人教版初中八年级数学上册《角的平分线的性质》教案

合集下载

人教版初中数学初二上册角的平分线的性质教案

人教版初中数学初二上册角的平分线的性质教案

人教版初中数学初二上册角的平分线的性质教案学习内容:议决独立思考和小组合作,掌握角的中分线的性质学习目标:1、会用尺规作图作一个已知角的中分线.2、能用角中分线的性质定理求解标题.3、领会命题的推导证明历程.学习重点:1、利用尺规作已知角的中分线.2、角中分线的性质学习难点:角中分线性质的灵敏运用及其标记语言的书写学习历程:一、回顾旧知:标题1:角中分线的定义:标题2:若OC中分∠AOB,可以得到:二、导入新课:思考:右图是一个中分角的仪器,此中AB=AD,BC=DC.将点A放在角的极点,AB和AD沿着角的双方放下,沿AC画一条射线AE,AE便是角中分线.你能说明它的原理吗?提示:要说明AC是∠DAC的中分线,本来便是证明∠CAD=∠CAB.∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.看看条件够不敷.三、探究学习作已知角的中分线的要领:议决以上案例我们能否导出作角中分线的要领呢?已知:∠AOB.求作:∠A OB的中分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.议一议:1.在上面作法的第二步中,去掉“大于12MN 的长”这个条件行吗? 2.第二步中所作的两弧交点一定在∠AOB 的内部吗? 西席点拨: “大于12MN 的长”这个条件是为了保证所作的两弧有交点,外部的交点与极点连线得到的射线就不是∠AOB 的中分线了,角的中分线是一条射线。

这种作法的可行性可以议决全等三角形来证明. 练一练:恣意画一角∠AOB ,作它的中分线. 四、探究猜测角中分线的性质:D请同砚们以小组为单位议决丈量猜测PD与PE 之间的数量干系: 下面请同砚们用学过的知识证明你的发觉:角的中分线的性质:角的中分线上的点到角的双方的隔断相等. ① 明确命题中的已知和求证; 已知:一个点在一个角的中分线上. 结论:这个点到这个角双方的隔断相等.②根据题意,画出图形,并用数学标记表示已知和求证;已知:如图,∠AOC=∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E.求证: PD=PE.③经太过析,找出由已知推出求证的途径,写出证明历程. (此部分由学生独立完成) 五、精讲点拨: 角中分线的性质:角的中分线上的点到角的双方的隔断相等。

12.3 角的平分线的性质 教案 2022-2023学年人教版八年级数学上册

12.3 角的平分线的性质 教案 2022-2023学年人教版八年级数学上册

12.3 角的平分线的性质教案一、教学目标1.理解什么是角的平分线,能够通过图形判断角的平分线;2.掌握角的平分线的性质,包括平分线把角分成两个相等的角;3.能够运用角的平分线的性质解决相关问题。

二、教学重点1.掌握角的平分线的定义;2.理解平分线将角分成两个相等的角;3.运用角的平分线性质解决问题。

三、教学内容1. 角的平分线的定义角的平分线指的是将一个角分成两个相等部分的直线。

可以使用一个小弧线来表示角的平分线。

2. 角的平分线的性质•平分线将角分成两个相等的角。

•一个角的平分线只有一个。

3. 角的平分线的判断•若两个直线段在同一直线上,且相互之间的距离相等,则这两个直线段是平分线。

4. 角的平分线的应用示例问题一:在如图1所示的∠ABC中,DE是∠ABC的平分线,求证:∠ADE ≌ ∠CDE。

示例图1示例图1解答步骤: 1. 连接BD和CE。

2. 由平分线的定义可知,∠ADE ≌ ∠CDE。

3. 结论得证。

示例问题二:已知平面上的四点A、B、C、D,要求作一个通过点B的直线l,使得∠ABC 和∠ACD 相等。

解决步骤: 1. 连接BD并延长,使得BD和CD相等。

2. 在直线BD上取一点E,使得DE与AC平行。

3. 连接AE。

4. 由平行线的性质可知,∠BAE ≌ ∠CAD。

5. 由平分线的定义知,BE是∠ABC的平分线,且∠BAE ≌ ∠BAD。

6. 结论得证。

四、教学过程1. 角的平分线的概念讲解通过示意图和实例,引入角的平分线的概念和定义。

2. 角的平分线的性质讲解解释角的平分线的性质,包括平分线将角分成两个相等的角。

3. 角的平分线的判断方法讲解讲解如何判断一个直线是否为角的平分线,通过实例进行演示。

4. 角的平分线的应用讲解结合示例问题,讲解角的平分线的应用方法,引导学生掌握解题思路。

5. 练习和巩固进行一些练习题,巩固学生对角的平分线的理解和应用。

五、课堂小结对本节课的内容进行总结,并强调重点和难点。

八年级数学上册《角平分线的性质和判定定理》教案、教学设计

八年级数学上册《角平分线的性质和判定定理》教案、教学设计
3.思考题:
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。

人教版初中八年级数学上册角的平分线的性质教案

人教版初中八年级数学上册角的平分线的性质教案

12.3 角的平分线的性质(1)教学内容本节课首先介绍作一个角的平分线的方法,然后用三角形全等证明角平分线的性质定理.教学目标1.知识与技能通过作图直观地理解角平分线的两个互逆定理.2.过程与方法经历探究角的平分线的性质的过程,领会其应用方法.3.情感、态度与价值观激发学生的几何思维,启迪他们的灵感,使学生体会到几何的真正魅力.重点难点1.重点:领会角的平分线的两个互逆定理.2.难点:两个互逆定理的实际应用.教具准备投影仪、制作如课本图11.3─1的教具.教学方法采用“问题解决”的教学方法,让学生在实践探究中领会定理.教学过程一、创设情境,导入新课【问题探究】(投影显示)如课本图11.3─1,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1•)直观地进行讲述,提出探究的问题.【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理.【教师活动】请同学们和老师一起完成下面的作图问题.操作观察:已知:∠AOB.求法:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线OC,射线OC•即为所求(课本图11.3─2).【学生活动】动手制图(尺规),边画图边领会,认识角平分线的定义;同时在实践操作中感知.【媒体使用】投影显示学生的“画图”.【教学形式】小组合作交流.二、随堂练习,巩固深化课本P19练习.【学生活动】动手画图,从中得到:直线CD与直线AB是互相垂直的.【探研时空】(投影显示)如课本图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?【教师活动】操作投影仪,提出问题,提问学生.【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD、PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.”论证如下:已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(课本图11.3─4)求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°在△PDO和△PEO中,,,,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDO ≌△PEO (AAS )∴PD=PE【归纳如下】角的平分线上的点到角的两边的距离相等.【教学形式】师生互动,生生互动,合作交流.三、情境合一,优化思维【问题思索】(投影显示)如课本图11.3─5,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,•离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线. 证明如下:已知:PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=PE .求证:点P 在∠AOB 的平分线上.证明:经过点P 作射线OC .∵PD ⊥OA ,PE ⊥OB∴∠PDO=∠PEO=90°在Rt △PDO 和Rt △PEO 中,,,OP OP PD PE =⎧⎨=⎩∴Rt △PDO ≌Rt △P EO (HL ) ∴∠AOC=∠BOC ,∴OC 是∠AOB 的平分线.【教师活动】启发、引导学生;组织小组之间的交流、讨论;帮助“学困生”.【归纳】到角的两边的距离相等的点在角的平分线上.【教学形式】自主、合作、交流,在教师的引导下,比较上述两个结论,弄清其条件和结论,加深认识.四、范例点击,应用所学【例】如课本图11.3─6,△ABC的角平分线BM,CN相交于点P,求证:点P•到三边AB,BC,CA的距离相等.【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.【教师活动】操作投影仪,显示例子,分析例子,引导学生参与.证明:过点P作PD、PE、PF分别垂直于AB、B C、CA,垂足为D、E、F.∴BM是△ABC的角平分线,点P在BM上.∴PD=PE同理 PE=PF∴PD=PE=PF即点P到边AB、BC、CA的距离相等.【评析】在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.【学生活动】参与教师分析,主动探究学习.五、随堂练习,巩固深化课本P50练习1、2.六、课堂总结,发展潜能1.学生自行小结角平分线性质及其逆定理,和它们的区别.2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,•说明这一点是三角形的内切圆的圆心(为以后学习设伏).七、布置作业,专题突破课本P51习题12.3第1、2、3题.板书设计把黑板分成三部分,左边部分板书概念、定理等,中间部分板书探究,右边部分板书例题,重复使用时,中间部分和右边部分板书练习题.。

角的平分线的性质 初中八年级上册数学教案教学设计课后反思 人教版

角的平分线的性质 初中八年级上册数学教案教学设计课后反思 人教版

教师姓名朱军单位名称陆川县沙坡镇第二初级中学填写时间2020年8月学科数学年级/册八年级上册教材版本人教版课题名称第十二章12.3《角的平分线的性质》难点名称运用角平分线性质进行简单的推理及解决实际问题。

难点分析从知识角度分析为什么难本节内容在数学知识体系中起着承上启下的作用。

教材的安排由浅入深、由易到难、知识结构合理,符合学生的认知特点和认知规律。

从学生角度分析为什么难学生已学习了三角形全等的判定方法,能运用全等三角形的知识解决一些线段相等、角相等的问题,为接下来的学习奠定了知识和技能基础。

难点教学方法经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力。

教学环节教学过程导入复习导入:1.角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

复习检测:2.下图中能表示点P到直线l的距离的3.用尺规作已知角的平分线的理论依据是( )A.SASB.AASC.SSSD. ASA知识讲解(难点突破)新课:1.角的平分线的作法(尺规作角的平分线)观察领悟作法,探索思考证明方法:画法:1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N。

2.分别以M,N为圆心。

大于 1/2 MN的长为半径作弧.两弧在∠AOB的内部交于C。

3.作射线OC。

射线OC即为所求。

2、为什么OC是角平分线呢?(议一议,写一写)已知:OM=ON,MC=NC。

求证:OC平分∠AOB。

证明: 连接CM,CN在△OCM和△OCN中,OM=ONMC=NCOC=0C∴ △OCM ≌ △OCN (SSS)∴ ∠ MOC=∠NOC∴ OC平分∠AOB3、角平分线的性质定理:角的平分线上的点到角的两边的距离相等用符号语言表示为:∵ ∠1= ∠2PD ⊥OA ,PE ⊥OB∴PD=PE(角的平分线上的点到角的两边的距离相等)4、应用小结:角平分线的性质定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。

八年级数学上册《角平分线的性质定理》教案、教学设计

八年级数学上册《角平分线的性质定理》教案、教学设计
三、教学重难点和教学设想
(一)教学重点
1.角平分线的定义及其性质定理的理解和应用。
2.能够运用角平分线的性质解决实际问题,提高几何推理能力。
3.培养学生运用数学符号和几何语言进行表达的能力。
(二)教学难点
1.角平分线性质定理的推导过程,以及如何引导学生从具体实例中抽象出一般性结论。
2.学生在解决实际问题时,对角平分线性质的灵活运用和与其他几何知识的综合运用。
(二)过程与方法
在本章节的学习过程中,引导学生采用以下方法:
1.采用直观演示法,通过实际操作,让学生感受角平分线的定义和性质,培养学生的观察能力和动手操作能力。
2.采用问题驱动法,设置一系列具有启发性的问题,引导学生主动探究角平分线的性质定理,提高学生的问题解决能力和合作学习能力。
3.运用比较法,将角平分线与其他线段(如中垂线、高线等)进行对比,让学生发现它们之间的联系与区别,提高学生的概括和总结能力。
(4)巩固:设计不同难度的练习题,让学生在实际操作中巩固所学知识,提高解决问题的能力。
(5)拓展:布置一些具有挑战性的问题,鼓励学生发挥想象力和创造力,提高学生的几何思维能力。
3.教学评价:
(1)关注学生在课堂上的表现,观察学生对角平分线性质的理解程度和应用能力。
(2)通过课后作业和小测验,了解学生对知识点的掌握情况,针对性地进行辅导。
八年级数学上册《角平分线的性质定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解角平分线的定义,了解其基本性质,能够准确识别并画出角平分线。
2.掌握角平分线性质定理的内容,并能够运用该定理解决相关问题。
3.学会运用角平分线性质解决实际问题时,能够灵活运用数学符号和几何语言进行表达。

人教版八年级数学上册教案角的平分线的性质

[活动6]随堂练习
课本P109练习。
师:放投影8。
生:两个学生板演。
巩固深化。
[活动7]
小结:我们这节课学习了那些知识?有那些运用?
师:放投影9,总结。
生:回顾、总结、提高。
系统知识点,加深理解、印象。
[活动8]
布置作业:教科书P110习题第2、3题
巩固提高。
板书设计
13.3角的平分线的性质
*证明直角三角形全等的方法有哪些?
教师提问,学生与老师一起完成探究过程。
学生独立说明。
学生相互讨论,交流,归纳。(板演习题)
教师放投影4。
学生独立作图,思考,发现直线CD与直线AB的关系。
培养学生的抽象思维能力和运用三角形全等的知识(SSS)解决问题的能力。
从实验抽象出几何模型,明确几何作图的基本思路和方法。
培养学生运用直尺和圆规作已知角的平分线的能力。
让学生掌握过直线上一点作已知直线的垂线的方法。
[活动4]
问题1:从上面的研究中我们知道了如何作一个已知角的角平分线以及证明方法。
探究:如何利用直角三角形全等的方法找出角平分线上任意一点到角的两边的距离的关系?(点到线的距离)
师:提问题。
生:小组讨论。
师:放投影5,引导得出结论
---角平分线的性质。
培养学生的数学抽象概括能力及理性精神。
(6)归纳角平分线的作法。
作一个平角∠AOB,作出它的角平分线OC得到直线CD。你能说出直线CD与直线AB的关系吗?
师:首先将问题提出,然后运用教具直观的进行讲述,提出探究的问题。(用所学知识解释它的道理)
生:小组讨论后得出:根据三角形全等条件“边边边”判定方法,可以说明这个仪器的制作原理。

新人教版初中八年级数学上册《角的平分线的性质》教学课件


等于1/2MN:不容易操作
A M
O
N
B
N
B
探究一:角的平分线的作法
练一练: 任意画一角∠AOB,作它的平分线.
探究二:角的平分线的性质 如图,将∠AOB对折,再折出一个直角三角形(使第
一条折痕为斜边),然后展开.观察两次折叠形成的三 条折痕,三条折痕分别表示什么?你能得出什么结论?
猜想:PD=PE
直距离” 这一条件
B
B
A
D
C
A
D
C (2)∵ 如上右图, DC⊥AC,DB⊥AB (已知).
∴ BD = CD ,
缺少“角 平分线” 这一条件
( 在角的平分线上的点到这个角的两边的距离相等 )×
角的平分线的性质: 角的平分线上的点到角的两边的距离相等.
应用所具备的条件:(1)角的平分线;
(2)点在该平分线上; (3)垂直距离.
E
探究一:角的平分线的作法
如图,已知:∠AOB.求作:∠AOB的平分线.
(1)以“适当的长为半径”是为了方便画图,不能太长,
也不能太短.
(2)“以大于1 MN的长为半径画弧”是因为小于 1MN的
长为半径画弧2时两弧没有交点,等于1
2 MN的长为半径画
2
弧时不容易操作.
小于1/2MN:没有交点
A
M
探究二:角的平分线的性质 练一练: 下面四个图中,点P都在∠AOB的平分线上,则图形( D )中PD=PE.
利用角平分线的性质时,非常重要的条件是PD和PE是到
角两边的距离.
【解答过程】选项A中如果增加一个条件OD=OE,就能得出PD=PE;选 项B和C中PD不是到OA的距离;选项D中P到OA和OB的距离为PD和PE.

人教版初中公开课一等奖教案《角平分线的性质》

人教版初中公开课一等奖教案《角平分线的性质》(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。

你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流探究新知(活动一)探究角平分仪的原理。

具体过程如下:播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。

以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。

其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。

使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交叉点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。

人教版八年级数学上册教案《角的平分线的性质》

《12.3 角的平分线的性质》教学设计第一课时教材分析:本节内容是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式——利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等.角的平分线的性质反映了角的平分线的基本特征,常用来证明两条线段相等.角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法.教学目标:【知识与能力目标】1.掌握利用逻辑推理的方法证明角平分线的性质和判定定理;2.掌握作已知角平分线的方法;了解证明几何命题的一般步骤和格式.【过程与方法】1.在探索问题的过程中体会知识间的关系,能够进行有条理地思考,并进行简单的推理.2.使学生能够利用角平分线的性质和判定定理解决相应的问题.【情感态度与价值观】在探究角的平分线的作法及性质的过程中,培养学生探究问题的兴趣,获得解决问题的成功体验,增强解决问题的信心.教学重难点:【教学重点】探究角平分线的性质,能够利用其解决相关实际问题.【教学难点】角平分线性质的推导过程.课前准备:三角板、直尺、圆规(多媒体课件及几何画板)教学过程:问题1:在练习本上画一个角,怎样得到这个角的平分线?用量角器度量,也可用折纸的方法.[追问1] 你能评价这些方法吗?在生产生活中,这些方法是否可行呢?[追问2] 下图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是∠DAB 的平分线.你能说明它的道理吗?师生探究,说明其中的原理(利用“边边边”),进而得到利用尺规作角平分线的方法.教师出示作图过程:已知:∠AOB.求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N.(2) 分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 内部相交于点C. (3) 画射线OC.射线OC 即为所求.教师提出问题:角的平分线有哪些性质呢,请同学们与我一同来探究一下吧!【设计意图】1.创设情境,通过实践探究角平分线的作法,引起学生的探究兴趣,引出本节课的内容.2.培养学生的抽象思维能力和运用三角形全等的知识(SSS )解决问题的能力.3.从试验抽象出几何模型,明确几何作图的基本思路和方法.问题2 【探究1】如图,将∠AOB的两边对折,再折个直角三角形(以第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得到什么结论?你能利用所学过的知识,说明你的结论的正确性吗?[师生活动]学生活动:学生首先独立操作,然后观察操作后的图形,进行讨论,经过讨论发现,折痕DP和折痕PE与其他边有着特殊的关系:(1)PD⊥OA,PE⊥OB;(2)PD=PE.然后寻找上述结论成立的理由:(1)由折叠过程可以得到;由(2)可以利用三角形全等的条件得到,△OPD≌△OPE,进而得到PD=PE.教师活动:组织学生独立操作、思考,在此基础上进行讨论,鼓励学生大胆发言,并对自己的看法作出判断.最后引导学生归纳角平分线的性质:角平分线上的点到角两边的距离相等.【探究2】我们已经知道角平分线上的点到角两边的距离相等,那么若一个点到角两边的距离相等,这个点是否在这个角的平分线上呢?谈谈你的看法.如图,已知PD⊥OA,PE⊥OB,且PD=PE,那么P点在∠AOB的平分线上吗?为什么?[师生活动]学生活动:学生独立思考,自主探索,利用三角形全等解决问题.考虑连接OP,由条件OP=OP,PD=PE,可以判断Rt△OPD≌Rt△OPE,于是得到∠DOP=∠EOP,即OP 平分∠AOB.教师活动:引导学生对所得出的结论进行推理,在推理的过程中注重学生语言的准确性和简洁性,最后归纳:角的内部到角的两边的距离相等的点在角的平分线上.[练习]练习1 下列结论一定成立的是.(1)如图,OC 平分∠AOB,点P 在OC 上,D,E 分别为OA,OB 上的点,则PD =PE.(2)如图,点P 在OC 上,PD⊥OA,PE⊥OB,垂足分别为D,E,则PD =PE.(3)如图,OC 平分∠AOB,点P 在OC 上,PD⊥OA,垂足为D.若PD =3,则点P 到OB 的距离为3.[练习2] 如图,△ABC中,∠B =∠C,AD 是∠BAC 的平分线, DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB =FC.【设计意图】1.培养学生的数学抽象概括能力及理性精神.2.通过小组合作学习,动手操作探究,获得问题结论,从实践中学习知识.3.运用三角形全等的有关知识,归纳、证明角的平分线的性质与判定.通过举例,说明角的平分线的性质在生活、生产中的应用,提高学生解决问题的能力.问题3:例1要在S区建立一个集贸市场,使它到公路、铁路的距离相等,且离公路与铁路的交叉处500米.这个集贸市场应建于何处(比例尺为1∶20000)?[师生活动]学生活动:学生小组合作,在独立思考的基础上小组交流,发现若到公路、铁路的距离相等,则集贸市场一定在上述角的平分线上,于是可以用尺规作出角平分线,然后根据比例尺画出集贸市场所在地即可.教师活动:组织学生思考、讨论、交流,引导学生发现集贸市场所在地应在角平分线上这个结论.例2如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边AB,BC,CA 的距离相等.[思路点拨]因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.[变式]△ABC的面积是24 cm2,它的三条内角平分线的交点到AB的距离为3 cm,则△ABC的周长为________.【设计意图】1.利用所学的数学知识解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段.2.教师注意提醒学生:在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.问题4:探究交流:你能找到OP=OP′的条件吗?已知点C是∠AOB平分线上一点,点P,P′分别在OA,OB上,如果要得到OP=OP′,需要添加下列条件中的某一个即可.请写出所有可能的条件的序号________.①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC;⑤CP⊥OA且CP′⊥OB.[解析] 这是一道角平分线的性质与三角形全等知识的综合题,可通过是否具备全等,是否具备角平分线性质中的条件来加以判断.①如果∠OCP=∠OCP′,又因为∠POC=∠P′OC,OC=OC,可证△POC≌△P′OC(ASA),得到OP=OP′;②如果∠OPC=∠OP′C,因为∠POC=∠P′OC,OC=OC,可证△POC≌△P′OC(AAS),得到OP=OP′;④如果PP′⊥OC,设PP′交OC于D,因为∠ODP=∠ODP′,∠POC=∠P′OC,OD=OD,可证△POD≌△P′OD(ASA),得到OP=OP′;⑤如果CP⊥OA且CP′⊥OB,因为∠POC=∠P′OC,所以CP=CP′.又因为OC=OC,可证△POC≌△P′OC(HL),得到OP=OP′;③如果PC=P′C,因为∠POC=∠P′OC,OC=OC,这样三个条件不能证明三角形全等,当CP不垂直于OA时,以C为圆心,CP为半径画弧与OP有两个交点,其中的一个交点使△OP′C≌△OPC不成立.所以正确答案为①②④⑤.【设计意图】1.巩固本节课所学知识及提升综合应用所学知识解决问题的能力.2.培养学生的归纳概括能力及分析问题、思考问题的探究能力.问题5:课堂小结:(1)学生自行小结角平分线性质及其判定定理和它们的区别.(2)说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,说明这一点是三角形的内切圆的圆心(为以后学习设伏).布置作业:布置作业:课本P51中的习题12.3.【设计意图】课堂小结,发展潜能;布置作业,专题突破.问题6 知识网络:【设计意图】框架图式总结,更容易形成知识网络.教学反思:1.本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法,从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步地加强巩固和训练.2.教师教学中注意:学生对定理的图形语言认识不足.角平分线上的点到角两边的距离是指这个点到角两边的垂线段的长度,而不是过此点与角平分线垂直(或仅仅相交)的直线与角两边相交所得的线段的长度.学生往往出现如下错误:∵点P在∠AOB的平分线上,∴PD=PE.3.通过师生互动得到结论,教学中教师要重视知识的发生发展过程.第二课时教材分析:在学生学习了角平分线性质的基础上,本节课进一步研究角平分线性质定理的逆定理——角的内部到角的两边距离相等的点在角的平分线上.这是全等三角形知识的运用和延续,是今后学习圆的内心的基础.教学目标:【知识与能力目标】探索并证明角平分线性质定理的逆定理.【过程与方法】会用角平分线性质定理的逆定理解决问题.【情感态度与价值观】培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验.教学重难点:【教学重点】角平分线性质定理的逆定理.【教学难点】角平分线的性质的探究.课前准备:多媒体教学过程:问题1:(1)交换角的平分线性质中的已知和结论,你能得到什么结论,这个新结论正确吗?角的内部到角的两边距离相等的点在角的平分线上.[追问]你能证明这个结论的正确性吗?证明略[练习]判断题:(1)如图,若QM =QN,则OQ 平分∠AOB;()(2)如图,若QM⊥OA 于M,QN⊥OB 于N,则OQ是∠AOB 的平分线;()(3)已知:Q 到OA 的距离等于2 cm,且Q 到OB 距离等于2 cm,则Q 在∠AOB 的平分线上.()(2)在S 区建一个广告牌P,使它到两条公路的距离相等.a.这个广告牌P 应建于何处?这样的广告牌可建多少个?b.若这个广告牌P 离两条公路交叉处500 m(在图上标出它的位置,比例尺为1:20 000),这个广告牌应建于何处?C.如图,点P是△ABC的两条角平分线BM,CN 的交点,点P 在∠BAC的平分线上吗?这说明三角形的三条角平分线有什么关系?证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE,同理PE=PF∴PD=PE=PF即点P到三边AB,BC,CA的距离相等.【设计意图】通过一步一步深入探究,由易到难理解新知识.问题2 如图,要在S 区建一个广告牌P,使它到两条公路和一条铁路的距离都相等.这个广告牌P 应建在何处?[变式1] 如图,△ABC 的一个外角的平分线BM 与∠BAC的平分线 AN 相交于点P,求证:点 P 在△ABC另一个外角的平分线上.[变式2] 如图,P 点是△ABC的两个外角平分线 BM,CN 的交点,求证:点 P 在∠BAC 的平分线上.[变式3] 如图,将问题3中“S 区”去掉,广告牌P到两条公路和一条铁路的距离相等.这个广告牌P 应建在何处?【设计意图】通过实际问题的探究,使所学的知识得到熟练的应用;通过不断深入的变式,使学生掌握知识的核心.问题3:课堂小结:(1)本节课学习了哪些内容?(2)本节课的结论与角平分线的性质定理的区别和联系是什么?(3)应用本节课的结论时,常作的辅助线是什么?布置作业:教科书习题12.3第3、7题.【设计意图】课堂小结,发展潜能;布置作业,专题突破.教学反思:本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法,从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步地加强巩固和训练.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的平分线的性质 第一课时 教学目标 1. 通过作图直观地理解角平分线的两个互逆定理. 2. 经历探究角的平分线的性质的过程,领会其应用方法. 3. 激发学生的几何思维,启迪他们的灵感,使学生体会到几何的真正魅力. 重、难点 1.重点:领会角的平分线的两个互逆定理. 2.难点:两个互逆定理的实际应用. 教具准备 投影仪、制作如课本图11.3─1的教具. 教学过程 一、创设情境,导入新课 【问题探究】(投影显示) 如课本图11.3─1,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗? 【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1•)直观地进行讲述,提出探究的问题. 【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理. 【教师活动】 请同学们和老师一起完成下面的作图问题. 操作观察: 已知:∠AOB. 求法:∠AOB的平分线. 作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线OC,射线OC•即为所求(课本图11.3─2). 【学生活动】动手制图(尺规),边画图边领会,认识角平分线的定义;同时在实践操作中感知. 【媒体使用】投影显示学生的“画图”. 【教学形式】小组合作交流. 二、随堂练习,巩固深化 课本P19练习. 【学生活动】动手画图,从中得到:直线CD与直线AB是互相垂直的. 【探研时空】(投影显示) 如课本图12.3─3,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?

12 【教师活动】操作投影仪,提出问题,提问学生. 【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD、PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.” 论证如下: 已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(课本图11.3─4) 求证:PD=PE. 证明:∵PD⊥OA,PE⊥OB, ∴∠PDO=∠PEO=90° 在△PDO和△PEO中,

∴△PDO≌△PEO(AAS) ∴PD=PE 【归纳如下】 角的平分线上的点到角的两边的距离相等. 【教学形式】师生互动,生生互动,合作交流. 三、情境合一,优化思维 【问题思索】(投影显示)

,,,PDOPEOAOCBOCOPOP



如课本图11.3─5,要在S区建一个集贸市场,使它到公路、铁路的距离相等,•离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?

【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线. 证明如下: 已知:PD⊥OA,PE⊥OB,垂足分别是D、E,PD=PE. 求证:点P在∠AOB的平分线上. 证明:经过点P作射线OC. ∵PD⊥OA,PE⊥OB ∴∠PDO=∠PEO=90° 在Rt△PDO和Rt△PEO中,

∴Rt△PDO≌Rt△PEO(HL) ∴∠AOC=∠BOC, ∴OC是∠AOB的平分线. 【教师活动】启发、引导学生;组织小组之间的交流、讨论;帮助“学困生”. 【归纳】到角的两边的距离相等的点在角的平分线上.

,,OPOPPDPE

 【教学形式】自主、合作、交流,在教师的引导下,比较上述两个结论,弄清其条件和结论,加深认识. 四、范例点击,应用所学 【例】 如课本图12.3─6,△ABC的角平分线BM,CN相交于点P,求证:点P•到三边AB,BC,CA的距离相等. 【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写. 【教师活动】操作投影仪,显示例子,分析例子,引导学生参与. 证明:过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F. ∴BM是△ABC的角平分线,点P在BM上. ∴PD=PE 同理 PE=PF ∴PD=PE=PF 即点P到边AB、BC、CA的距离相等. 【评析】在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程. 【学生活动】参与教师分析,主动探究学习. 五、随堂练习,巩固深化 课本P22练习. 六、课堂总结,发展潜能 1.学生自行小结角平分线性质及其逆定理,和它们的区别. 2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,•说明这一点是三角形的内切圆的圆心(为以后学习设伏). 七、布置作业,专题突破 1.课本P22习题11.3第1、2、3题. 2.选用课时作业设计. 第二课时 教学目标 1.知识与技能 能应用角的平分线的性质定理解决一些实际的问题. 2. 经历探索角的平分线性质的应用过程,领会几何分析的内涵,掌握综合法的表达思想. 3. 激发学生的逻辑思维,在比较中获取知识,使学生感悟几何的简练思维. 重、难点 1.重点:应用角的平分线性质定理. 2.难点:应用“综合法”进行表达. 教具准备 投影仪、幻灯片、直尺、圆规. 教学方法 一、回顾交流,练中反思 【概念复习】 【教学提问】同学们能否从集合的观点来说明角的平分线的性质. 【学生活动】在教师对“集合”的思想做初步讲解后,学生可以通过交流得出:角的平分线是到角的两边距离相等的所有点的集合. 【分层练习】(投影显示) 1.已知:如图1,△ABC中,AD是角的平分线,BD=CD,DE、DF分别垂直于AB、AC,E、F是垂足,求证:EB=FC.

【思路点拨】只要证明EB和FC分别所在的两个三角形全等(△EBD≌△FCD). 【教师活动】操作投影仪,巡视,启发引导,适时提问. 【学生活动】小组合作学习,寻求解题思路,踊跃上台演示自己的证明. 证明:∵AD是角的平分线,DE⊥AB,DF⊥AC, ∴DE=DF 在△EBD和△FCD中,

∴△EBD≌△FCD(HL) ∴EB=FC 【媒体使用】投影显示“分层练习1”和学生的练习. 【教学形式】小组合作(4人小组)交流,然后全班汇报,以练

90,,.BEDCFDBDCDDEDF



促思. 2.已知:如图2,河的南区有一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且与河上公路桥的距离为300米,在图上标出工厂的位置,并说明理由.

【思路点拨】画图略,根据角的平分线性质,工厂应在河流与公路交角的平分线上. 【教师活动】操作投影仪,提出问题,参与学生的思考和讨论. 【学生活动】分四人小组积极地讨论,得出结论,踊跃发表自己的看法. 【媒体使用】投影显示“分层练习2”. 【教学形式】合作学习,生生互动交流. 二、操作观察,辨析理解 首先按如下步骤进行操作: (1)在一张纸上任意画一个角(角的边不要画得太短)∠AOB. (2)剪下所画的角. (3)折叠所画的角,使角的两边OA与OB重合,设折痕为Ox,如图3. (4)在折叠形成的两层纸之间放入复写纸. (5)在Ox上取一点P,并且过点P画OA的垂线. (6)拿出复写纸,并且把折叠的纸展开观察展开后的图形,并进行思考,上面的操作反映了哪条规律?是课本上一节课中的那个概念吗? 【教师活动】操作投影仪,巡视,参与学生的讨论,引导启发. 【学生活动】分四人小组合作学习,从操作中感悟知识和规律,得到结论:反映规律是:角的平分线上的点到角的两边距离相等. 【媒体使用】投影显示“操作思考”. 三、课堂演练,系统跃进 1.已知:如图4,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:(1)AE=CF;(•2)AB∥CD.

[提示]应用HL证Rt△ABC≌Rt△CED 2.已知:如图5,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,•垂足分别是M、N,求证PM=PN.

[提示]∵∠ABD=∠CBD,AB=CB,BD=BD,∴△ABD≌△CBD,∴∠DCBA

NPM

相关文档
最新文档