%2)-n%2]=%2-无2,此公式只要把方差公式展开进行重组即可证明.3.两点分布与二项分布的均值、方差X X服从两点分布X~B(n,P)EX⑥p(p为成功概率)⑦npDX⑧P(1-P)⑨np(l-p)4.正态曲线的特点(1)曲线位于X轴⑩上方,与x轴不相交;(2)曲线是单峰的,它关于直线H x=y对称;(3)曲线在I二x=u处达到峰值i;:-4:;a^2n——(4)曲线与X轴之间的面积为卜1;⑸当O—定时,曲线的位置由卩确定,曲线随着卩的变化而沿X轴平移;⑹当卩一定时,曲线的形状由O确定Q越小,曲线越"-高瘦”,表示总体的分布越集中越大,曲线越“⑯矮胖”,表示总体的分布越⑰分散.用样本估计总体1.常用统计图表(1)频率分布表的画法:第一步:求①极差,决定组数和组距,组距二②极差;组数—第二步:③分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示④频率,每个小矩形的面积表示样本落在该组-组距—内的⑤频率.(3)茎叶图的画法:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将各个数据的茎按⑥大小次序排成一列;数字定义与求法特征盘一组数据中出现次数最多的数特点通常用于描述出现把一组数据按⑦大小顺序排誥列,处在⑧最中间位置的一个数据(或最中间两个数据的平均数)中位数是样本数据所占频率的等分线,它不受少数极端值的影响平均數如果有n个数据X],x2,...,x n,那么这n个数的平均数x=⑨一1(x1+x2+.+X n)平均数和每一个数据都有关,可以反映样本数据全体的信息,但平均数受数据中极端值的影响较大,故平均数在估计总体时可靠性降低第三步:将各个数据的叶依次写在其茎的右(左)侧.2.样本的数字特征(1)众数、中位数、平均数(2)标准差、方差(i)标准差:s=@_j1[(%1-T)2+(%2-T)2+…+(q-无)2].(ii)方差:标准差的平方S2叫做方差.S2=d1[(X匚无)2+(x2-无)2+...+(x n-无)2],其中X i(i=l,2,3,...,n)是⑫样本数据,n n是样本容量,无是I样本平均数.变量间的相关关系、统计案例l.两个变量的线性相关(1)正相关在散点图中,点散布在从①左下角到②右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.nI x.y.-nry=i=1''I %2-nx 21=11(1)回归分析是对具有⑧相关关系的两个变量进行统计分析的一种常用n —I 叫儿-n%⑶相关系数:r=(2)负相关在散点图中,点散布在从③左上角到④右下角的区域,对于两个变量的这种相关关系,我们将它称为负相关.(3) 线性相关关系、回归直线如果散点图中点的分布从整体上看大致在⑤一条直线附近,那么就称这 两个变量之间具有线性相关关系,这条直线叫做回归直线.(5)回归方程方程y =b x+a 是具有线性相关关系的两个变量的一组数据A A(x 1,y 1),(x 2,y 2),^,(x n ,y n )的回归方程,其中a ,b 是待定参数.A I (叫立)(y厂刃b =I (%.-X )2i=10=⑦y-bx .2.回归分析方法.(2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),^,(x n ,y n ),x=-I x.,y=ni=11Iy.f ⑨(无,刃为样本点的中心.ni=11 Jn2n 2(I x^-nx 2)(I y?-ny 2)i=1L i=1L当r>0时,表明两个变量⑩正相关; 当r<0时,表明两个变量r 负相关.r 的绝对值越接近于1,表明两个变量的线性相关性;越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常Irl 大于或等于0.75时,认为两个变量有很强的线性相关性.3.独立性检验(1)分类变量:变量的不同“值”表示个体所属的濮不同类别,像这样的变量称为分类变量.(2)列联表:列出的两个分类变量的儿频数表,称为列联表.一般地,假设有两个分类变量X和Y,它们的可能取值分别为{X],X2}和{y],y2},其样本频数列联表(称为2x2列联表)为总计y1y2X1a b a+bc d c+dX2总计a+c b+d a+b+c+d则可构造一个随机变量K2=V:W"c)2,其中n=~(ab')(cd)(ac)(bd)~a+b+c+d(3)独立性检验利用独立性假设、随机变量::K2来确定是否有一定的把握认为“两个分类变量一.有关系”的方法称为两个分类变量的独立性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量及其分布总结
1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X ,
Y,,,… 表示.
2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量
3、分布列:设离散型随机变量ξ可能取得值为
x1,x2,…,x3,…,

ξ取每一个值xi(i=1,2,…)的概率为()iiPxp,则称表
ξ x1 x2 … xi

P P1 P2 … Pi

为随机变量ξ的概率分布,简称ξ的分布列
4. 分布列的两个性质:
(1)Pi≥0,i=1,2,…; (2)P1+P2+…=1.
5.求离散型随机变量的概率分布的步骤:
(1)确定随机变量的所有可能的值xi
(2)求出各取值的概率p(=xi)=pi
(3)画出表格
6.两点分布列:
ξ
0 1
P
1p
p

7超几何分布列:
一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X件次品

数,则事件 {X=k}发生的概率为(),0,1,2,,knkMNMnNCCPXkkmCL,其中
min{,}mMn
,且,,,,nNMNnMNN.称分布列
X 0 1

m

P
0nMNMnNCCC 11nMNMnNCCC … mnmMNMnNCCC

为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X
服从超几何分布
8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能
不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果
在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好
发生k次的概率是
knkknnqpCkP
)(

,(k=0,1,2,…,n,pq1).

于是得到随机变量ξ的概率分布如下:
ξ 0 1 … k … n
P
nnqpC00
111nnqpC … knkknqpC … 0qpCnn
n

称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数。
9.离散型随机变量的均值或数学期望:
一般地,若离散型随机变量ξ的概率分布为
ξ x1 x2 … x
n

P p1 p2 … pn

则称 E11px22px…nnpx… 为ξ的均值或数学期望,简称期望.
10.离散型随机变量的均值或数学期望的性质:
(1)若服从两点分布,则Ep.
(2)若ξ~B(n,p),则Enp.
(3)ccE,c为常数
(4)ξ~N(,2),则E
(5)baEbaE)(
11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x,2x,…,nx,…,
且取这些值的概率分别是1p,2p,…,np,…,那么,

D
=121)(pEx+222)(pEx+…+nnpEx2)(+…

称为随机变量ξ的均方差,简称为方差,式中的E是随机变量ξ的期望.
12. 标准差:D的算术平方根D叫做随机变量ξ的标准差,
13.方差的性质:
(1)若服从两点分布,则Dp(1-p).
(2)若ξ~B(n,p),则Dnp(1-p).
(3)0cD,c为常数
(4)ξ~N(,2),则D2
(5)DabaD2)(

14正态分布密度函数可写成 22()21(),(,)2xfxex,(σ>0)
15正态分布:一般地,如果对于任何实数ab,随机变量X满足
,
()()baPaXBxdx

, 则称 X 的分布为正态分布(normal

distribution ) .正态分布完全由参数和确定,因此正态分布常记作
),(2N.如果随机变量 X 服从正态分布,则记为X~),(2N
.

16.正态曲线的性质:
(1)曲线在x轴的上方,与x轴不相交
(2)曲线是单峰的,它关于直线x=μ对称

(3)曲线在x=μ处达到峰值21
(4)曲线与x轴之间的面积为1
(5)μ一定时,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦
高”.总体分布越集中:
(6)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移。
17.标准正态曲线:当μ=0、σ=l时,正态总体称为标准正态总体,

2
2
2
1

)(xexf


,(-∞<x<+∞)

18(1)6826.0xP
(2)9544.022xP(3)9974.033xP

相关文档
最新文档