高等数学1A卷

合集下载

高等数学试题(A卷)(9)

高等数学试题(A卷)(9)

一.填空题(每空2分,本大题满分20分)1. 设y x xy z sin -=, 则=∂∂xz__________,=∂∂∂y x z 2__________. 2. 球面6222=++z y x 在点)1,2,1(处的法向量=n__________, 切平面方程为__________________________. 3. =⎰⎰xdy y xdx 02110=⎰1dx ______.4. 幂级数∑∞=+0)1(2n n nn x 的收敛半径=R ______, 收敛域∈x ________.5. 微分方程065=+'-''y y y 的通解为=y _________________________, 微分方程xxe y y y 265=+'-''的待定特解形式为=*y ________________.二.选择题 (每小题2分, 本大题满分10分)1. ),(y x f 在点),(00y x 连续是偏导数),(00y x f x 和),(00y x f y 存在的( ). (A) 充分条件。

(B) 必要条件。

(C) 充要条件。

(D) 无关条件.2. =→→x xyy x sin lim20( ).(A) 1。

(B) 2。

(C) 21。

(D) ∞.3. 设L 为曲线2x y =上从点)0,0(到点)1,1(的一段弧, 则⎰=Lds y ( ).(A) ⎰+10241dx x 。

(B) ⎰+141dy y 。

(C) ⎰+1241dx x x 。

(D)⎰+101dy y 。

4. 下列级数条件收敛的是( ). (A)∑∞=-1)1(n nn 。

(B) ∑∞=-12)1(n n n。

(C) ∑∞=-12)1(n nn。

(D) ∑∞=-1)2(n nn .5. 方程0)(223=++dy x y xydx 是( ).(A) 可分离变量的微分方程。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

高等数学(上)期末试题(A卷)

高等数学(上)期末试题(A卷)

第 1 页 共 4 页北京师范大学珠海研究院专业教育中心2011-2012学年第一学期期末考试(A 卷)开课单位:__专业教育中心____ 课程名称:_高等数学(上)_____ 任课教师:_ ___ 考试类型:_ 闭卷 _ 考试时间:__ 120 _分钟 专业 _____ 姓名___________ 学号______________ 班级____________ 题号 一 二 三 总分得分 阅卷人试卷说明:(本试卷共4页,满分100分)一.填空题(每题3分,共30分)1.设'()f x 存在,则()()limh f x h f x h®+-=;2.2.给定抛物线给定抛物线22y x x =-+,则过点(1,2)的切线方程为 ;3. 已知函数2()23f x x x =--在区间3[1,]2-上满足罗尔定理的所有条件,则满足定理的数值x = ;4.设sin(21)y x =+,则dy = ;5.求函数()xf x e =的n 阶导数,()()x ne =; 6.6.设某产品的收入函数设某产品的收入函数32()310R x x x =-+,则其边际收入函数'()R x = ; 7.如果()f x 在点0x 处可导,且在0x 处取得极值,则0'()f x = ; 8.设函数11y x =-,则它的铅直渐近线为则它的铅直渐近线为; 9.设()F x 是()f x 的原函数,则()f x dx =ò ;10. 2[(1)]'x dx +=ò.订线二.计算题(每题5分,共30分)11. 设210(sin )y x x =+,求dy dx . 12.0cos 1lim x x x®-13. 232lim1x x x x ®¥++14. 111lim()ln 1x xx ®--15. 121dx x +ò16. ln x xdx ò三、解答题(共40分)17. 求由方程ln 1xy y +=所确定的函数()y y x =的导数'y .(10分)分)18.某煤炭公司每天生产x 吨煤的总成本函数2()20004500.02C x x x =++,若每吨煤的售价为490元,求:(1)边际成本函数'()C x (5分);(2)利润函数()L x (5分);(3)边际利润函数'()L x (5分)19.求函数43()41f x x x=-+的单调区间、凹凸区间、极值、极值点及拐点.(15分)分)。

《高等数学》2019-2020第一学期期末试卷A卷

《高等数学》2019-2020第一学期期末试卷A卷
天津大学试卷专用纸
重修生的任课教师姓名
学院
专业(大类)
班 年级
学号
姓名
共 3页 第1页
2019~2020 学年第一学期期末考试试卷 《工科数学分析 A》(A 卷)(共 3 页)
(考试时间:2020 年 1 月 6 日, 14:00-16:00)
题号 一 二 三 四 五 六 成绩 核分人签字
得分
(1) an 必有收敛子列; (2) 若an 单调, 则an 必收敛;
(3) anbn 必收敛;
(4) 若bn 有一个收敛子列, 则bn 必收敛.
(A) 1
(B) 2
(C) 3
(D) 4
5. 设 M
π
2 π
2
1 x 2 1 x2 dx ,
N
π
2 π
2
1 ex
x
dx
,
K
π
2 π
1
2
cos x dx , 则 (
).
(A) K N M (B) K M N (C) M K N (D) M N K
三、计算题(共 15 分,每小题 5 分)
x arctan x2 dx
1. 求极限 lim 0
.
x
x2 1
2. 求不定积分 1 dx .
ex 1
3. 求函数 f (x) x3 cos x 的带 Peano 余项的 2n 1 阶麦克劳林公式.
4. 设两个实数列an 有界, bn 单调, 下列四个结论中, 正确的个数是 (
1
(C)
dx
2 x ln x
(D)
21 dx
2 x2
3. 设函数 f (x) 可导, 且 f (x) 0,

安阳工学院《高等数学A(1》2021-2022期末考试

安阳工学院《高等数学A(1》2021-2022期末考试

安阳工学院《高等数学A(1》2021-2022期末考试1、[单选题] *A)垂直B)平行但直线不在平面上C)不平行也不垂直D)直线在平面上(正确答案)2、() [单选题] *A)不存在B)3(正确答案)C)6D)3、合偏导数在D内相等的()条件. [单选题] *A)必要条件B)充分条件(正确答案)C)充分必要条件D)非充分且非必要条件4、 [单选题] *A)4(正确答案)B)2C)1D)05、() [单选题] *A)-1B)0C)2(正确答案)D)16、 [单选题] *A)B)C)(正确答案)D)7、() [单选题] *A)发散B)可能收敛也可能发散(正确答案)C)收敛D)无界8、() [单选题] *A)C)(正确答案)D)9. =(). [单选题] *A)B)(正确答案)C)D)10. 下列方程中所示曲面是单叶旋转双曲面的是(). [单选题] *B)C)(正确答案)D)11.(). [单选题] *A);(正确答案)B);C);D).12. =(). [单选题] *A)B)C)D)(正确答案)13. (). [单选题] *A)B)(正确答案)C)D) ,14. (). [单选题] *A)B)(正确答案)C)D)15. (). [单选题] *A)0B)C)(正确答案)D)16. [单选题] *A)B)C)D)(正确答案)17. . [单选题] *A)充分B)必要(正确答案)C)充分且必要D)既非充分又非必要18. [单选题] *A)B)C)D)(正确答案)19. () [单选题] *A) 1B)-1C) 0D)(正确答案)20. (). [单选题] *A)平行于X轴B)垂直于X轴C)平行于Y轴(正确答案)D)垂直于Y轴21.(). [单选题] *A) 不连续B) 偏导数不存在C)连续但不可微D)可微(正确答案)22. (). [单选题] *A) (1,2)B) (1,-2)C) (1,-1)D) (-1,-1)(正确答案)23. (). [单选题] *A) 0B)C)(正确答案)D)24. =() [单选题] *A)B)C)(正确答案)D)25. (). [单选题] *A) 0B)C)(正确答案)D)26. 下列级数中,收敛的是(). [单选题] *A)B)(正确答案)C)D)27.() [单选题] *A)B)C)D)(正确答案)28. (). [单选题] *A)齐次方程(正确答案)B)一阶线性方程C)伯努利方程D)可分离变量方程29.() [单选题] *A)B)C)D)(正确答案)30. () [单选题] *A)B)C)(正确答案)D)31. () [单选题] *A) 2(正确答案)B) 1C) 4D) 032. () [单选题] *A) 连续且可微B) 连续但不一定可微C) 可微但不一定连续D) 不一定连续且不一定可微(正确答案)33. 下列不等式正确的是() [单选题] *A)B)(正确答案)C)D)34.() [单选题] *A)B)C)(正确答案)D)35. 设区域D由分段光滑曲线L所围成,L取正向,为区域D的面积,则() [单选题] *A)B)(正确答案)C)D)36.() [单选题] *A) 充分条件B) 必要条件C) 充分必要条件(正确答案)D)既非充分条件,也非必要条件37. 以下级数中,条件收敛的级数是() [单选题] *A)B)C)D)(正确答案)38. 下列方程为线性微分方程的是() [单选题] *A)(正确答案)B)C)D)39. 下列函数中在给定区间满足拉格朗日中值定理条件的是 ( B ). [单选题] *a)(正确答案)b)c)d)40. ( ) [单选题] *a) (0,1)(正确答案)b) (1,0)c)d)。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

高等数学a试卷及答案

高等数学a试卷及答案

高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。

一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。

5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。

武汉大学《高等数学》2020-2021学年第一学期期末试卷

武汉大学《高等数学》2020-2021学年第一学期期末试卷

武汉大学2020-2021第一学期高等数学B1期末试卷 A 卷1、(9分) 求极限: 011lim e 1x x x →⎛⎫− ⎪−⎝⎭. 2、(9分)已知曲线满足方程2e 0xy x y ++=,求曲线在点(0,1)−处的法线方程. 3、(10分)求由曲线e ,ln ,1,2x y y x x x ====所围成的图形的面积. 4、(10分)(1)求齐次线性微分方程20y y y ''''''−−=的通解;(2)求该方程满足初始条件(0)0,(0)(0)3y y y '''===的特解.(3)对于非齐次方程221e x y y y x ''''''−−=+,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).5、(9分)求极限lim nn n →∞⎛ ⎪⎝⎭.6、(7分)求不定积分x ⎰.7、(7分)设2()ln(1)f x x =+,计算反常积分20()d ()+2()5f x x f x f x +∞'+⎰.8、(7分) 求极限:2cos 1e d lim (sin )xt x tx x x −→+⎰.9、(7分)等角螺线的极坐标方程为e θρ=,在0θ=附近,其在直角坐标系下可由函数()y y x =表示,试求0d d y x θ=以及220d d yx θ=.10、(7分)计算星形线33cos ,sin x a t y a t⎧=⎪⎨=⎪⎩的弧长,其中0,[0,2]a t π>∈. 11、(7分)计算函数231sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数;并讨论:是否存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增?说明理由. 12、(6分)求解常微分方程:532e 0x xy y x y '++=.13、(5分)设函数()f x 在区间[],a b 上有连续的二阶导数,证明:至少存在一点(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰.武汉大学2019-2020第一学期高等数学B1期末试卷 A 卷 参考解答1、(9分) 求极限011lim e 1xx x →⎛⎫− ⎪−⎝⎭. 解: 200011e 1e 1lim lim lim e 1(e 1)x x x xx x x x x x x x →→→⎛⎫⎛⎫−−−−⎛⎫−== ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎝⎭ 5分0e 11lim 22x x x →⎛⎫−== ⎪⎝⎭ 9分2、(9分)已知曲线满足方程2e 0xy x y ++=,求曲线在点(0,1)−处的法线方程. 解:对方程2e 0xy x y ++=两边关于x 求导得:212e ()0xy y y xy ''+++=,4分 代入0,1x y ==−解得0,11x y y ==−'=.7分 因此,法线的斜率为1−,在点(0,1)−处的法线方程为:1y x =−−.9分3、(10分)求由曲线e ,ln ,1,2x y y x x x ====所围成的图形的面积. 解:显然当[1,2]x ∈时有e ln x x >,因此面积()21e ln d x S x x =−⎰5分22221111e d ln d e ln d x x x x x x x =−=−⎰⎰⎰8分 222211e e ln d ln e e 2ln 21x x x x =−−+=−−+⎰10分4、(10分)(1)求齐次线性微分方程20y y y ''''''−−=的通解;(2)求该方程满足初始条件(0)0,(0)(0)3y y y '''===的特解.(3)对于非齐次方程221e x y y y x ''''''−−=+,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).解:(1) 该微分方程的特征方程为:3220λλλ−−=, 4分它有特征根:00,λ=21,λ=−32,λ=故而该齐次线性微分方程的通解为:2123e e x x y C C C −=++6分 (2)代入初值条件得方程组:12323230,23,43C C C C C C C ++=−+=+=,解得:1230,1,1C C C ==−=,得微分方程的特解为:2e e x x y −=−. 8分 (3)特解的形式为:2123()e x y C x x C C x *=++.10分5、(9分)求极限lim nn →∞⎝⎭.解: lim ln lim 1lim een n nn n n n →∞→∞⎫⎪⎪⎝⎭⎝⎭→∞== ⎪⎝⎭5分12eee n n n===9分6、(7分)求不定积分x ⎰.解:()21d arcsin arcsin x x x =⎰4分 1arcsin C x=−+7分7、(7分)设2()ln(1)f x x =+,计算反常积分2()d ()+2()5f x x f x f x +∞'+⎰. 解: 2200()1d d ()()+2()5(()+1)4f x x f x f x f x f x +∞+∞'=++⎰⎰ 3分 2001()11ln(1)1arctan arctan 2222f x x +∞+∞+++==5分 11arctan 222π⎛⎫=− ⎪⎝⎭7分8、(7分) 求极限:2cos 1e d lim (sin )xt x tx x x −→+⎰.解:22cos cos 112e d e d lim lim(sin )2xxt t x x ttx x x x−−→→=+⎰⎰3分2cos 0e sin lim 4x x xx−→−= 5分11e 4−=− 7分9、(7分)等角螺线的极坐标方程为e θρ=,在0θ=附近,其在直角坐标系下可由函数()y y x =表示,试求0d d y x θ=以及220d d yx θ=.解:可以将方程改写成参数方程e cos e sin x y θθθθ⎧=⎪⎨=⎪⎩,则d d d 0d 0e cos e sin cos sin e co 1s e sin cos d n d si y xyx θθθθθθθθθθθθθθθθθθ=======+−−=+4分()()222(cos sin )(cos sin )cos sin (cos sin )2s d d d 2d d d d d d d co s n 0i d c =2e os e sin d y x x x yx θθθθθθθθθθθθθθθθθθθθθθ====−+++−−=−== 7分10、(7分)计算星形线33cos ,sin x a t y a t⎧=⎪⎨=⎪⎩的弧长,其中0,[0,2]a t π>∈. 解:曲线弧长220s t t ππ==⎰⎰4分220312cos sin d 6a t a t t t a ππ===⎰⎰7分11、(7分)计算函数231sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数;并讨论:是否存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增?说明理由.解:当0x ≠时,323131()12sincos f x x x x x'=+−,另一方面, 2301sin(0)lim1x x x x f x→+'==,因此32313112sin cos ,0()1,0x x f x x x x x ⎧+−≠⎪'=⎨⎪=⎩ 3分对任意0δ>,取0x =,显然00x δ<<且01x <,代入()f x '可得: 003()10f x x '=−<,由于导函数()f x '在0x 处连续,存在0ε>使得00[,](,)x x εεδδ−+⊂−,且()f x '在区间00[,]x x εε−+内小于0,即有()f x 在区间00[,]x x εε−+单调递减,因此,不存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增.7分12、(6分)求解常微分方程:532e 0x xy y x y '++=.解:显然0y ≡是方程的特解;当0y ≠时方程两边同除以3xy 的方程:3242e 0x y y y x x−−'++=, 令2z y −=,有3d d 2d d z y y x x−=−,原方程就可化为如下线性方程: 3分2442e x z y x x−'=+,用一阶线性微分方程的求解公式得:24(2e )x y z x C −==+ 6分13、(5分)设函数()f x 在区间[],a b 上有连续的二阶导数,证明:至少存在一点(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰. 证明:令()()d x aF x f t t =⎰,由于()f x 在区间[],a b 上有连续的二阶导数,因此()F x 在区间[],a b 上有连续的三阶导数,取02a bx +=,由泰勒公式得: 23010000010()()()()()()()(),(,)2!3!F x F F a F x F x a x a x a x a x ξξ''''''=+−+−+−∈ 23020000020()()()()()()()(),(,)2!3!F x F F b F x F x b x b x b x x b ξξ''''''=+−+−+−∈3分利用00()b x a x −=−−,上述两式相减得:31201020()()()()()(),(,),(,)3!2F F b a F b F a F x b a a x x b ξξξξ''''''+−⎛⎫'−=−+∈∈ ⎪⎝⎭即有:312()()()()d ()2242baf f a b b a f x x b a f ξξ''''++−⎛⎫⎛⎫=−+ ⎪ ⎪⎝⎭⎝⎭⎰. 由于()f x ''在区间[],a b 上连续,由介值定理可知至少存在一点(,)a b ξ∈使得12()()()2f f f ξξξ''''+''=. 因此3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰. 5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 1 页
济南大学继续教育学院高等数学1试卷(A )
学年: 学期:
年级: 专业:
学习形式: 层次:
(本试题满分100分,时间90分钟) 一、是非题(每题3分,共6分;正确的标注“√”,错误的标注“×”) 1.当0→x 时,x 2sin 与2x 是同阶无穷小。

( ) 2.2cos 2cos cos d x x d x = 。

( ) 二、填空题(每题5分,共20分) 1.21lim(1)x
x x →∞+= 。

2.若02sin lim 1,x ax x x →+=则a = 。

3.d =。

4.已知f 可导,(cos ),y f x =则dy = 。

三、选择题(每题5分,共20分) 1.函数()y f x =在点a 处有极限是()y f x a =在点处连续的( )。

(A )充分条件 (B )必要条件 (C )充分必要条件 (D )既非充分也非必要条件 2.设函数()f x 在1x =-处可导,且(1)1f '-=-,则0(21)(1)lim x f x f x →---=( )。

(A )1- (B )2- (C ) 1
2- (D )12
3.当0x →时,11
sin x x 是 ( )。

(A )无穷小 (B )无穷大 (C )有界,但不是无穷小 (D )无界,但不是无穷大
4. 设0()f x x 在有二阶导数,00()0,()0,f x f x '''==则0()f x x 在处( )。

(A )有极大值 (B )有极小值 (C )不能确定有无极值 (D )无极值
四、按要求计算下列各题(每题9分,共54分) 1.计算极限201sin
lim tan x x x x → 。

2.计算极限x x x
e e x x x sin 2lim 0----→。

3.设22
11arctan x x y +-=,求dy 。

4.函数()y y x =由参数方程⎩⎨⎧-=-=t y t t x cos 1sin 确定,求dy
dx。

5.求不定积分dx x ⎰+11。

6.某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁,问应围成怎样的长方
形才能使这间小屋的面积最大?。

相关文档
最新文档