高考数学大题考法—导数与函数的单调性、极值、最值

合集下载

高考冲刺导数的单调性、极值点、极值、最值

高考冲刺导数的单调性、极值点、极值、最值

微专题函数的单调性、极值点、极值、最值【考情分析】利用导数研究函数的单调性、极值、最值问题是高考考查的重要内容之一,多在选择题、填空题的后几题中出现,难度中等,有时出现在解答题中.重点考查分类讨论思想、函数与方程思想、转化与化归思想,对学生的分析问题的能力要求较高,考查考生的逻辑推理、数学抽象的学科核心素养.考点一 利用导数研究函数的单调性 【必备知识】1、函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间),(b a 内 (1)如果0)('>x f ,那么函数)(x f y =在),(b a 单调递增; (2)如果0)('<x f ,那么函数)(x f y =在),(b a 单调递减; (3)如果0)('=x f ,那么函数)(x f y =在),(b a 上是常数函数. 2、由导数求单调区间的步骤 (1)求定义域.(2)求导数.(3)由导数大于0求单调递增区间,由导数小于0求单调递减区间. 3、两个条件(1)0)('>x f 是函数)(x f 为增函数的充分不必要条件. (2)0)('≤x f 是函数)(x f 为减函数的必要不充分条件. 4、三点注意(1)在函数定义域内讨论导数的符号.(2)两个或多个增(减)区间之间的连接符号,不用“∪”,可用“,”或用“和”. (3)区间端点可以属于单调区间,也可以不属于单调区间. 【典型例题】【例1】已知函数11)1ln()(2--+-=x ax x x f ,当0>a 时,讨论函数)(x f 的单调性.【解析】函数11)1ln()(2--+-=x ax x x f 的定义域为),1(+∞∈x ,则222')1()12()1()1()1(211)(---=----+-=x a a x x x ax x ax x x f ,令0)('=x f 解得aa x 12-=,当112=-aa 即a=1时,0)1()(2'>-=x x x f 恒成立,则)(x f 的单调递增区间为),1(+∞, 当112>-a a 即a>1时,)(x f 的单调递增区间为),12(+∞-a a ,单调递减区间为)12,0(a a -, 当112<-aa 即0<a<1时,)(x f 的单调递增区间为),1(+∞, 综上所述:当10≤<a 时,)(x f 的单调递增区间为),1(+∞;当a>1时,)(x f 的单调递增区间为),12(+∞-a a ,单调递减区间为)12,0(aa -。

高考三轮冲刺导数单调性与极值最值压轴题方法归纳

高考三轮冲刺导数单调性与极值最值压轴题方法归纳

导数与单调性、极值、最值问题【题型】一.函数的单调性求参数 二.极值与参数 三.最值与参数 四.极值点偏移 五.恒成立问题求参数 【方法规律总结】 一.函数的单调性求参数 例1.已知函数()()()211ln ln 22x x f k k x x R =---∈. (1)当0k =时,求证:函数()f x 在()0,∞+上单调递增; (2)当1k >时,讨论函数()f x 的零点的个数.【解析】(1)()l 'n ln 1x f x x xx x-=-=, 令()()1ln '1x x g x g x x=-⇒=-,易得()g x 在(]0,1上递减,()1,+∞上递增,∴()()()min 110'0g x g f x ==>⇒>,∴函数()f x 在()0,∞+上单调递增. (2)()n 'l ln 1x k x x xf x x kx --=--=,由(1)知当1k >时,方程ln x x k -=有两个根1x ,2x , 且易知1201x x <<<,则()f x 在()10x ,上单调递增,在()12,x x 上单调递减,在()2,x +∞单调递增. 所以1x 为()f x 的极大值点,2x 为()f x 的极小值点. 显然()22211022kk f ee e ---=-<-<,()()1112f x f >=, ∴()f x 在()10,x 仅有唯一零点. 又()222221122nknk nk f ee n k nk e n k =--->-,(当n 为较大的整数时), 设()2xh x e x =-,则()2xh x e x '=-,()2xh x e ''=-当1x >时,()0h x ''>,()2xh x e x '=-单调递增,即()()120h x h e ''≥=->.所以()2xh x e x =-在()1+¥, 单调递增,即()()110h x h e ≥=->,即()0nkf e>(当n 为较大的整数时).于是下面讨论()2f x 的正负情况:()2222211ln ln 22f x x x k x =---()22222211ln ln ln 22x x x x x =----2222211ln ln 22x x x x =-+-. 构造函数()211ln ln 22F x x x x x =-+-()()1ln ln '11ln 0x x xF x x x x-⇒=+--=≤,且()0f e =. ①当21x e <<时,22ln k x x =-在()1,e 递增,得()1,1k e ∈-,此时()()220f x F x =>,则函数()f x 在()0,∞+上只有一个零点.②当2x e =时,显然1k e =-,函数()f x 在()0,∞+上有两个零点.③当2x e >时,22ln k x x =-在(),e +∞递增,得()1,k e ∈-+∞,此时()()220f x F x =<,则函数()f x 在()0,∞+上有三个零点.综上,()1,1k e ∈-,函数()f x 在()0,∞+上有一个零点;1k e =-时,函数()f x 在()0,∞+上有两个零点;()1,k e ∈-+∞,函数()f x 在()0,∞+上有三个零点.练习1.已知函数2()ln (21)?(0)f x a x x a x a =-+-≥. (1)讨论()f x 的单调性;(2)若()0f x ≤,求a 的取值范围. 【解析】(1)由()()()()21221x a x af x x a x x-+=-+-=-', 当a =0时,()210f x x '=-+<,则f (x )在(0,+∞)上递减, 当a >0时,令f '(x )=0得x a =或12x =-(负根舍去), 令f '(x )>0得0x a <<;令f '(x )<0得x a >,所以f (x )在()0a ,上递增,在()a +∞,上递减. 综上:a =0时, f (x )在(0,+∞)上递减,a >0时,f (x )在()0a ,上递增,在()a +∞,上递减 (2)由(1)当a =0时,f (x )=﹣2x x -≤0,符合题意,当a >0时,()2()0max f x f a alna a a ==+-≤,因为a >0,所以10lna a +-≤,令()g a =1lna a +-,则函数单调递增,又()10g = ,故 10lna a +-≤得01a <≤ 综上,a 的取值范围为[]0,1.练习2.已知函数2()()(1)x f x x a e a x =+-+.(1)当0a =时,求函数()f x 在()()11f ,处的切线方程; (2)若2a -…,证明:当0x …时,()0f x …. 【解析】当0a =时,2()x f x x e =g ,2()(2)x f x x x e '=+g ,()13f e '=,()1f e =,∴函数()f x 的图象在()()1,1f 处的切线方程3(1)y e e x -=-,即320ex y e --=;(2)证明:2()(2)x f x x x a e a '=++-,令2()(2)x g x x x a e a =++-,则2()(42)x g x x x a e '=+++,2a -Q …,∴当0x …时,22(42)(4)0x x x x a e x x e ++++厖,即()0g x '…且不恒为零.()g x ∴在[0,)+∞上是增函数,故()(0)0g x g =…,即()0f x '…,()f x ∴在[0,)+∞上是增函数,()(0)0f x f ∴=…,即()0f x ….故若2a -…,则当0x …时,()0f x …. 练习3.已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【解析】(1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>',对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数;②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得2a x -<或2a x ->,022a a ---+<<,()f x ∴在0,2a ⎛- ⎪⎝⎭为增函数,22a a ⎛--+ ⎪⎝⎭减函数.⎫+∞⎪⎪⎝⎭为增函数, 当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数。

第3讲 导数与函数的单调性、极值、最值问题

第3讲 导数与函数的单调性、极值、最值问题

4
真题感悟 考点整合
热点聚焦 分类突破
3.(2020·新高考山东、海南卷)已知函数f(x)=aex-1-ln x+ln a.
@《创新设计》
(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积; (2)若f(x)≥1,求a的取值范围.
解 f(x)的定义域为(0,+∞),f′(x)=aex-1-1x. (1)当a=e时,f(x)=ex-ln x+1,f(1)=e+1,f′(1)=e-1,曲线y=f(x)在点(1,f(1)) 处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2. 直线 y=(e-1)x+2 在 x 轴,y 轴上的截距分别为e--21,2. 因此所求三角形的面积 S=12|x|·|y|=12×2×e-2 1=e-2 1.
@《创新设计》
第3讲 导数与函数的单调性、极值、最值问题
1
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
高考定位 利用导数研究函数的性质,能进行简单的计算,以含指数函数、对数 函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的 问题.
2
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
9
真题感悟 考点整合
热点聚焦 分类突破
③若 2a+1≥2,即 a≥12,则 g(x)≤12x3+x+1e-x.
由于 0∈7-4 e2,12,故由②可得12x3+x+1e-x≤1.
故当 a≥12时,g(x)≤1. 综上,a 的取值范围是7-4 e2,+∞.
@《创新设计》
10
真题感悟 考点整合
热点聚焦 分类突破
真题感悟
1.(2020·全国Ⅰ卷)函数f(x)=x4-2x3的图象在点(1,f(1))处的切线方程为( )

高考复习-利用导数研究函数的单调性及极值和最值

高考复习-利用导数研究函数的单调性及极值和最值

利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。

2021年高考数学高分套路 利用导数求函数的单调性、极值、最值(原卷版)

2021年高考数学高分套路 利用导数求函数的单调性、极值、最值(原卷版)

利用导数求函数的单调性、极值、最值【套路秘籍】---千里之行始于足下一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减.二.函数的极值(1)一般地,求函数y =f (x )的极值的方法解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【修炼套路】---为君聊赋《今日诗》,努力请从今日始考向一单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-;(2)2()ln f x x x =-.(3))f (x )=2x -x 2.【套路总结】用导数研究函数的单调性(1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0(2)用导数求函数的单调区间①求函数的定义域D②求导'()f x ③解不等式'()f x >()<0得解集P ④求D P ,得函数的单调递增(减)区间。

导数的应用-单调性、极值与最值10大题型

导数的应用-单调性、极值与最值10大题型

导数的应用-单调性、极值与最值10大题型导数与函数是高中数学的核心内容,高考中经常在函数、导数与不等式等模块的知识交汇处命题,形成层次丰富的各类题型,常涉及的问题有利用导数解决函数的单调性、极值和最值;与不等式、数列、方程的根(或函数的零点),三角函数等问题。

此类问题体现了分类讨论、数形结合、转化与化归等数学思想,重点考查学生的数形结合能力,处理综合性问题的能力和运算求解能力。

本题考试难度大,除了方法与技巧的训练,考生在复习中要注意强化基础题型的解题步骤,提高解题熟练度。

一、导数与函数的单调性相关问题及解决方法1、求函数单调区间的步骤(1)确定函数()f x 的定义域;(2)求()f x '(通分合并、因式分解);(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.2、已知函数的单调性求参数(1)函数()f x 在区间D 上单调增(单减)⇒)(00)(≤≥'x f 在区间D 上恒成立;(2)函数()f x 在区间D 上存在单调增(单减)区间⇒)(00)(<>'x f 在区间D上能成立;(3)已知函数()f x 在区间D 内单调⇒)(x f '不存在变号零点(4)已知函数()f x 在区间D 内不单调⇒)(x f '存在变号零点3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。

二、利用导数求函数极值的方法步骤(1)求导数()f x ';(2)求方程()0f x '=的所有实数根;(3)观察在每个根x 0附近,从左到右导函数()f x '的符号如何变化.①如果()f x '的符号由正变负,则0()f x '是极大值;②如果由负变正,则0()f x '是极小值.③如果在()0f x '=的根x =x 0的左右侧()f x '的符号不变,则不是极值点.三、函数的最值与极值的关系1、极值是对某一点附近(即局部)而言,最值时对函数的定义区间[,]a b 的整体而言;2、在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);3、函数()f x 的极值点不能是区间的端点,而最值点可以是区间的端点;4、对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得。

新高考数学二轮复习知识点总结与题型归纳 第6讲 导数的应用之单调性、极值和最值(解析版)

第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。

新高考数学二轮复习知识点总结与题型归纳 第6讲 导数的应用之单调性、极值和最值(原卷版)

第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln xf x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '>2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( ) A. 0,6π⎛⎫⎪⎝⎭ B. ,6ππ⎛⎤⎥⎝⎦ C. ,3ππ⎛⎤ ⎥⎝⎦ D. 2,33ππ⎛⎤ ⎥⎝⎦3.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( )A. 0B. 32-C. 32D. -14.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫=⎪⎝⎭,则f(x)( ) A. 有极大值,无极小值 B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值5.设a R ∈,若函数,xy e ax x R =+∈有大于零的极值点,则( ) A. 1a e <- B. 1a e>- C. 1a >- D. 1a <-6.6.已知函数恰有两个极值点,则实数a 的取值范围是( )A. ()1,+∞B. (),e +∞C. ,2e ⎛⎫+∞⎪⎝⎭D. ()2,e +∞7.若2x =-是函数()()211x f x x ax e -=+-的极值点,则()f x 的极小值为( )A. 1-B. 32e --C. 35e - D. 18.已知0.2log 5a =、3log 2b =、0.22c =、212d -⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m 使函数()32123f x x mx x =+++有极值点的概率为( )A. 14B. 12C. 34D. 19.设函数()sin f x x x =在0x x =处取得极值,则()()20011cos2x x ++的值为( )A. 1B. 1-C. 2-D. 210.已知对()0,x ∀∈+∞,不等式ln 1n x m x +≥-恒成立,则mn的最大值是 ( ) A. 1 B. 1- C. e D. e -11.若函数在内无极值,则实数a 的取值范围是( )A.B.C. D.12.若函数()()2ln xf x a x e x x =-+-存在唯一的极值点,且此极值小于0,则实数a 的取值范围为( )A. 2211,e e ⎛⎫-⎪⎝⎭ B. 11,e e ⎛⎫- ⎪⎝⎭ C. 21,0e ⎛⎤- ⎥⎝⎦ D. 1,0e ⎛⎤- ⎥⎝⎦13.已知函数()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( )A. 10,e ⎛⎫ ⎪⎝⎭B. ()0,eC. 1,e e ⎛⎫ ⎪⎝⎭D. (),e -∞14.已知定义在(0,+∞)上的连续函数()y f x =满足: ()()xxf x f x xe -='且()13f =-,()20f =.则函数()y f x =( )A. 有极小值,无极大值B. 有极大值,无极小值C. 既有极小值又有极大值D. 既无极小值又无极大值 15.已知函数()()()21,,2xx f x e a e e aex b a b R =+--+∈(其中e 为自然对数底数)在1x =取得极大值,则a 的取值范围是( )A. 0a <B. 0a ≥C. 0e a -≤<D. a e <-16.关于函数()31443f x x x =-+。

高考复习课件高考数学(文):专题1第3讲《导数与函数的单调性、极值与最值问题》


热点二 利用导数讨论含参函数的极值与最值 [微题型 1] 求含参函数的极值 【例 2-1】(2014·陕西高三质检)已知函数 f(x)=x-1+eax(a∈R,
e 为自然对数的底数). (1)若曲线 y=f(x)在点(1,f(1))处的切线平行于 x 轴,求 a 的值. (2)求函数 f(x)的极值. 解 (1)由 f(x)=x-1+eax,得 f′(x)=1-eax, 又曲线 y=f(x)在点(1,f(1))处的切线平行于 x 轴,所以 f′(1) =0, 即 1-ae=0,解之得 a=e.
(2)法一 当 k<0 时,f′(x)=3x2-2kx+1,f′(x)的图象开口向 上,对称轴为 x=3k,且过点(0,1). 当 Δ=4k2-12=4(k+ 3)(k- 3)≤0,即- 3≤k<0 时, f′(x)≥0,f(x)在[k,-k]上单调递增. 从而当 x=k 时,f(x)取得最小值 m=f(k)=k. 当 x=-k 时,f(x)取得最大值 M=f(-k)=-k3-k3-k=-2k3 -k. 当 Δ=4k2-12=4(k+ 3)(k- 3)>0,即 k<- 3时,令 f′(x) =3x2-2kx+1=0,
解得 x1=k+ 3k2-3,x2=k- 3k2-3,注意到 k<x2<x1<0, (注:可用根与系数的关系判断,由 x1·x2=13,x1+x2=23k>k, 从而 k<x2<x1<0;或者由对称结合图象判断) 所以 m=min{f(k),f(x1)},M=max{f(-k),f(x2)}. 因为 f(x1)-f(k)=x31-kx21+x1-k=(x1-k)(x21+1)>0, 所以 f(x)的最小值 m=f(k)=k. 因为 f(x2)-f(-k)=x32-kx22+x2-(-k3-k·k2-k)=(x2+k)[(x2- k)2+k2+1]<0,

高考数学一轮复习必备知识——导数与函数的单调性、极值与最值讲义(含解析)

第二节导数在研究函数中的应用第1课时必备知识——导数与函数的单调性、极值与最值1.函数f(x(1)若f′(x)>0,则f(x)在这个区间上是单调递增.(2)若f′(x)<0,则f(x)在这个区间上是单调递减.(3)若f′(x)=0,则f(x)在这个区间内是常数.2.利用导数判断函数单调性的一般步骤(1)求f′(x).(2)在定义域内解不等式f′(x)>0或f′(x)<0.(3)根据结果确定f(x)的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接.(3)若函数y=f(x)在区间(a,b)上单调递增,则f′(x)≥0,且在(a,b)的任意子区间,等号不恒成立;若函数y=f(x)在区间(a,b)上单调递减,则f′(x)≤0,且在(a,b)的任意子区间,等号不恒成立.[小题练通]1.[教材改编题]如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是( )A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.当x=2时,f(x)取到极小值答案:C2.[教材改编题]设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是( )答案:C3.[教材改编题]函数y =x 4-2x 2+5的单调递减区间为( )A .(-∞,-1)和(0,1)B .[-1,0]和[1,+∞)C .[-1,1]D .(-∞,-1]和[1,+∞) 答案:A4.[易错题]若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,+∞ B.⎝ ⎛⎦⎥⎤-∞,13 C.⎣⎢⎡⎭⎪⎫13,+∞ D.⎝ ⎛⎭⎪⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.5.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D. 6.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________. 解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0.答案:(0,+∞)1.在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档