电化学生物传感器中纳米材料的应用

电化学生物传感器中纳米材料的应用
电化学生物传感器中纳米材料的应用

电化学生物传感器中纳米材料的应用

1 电化学生物传感器

生物传感器通常由生物识别元件(bioreceptor)和信号转换器件(tra nsducer)两个部分组成。根据生物反应产生信息的物理或化学性质,信号转

换器通常采电化学、光谱、热、压电及表面声波等技术与之相匹配,而由此

衍生出电化学生物传感器、光生物传感器等[1]。

因为电化学转换器件具有较高的灵敏度,易微型化,能在浑浊的溶液中操作等许多优势,并且所需的仪器简单、便宜,因而被广泛应用于传感器的

制备中[2]。

电化学生物传感器结合了电分析技术和生物传感技术。它是由生物材

料作为敏感元件,电极作为转换元件,以电势、电流或电导等作为特征检测

信号的传感器[1]。与光学、质量和热生物传感器相比,电化学生物传感器发

展的最快,而且最具有实用价值[3]。

2 纳米电化学生物传感器纳米电化学生物传感器是将纳米材料作为一

种新型的生物传感

介质,与特异性分子识别物质如酶、抗原/抗体、DNA等相结合,并以电化学信号为检测信号的分析器件。

纳米材料传感器不仅体积更小、速度更快、而且精度更高、可靠性更

好。由于纳米粒子高的比表面积和其本身的生物兼容性,在生

物电催化反应中起着重要作用[4]。。

2.1 纳米电化学生物传感器

从纳米材料在电化学生物传感器中的具体应用来看,纳米电化学生物

传感器主要包括如下类型:纳米颗粒生物传感器,纳米管、纳

米棒与纳米线生物传感器,纳米片以及纳米阵列生物传感器等。其中因为

碳纳米管的优异性能,使得基于碳纳米管的电化学生物传感器发展极为迅速[5]。

2.2 纳米颗粒电化学生物传感器纳米颗粒在电化学生物传感器中的应用非

常广泛。纳米粒子由于

具有大的比表面积和很高的表面自由能,在吸附固定生物分子方面可以扮演重要的角色,用于生物分子的固定,可以增加固定的分子数量,从而增强反应信号[4]。目前已有多种纳米颗粒材料用于电化学生物传感器的制备。所

用的纳米颗粒包括TiO2、Au、Ag、Pt、Pd 以及SiO2 等。Jena等⑹把纳米金颗粒分散到二氧化硅溶胶凝胶网络中,形成了金纳米粒子修饰电极。该电极和脱氢酶组合成的电化学生物传感器,在低电位(-5mV)下对辅酶(NADH)的检测极限低5nM ,显示了极高的灵敏度。Chandra 等[7]把纳米金颗粒负载到功能化的介孔交联聚合物之中,制备了可灵敏检测过氧化氢的修饰电极,该电极可以进一步发展为一系列的电化学生物传感器。

纳米颗粒增强的电化学生物传感器的应用大大丰富了生物传感器的研究内容。然而对于纳米颗粒在这一体系之内所起的具体作用(例如究竟利用的是纳米材料4 大效应中的哪些效应)还不是很清楚。通过对一系列不同粒径的纳米颗粒修饰的葡萄糖生物传感器和不同厚度的纳米二氧化硅膜修饰的生物传感器的性能测试研究,发现对于非金属的纳米颗粒而言,提高传感器响应电流的途径可能仅仅是通过增加比表面从而提高酶的有效负载量来实现的。

而对于含有金属纳米颗粒的电化学生物传感器,我们认为金属纳米颗粒的存在能够起到加速电极上电子传递过程的作用,从而改变电极反应规律。

纳米颗粒修饰的生物传感器是最有发展前景的传感器之一。纳米颗粒种类多,制备和形貌控制方法较为完善,与不同的生物相容材料组合而成的修饰电极,在生物传感器领域必将发挥越来越大的作用。

2.3 纳米棒、纳米线电化学生物传感器

一维纳米材料中氧化锌纳米棒既具有高的表面能和良好的生物相容性,又有良好的电学和光学特性,其应用备受瞩目。Zhang 等[8] 用气相沉积法制备了氧化锌纳米棒,并在其上直接固定尿酸氧化酶,构成了新型无电子媒介体的传感器,具有独特的热力学稳定性。Sabahudin 等[9]通过电化学刻蚀和电化学共沉淀固定化酶,制备了单根纳米铂丝生物传感器,在对葡萄糖含量的检测中背景电流低于1X 10-12A,响应时间仅为2s,检测下限达到20卩M。此种传感器可用于监测单个细胞内的生物物质(如肾上腺素、复合胺等),可用于单细胞行为研究和生理学研究。

由于纳米线材料的广泛应用前景,相关研究工作还在不断推进之中[10] 。2.4 碳纳米材料电化学生物传感器

碳纳米管(CNT) 所表现出的许多优良的物理性能使得对CNT 修饰材料的研究成为目前电化学生物传感器领域备受关注的前沿课题之一56[11]。但是,CNT 是由成千上万处于芳香不定域系统中的碳原子组成的大分子,几乎不溶于任何溶剂,而且在溶液中容易聚集成束,这就限制了对其化学性

质方面的研究,也难于将它纳入生物体系,大大限制了CNT 在各方面的应用。许多研究工作就是从改进碳管的溶解性开始的。把碳纳米管分散于Nafion、壳聚糖等高聚物的溶液中修饰玻碳电极制备的生物传感器,可大大提高了传感器的响应灵敏度和抗干扰能力。Hrapovic 等[12]把碳纳米管分散到Nafion 溶液中,与直径为2—3nm 的铂纳米颗粒复合之后修饰玻碳电极,制备了电化学葡萄糖传感器。这种GC/CNT/Ptnano/GOx 传感器对葡萄糖具有很高的响应速度和灵敏度,在0 ? 5卩M —5mM葡萄糖浓度范围内具有线性响应关系,灵敏度高达2?11卩A ? mM-1,检测极限可达0?5卩M。张凌燕等[13]利用层层组装技术,将多壁碳纳米管/辣根过氧化物酶/纳米金固定在玻碳电极表面,制得了灵敏度高、稳定性好的过氧化氢生物传感器。Manesh等[14]采用静电纺丝的方法,把包裹了多壁碳纳米管的聚阳离子电解质(PDDA)和聚甲基丙烯酸甲酯制成纳米纤维膜,在膜上固定葡萄糖氧化酶得到了一种新型的葡萄糖传感器,具有很宽的线性范围和良好的选择性、稳定性及重复使用性能。本课题组把碳纳米管分散到B -环糊精聚合物中,也得到了稳定的葡萄糖生物传感器。纳米碳纤维具有和碳纳米管相似的机械强度和电学性能,也被广泛用于电化学生物传感器的制备。

Huang 等[15]利用静电纺丝技术和热处理过程把钯纳米颗粒负载到碳纳米纤维上。该复合体系经由电化学阻抗谱和循环伏安法证实具有很高的导电能力,并大大加快了电子转移速率,所制备的过氧化氢传感器在-0 ? 2V 工作电压下检测极限低至0 ? 2卩M。

2.5 纳米阵列生物传感器

Yang 等[16]利用电沉积的方法在聚碳酸酯模板上制备了铂纳米阵列,铂纳米电极密度为5 x 108cm-2所制备的葡萄糖传感器线性范围非常宽。Cha ng等[17 ]利用氧化铝模板制备了导电聚苯胺纳米管阵列,并把低聚核苷酸探针共价结合到管上,得到了具有极高灵敏度的电化学DNA传感器,对低聚核苷酸的检测极限低至1 ? 0fM。

2.6片状、层状纳米材料生物传感器

层状纳米材料被认为是固载生物分子最有潜力的材料之一[18]。以层状材料为载体固载多种蛋白质已经被广泛地应用于生物电化学和生物催化等领域[19]。

Zha ng等【2°]使用二氧化钛纳米片和HRP分子组装而成的生物传感器对过氧化氢表现出很好的催化性能,其检测限低、检测范围宽。Xiao 等[21 ]利用二氧化锰纳米片固定HRP制备了酶传感器,对过氧化氢的检测极限低至

0 ? 21 M。

3 结束语

纳米技术的介入为生物传感器的发展提供了丰富的素材,纳米电化学生物传感器在十多年发展中已经显示出了优异的性能,具有巨大的生命力。

纳米电化学生物传感器具有选择性好、灵敏度高及适于联机化的优点,并具有电分析化学不破坏测试体系、不受颜色影响和操作简便的优势。可以预料,纳米电化学生物传感器将在疾病诊断、环境污染物在线监测、食品安全和卫生保健等诸多方面发挥重要作用。纳米电化学生物传感器的发展需要不同学科背景的研究者通过相互交流来达到不断创新,最终发展出技术上能规模化生产、成本优势大、集检测和分析等多种功能于一体的实用高效生物传感器。

参考文献

[1] 杨海朋,陈仕国,李春辉,陈东成,戈早川.纳米电化学生物传感器. 2009,1(21).化学进展.210-214

[2] 游春苹,吴正钧,王荫榆,孔继烈,刘宝红.纳米材料在电化学生物传感器中的应用进展.化学传感器. 2 0 0 9,3( 29).

[3] 杨坤.基于一维纳米结构的电化学传感器研究. 中国科学院研究生院.2008

[4] 唐芳琼,孟宪伟,陈东,等. 纳米颗粒增强的葡萄糖生物传感器[J]. 中国科学(B 辑),2000 ,30(2): 119-124.

[5] 麦智彬,谭学才,邹小勇. 一种基于碳纳米管的安培型过氧化氢生物传感器.分析测试学报, 2006, 25:120—125

[6] Jena B K, Raj C R. Electrochemical Biosensor Based on Integrated Assembly of Dehydrogenase Enzymes and Gold Nanoparticles Anal. Chem., 2006, 78:63—326339

[7] Chandra D, Jena B K, Raj C R, et al. Chem. Mater., 2007, 19:629—0 6296

[8] Zhang F F, Wang X L, Jin L T. Anal. Chim. Acta, 2004, 519:155—160

[9] Hrapovic S, Luong J HT. Anal. Chem., 2003, 75: 3308—3315

[10] Kawashima T, Mizutani T, Nakagawa T, et al. Nano Lett., 2008,8: 36—2 368

[11] Yun YH, DongZY , ShanovV, et al. NanoToday, 2007, 2: 30—37

[12] Hrapovic S, Liu Y L,

Male K B, et al. Anal. Chem., 2004, 76:1083—1088 [13]张凌燕,袁若,柴雅琴等. 基于多层酶/纳米金固定甲胎蛋白免疫... 多壁纳米碳管修

饰的过氧化氢传感器的研究.化学学报(Acta Chimica Sinica), 2006, 64: 1711—1715 [14] Manesh KM, KimHT, Santhosh P, et al. Biosens. Bioelectron.,2008, 23: 771—779

[15] Huang J S, HouHQ, YouTY, et al. Adv. Funct. Mater., 2008,18: 441—448

[16] Yang MH, He Y, Shen GL. Biomaterials, 2006, 27: 5944—5950

[17] ChangHX, Yuan Y, Guan Y F, et al. Anal. Chem., 2007, 79:511—1 5115

[18]Liu A, Wei M, Zhou H. Direct electrochemistry of myoglobin in titanate nanotubes film Anal. Chem., 2005, 77: 8068—8074

[19]Mousty C, Cosnier S. J.Sensors and biosensors based on clay-modified electrodes - new trends.Appl. Clay Sci. 2004, 27: 159—177

[20]Zhang L, Zhang Q, Li J H, et al. Biosens. The Application of Inorganic Mesoporous Materials ...... titanate nano-sheets. Bioelectron., 2007,23: 102—106

[21]Xiao H, Wu JL, YangWS, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase in MnO2 nanosheet film.Chinese Sci. Bull., 2008, 53:1152—1156

纳米材料应用现状及发展趋势

NANO MATERIAL NANO MATERIAL NANO MATERIAL 纳米材料 应用现状及发展趋势 北京有色金属研究总院李明怡 摘要纳米材料是近期发展起来的多功能材料,本文概述了纳米材料的结构特性、主要制备工艺及应用现状和发展趋势,由于纳米材料具有许多特殊功能和效应,将在工业和国防等领域中发挥巨大潜力,并将为人类社会带来巨大影响。 关键词纳米结构功能材料制备工艺应用现状发展趋势 1前言 纳米材料是指由极细晶粒组成,特征维度尺寸在1~100纳米范围内的一类固体材料,包括晶态、非晶态和准晶态的金属、陶瓷和复合材料等,是80年代中期发展起来的一种新型多功能材料。由于极细的晶粒和大量处于晶界和晶粒内缺陷中心的原子,纳米材料在物化性能上表现出与微米多晶材料巨大的差异,具有奇特的力学、电学、磁学、光学、热学及化学等诸方面的性能,目前已受到世界各国科学家的高度重视。以纳米材料及其应用技术为重要组成部分的纳米科学技术,被认为对当代科学技术的发展有着举足轻重的作用。美国IB M公司首席科学家Ar mstrong认为:/正像70年代微电子技术产生了信息革命一样,纳米科学技术将成为下一代信息的核心。0我国科学家钱学森也指出:/纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而将引起21世纪又一次产业革命。0由于纳米科学技术具有极其重要的战略意义,美、英、日、德等国都非常重视这一技术的研究工作。美国国家基金会把纳米材料列为优先支持项目,拨巨款进行专题研究。英国从1989年起开始实施/纳米技术研究计划0。日本把纳米技术列为六大尖端技术探索项目之一,并提供1187亿美元的专款发展纳米技术。我国组织实施的新材料高技术产业化专项中也将纳米材料列为其中之一。纳米材料正在向国民经济和高技术各个领域渗透,并将为人类社会进步带来巨大影响。 2纳米材料的结构和特性 我们所使用的常规材料在三维方向上都有足够大的尺寸,具有宏观性。纳米材料则是一些低维材料,即在一维、二维甚至三维方向上尺寸极小,为纳米级(无宏观性),故纳米材料的尺寸至少在一个方向上是几个纳米长(典型为1~10nm)。如果在三维方向上都是几个纳米长,为3D纳米微晶,如在二维方向上是纳米级的,为2D纳米材料,如丝状材料和纳米碳管;层状材料或薄膜等为1D纳米材料。纳米颗粒可以是单晶,也可以是多晶,可以是晶体结构,也可以是准晶或无定形相(玻璃态);可以是金属,也可以是陶瓷、氧化物或复合材料等。纳米微晶的突出特征是晶界原子的比例很大,有时与晶内的原子数相等。这表明纳米微晶内界面很多,平均晶粒直径越小,晶界 20

电化学在环境保护中的应用

物理化学综述 综述题目:电化学在环境保护中的应用 电化学在环境保护中的应用 摘要 摘要概述了电化学在环境保护中的优越性,综述了电化学处理环境污染物 的基本方法, 总结了电化学技术在环境污染治理中的应用,分析了电化学 体系存在的问题,展望了电化学在环境治理领域的应用前景和发展方向。 电化学技术处理环境污染物的基本方法电化学技术处理环污染物常用的基本方法有电化学氧化、电化学还原、光电化学氧化、电渗析、电吸附、电凝聚、电沉积、电化学膜分离等。 关键词环境保护; 电化学技术; 环境污染物 Abstract Summarizes the advantages of electrochemistry in environmental protection, electrochemical process and the basic methods of environmental pollutants were reviewed, summarized the application of electrochemistry techno logy in

environmental pollution control, analyzes the existing problems of electrochemistry system, prospects the electrochemical application prospect and development direction in the field of environmental governance. Electrochemical technology processing the basic ways of environmental pollutants by electrochemical technology processing ring pollutants commonly used basic method has electrochemical oxidation, electrochemical reduction, photoelectrochemical oxidation, electrodialysis, the electric adsorption, electrocoagulation, electrodeposition, electrochemical membrane separation, etc. Key words environmental protection; The electrochemical technology; Environmental pollutants 前言 电化学含义 电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现(如氧通过无声放电管转变为臭氧),二者统称电化学,后者为电化学的一个分支,称放电化学。由于放电化学有了专门的名称,因而,电化学往往专门指“电池的科学” 在物理化学的众多分支中,电化学是唯一以大工业为基础的学科。它的应用分为以下几个方面:①电解工业,其中的氯碱工业是仅次于合成氨和硫酸的无机物基础工业、耐纶66的中间单体己二腈是通过电解合成的;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;②机械工业

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

碳纳米材料在电化学传感器中的应用

碳纳米材料在电化学传感器中的应用研究 摘要由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学传感器领域的应用。 关键词碳纳米管石墨烯电化学传感器 1电化学传感器概述 电化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统与待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,电化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。电化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 最早的电化学传感器可以追溯到 20 世纪 50 年代,当时用于氧气监测。到了 20 世纪80 年代中期,小型电化学传感器开始用于检测 PEL 范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 2 碳纳米材料——碳纳米管和石墨烯 随着科学技术的进步,研究者发现空间尺寸在0.1-100 nm之间的物质拥有很多宏观状态下没有的特性[1]。我们把这些具有一定功能性、三维空间尺寸至少有一维介于0.1-100 nm 之间的一类物体统称为纳米材料。它是由纳米微粒、原子团簇、纳米丝、纳米管、纳米薄膜或由纳米粒子组成的块体。由于具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的量子尺寸效应[2, 3]、体积效应[4]、表面效应[5]和量子隧道效应[6]等特性,纳米材料在光学、热学、催化、光化学以及敏感特性等方面具有一系列特殊的性质,因此它具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、生物、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。 碳是一种非金属元素,位于元素周期表的第二周期IV A族。作为地球上最容易得到的元素之一,碳元素以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,它在常温下的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。利用现代科技的不同制备方法,我们可以制备出不同独特空间结构和特异性能的碳纳米材料,其中包括零维的富勒烯、一维的碳纳米管、二维的石墨烯和三维的石墨或金刚石。依靠独特的空间结构和优异的化学性能,它们可以应用于各个领域中。接下来我们主要介绍一下碳纳米管和石墨烯。 2.1碳纳米管 CNTs是1991 年日本电镜学家Iijima在高分辨透射电子显微镜下检验石墨电弧中产生

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

浅谈应用电化学与生活中的化学

浅谈应用电化学与生活中的化学 电化学是研究电和化学反应之间的相互作用。电化学技术成果与人类的生活和生产实际密切相关,如化学电池、腐蚀保护、表面精饰、金属精炼、电化学传感器等等,同时也应用于电解合成、环境治理、人造器官、生物电池、心脑电图、信息传递等方面。它的发展推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等问题已经作出并正在作出巨大的贡献。 下面简单介绍几种应用电化学在生活中的应用: 一、金属腐蚀防护 金属腐蚀在生活中十分常见,全世界每年因腐蚀而造成的金属损失相当于全世界金属产量的1/4以上,我国因腐蚀造成的经济损失达200亿以上。因此金属腐蚀防护研究具有很高的现实意义。 由于绝大部分的金属腐蚀都是电化学腐蚀,因此,电化学方法在金属防护上有极大的应用。 常用的防腐蚀方法有调节PH、阴极保护、阳极保护、金属钝化、金属镀层。 金属的电化学腐蚀:若金属与非电解介质直接反应而腐蚀称为化学腐蚀。 1:金属与电解质溶液(潮湿空气,溶解有杂质或污染物的水,海水)接触。 2:金属/电解质溶液界面可发生阳极氧化溶解过程。 3:若存在相应的阴极还原反应,就构成了自发的原电池,持续放电而腐蚀。 金属之所以受到腐蚀,是由于在金属表面的区域之间存在着电极电势差,即存在着电化学不均匀而造成的,各种不均匀性加速腐蚀,称为局部腐蚀。 金属腐蚀的防护: 1:金属的化学钝化(强氧化剂作用,在表面形成一层致密的氧化物膜)。 2:选配设计合金,改善钝化性能。 3:阴极保护(牺牲阳极,与直流电源的负极相连使成为阴极)。 4:阳极保护(与直流电源的正极相连,使处于f -pH图的钝化区,阳极钝化)。 5:镀层(耐腐蚀金属,油漆,搪瓷,塑料,橡胶等)。 6:缓蚀剂 a:在介质中添加,无机盐类,氧化剂,有机物,减慢反应速度,加大极化。 b:生成胶体粒子,生成难溶性沉淀,发生钝化,有机分子吸附,从而覆盖电极表面,妨碍反应进行,阻止或减缓金属腐蚀。 二、化学电源 1:干电池 酸性锌锰干电池:负极为锌筒,正极为MnO2和活性炭混合物,电解质溶液为NH4Cl和ZnCl2水溶液,加淀粉糊凝固,电极反应为Zn氧化和MnO2还原。 碱性锌锰干电池:负极为汞齐化的锌粉,正极为MnO2粉和炭粉混合物装在一个钢壳内,电解质溶液为KOH水溶液。 2:蓄电池 锂电池:质量轻,Li/Li+标准电极电势最负,导电性和机械性能都很好。 以金属锂或锂合金作为负极,无机物或有机材料做正极如锂|二硫化钼,锂|钒氧化物,锂|二氧化锰,有机聚合物或导电高分子作正极。 3:燃料电池:是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。 a:燃料电池中的燃料和氧化剂都是由外部供给,理论上电池的电极不消耗。 b:只要连续供给燃料和氧化剂,电池就可以连续对外放电。 c:燃料电池所发生的电化学反应实质上就是燃料的燃烧反应。

纳米电化学生物传感器重点

收稿:2008年3月, 收修改稿:2008年8月 *深圳大学科研启动基金项目(No. 200818 资助**通讯联系人 e 2mail:yang hp@https://www.360docs.net/doc/f91881896.html,. cn 纳米电化学生物传感器 * 杨海朋 ** 陈仕国李春辉陈东成戈早川 (深圳大学材料学院深圳市特种功能材料重点实验室深圳518060 摘要纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质, 与特异性分子识别物质如酶、抗原P 抗体、D NA 等相结合, 并以电化学信号为检测信 号的分析器件。本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势, 综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展, 包括纳米颗粒生物传感器, 纳米管、纳米棒、纳米纤维与纳米线生物传感器, 以及纳米片与纳米阵列生物传感器等。 关键词生物传感器电化学传感器纳米材料生物活性物质固定化 中图分类号:O65711; TP21213 文献标识码:A 文章编号:10052281X(2009 0120210207 Nanomaterials Based Electrochemical Biosensors Y ang Haipeng **

Chen Shiguo Li Chunhui Chen Dongche ng Ge Zaochuan (Shenzhen Key Laboratory of Special Functional M aterials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China Abstract Biosensors w hich utilize immobilized bioac tive compounds (such as enz ymes, antigen, antibody, D N A, etc. f or the c onversion of the target analytes into electroc he mically detectable products is one of the most widely used detection methods and have become an area of wide ranging research activity. The advances in biocompatible nano technology make it possible to develop ne w biosensors. A variety of biosensors with high sensitivity and excellent reproducibility based on nano technology have been reported in recent years. In this paper, the development of the researches on nano amperometric biosensors, one of the most important branches of biosensors, is revie wed. Nanoscale architectures here involve nano 2particles, nano 2wires and nano 2rods, nano 2sheet, nano 2array, and carbon nanotube, etc. Remarkable sensitivity and stability have been achieved by coupling immobilized bioactive compounds and these nanomaterials. Key words biosensors; electroche mistry sensors; nanomaterials; bioactive compounds; immobiliz ation Contents 1 Introduction to biosensors 2 Nanomaterials based electrochemical biosensors 2. 1 Challenges and developments of biosensors 2. 2 Introduction of nanomaterials 2. 3 Nanomaterials based electrochemical biosensors 2. 3. 1 Nano particles based electrochemical biosensors

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

制备纳米材料的物理方法和化学方法

制备纳米材料的物理方法和化学方法 (********) 纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元—纳米微粒,制造材料或微型器件的科学技术。 纳米材料的制备方法甚多,目前制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。 1物理制备方法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,这些方法我们统称为物理凝聚法,物理凝聚法主要分为 (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm 。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到410Pa 或更高的真空度,然后注人少量的惰性气体或性2N 、3NH 等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气体的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1 , Nb- Si 等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

浅谈电化学在环境工程中的应用

浅谈电化学在环境工程中的应用 摘要: 概述了电化学在环境保护中的优越性,综述了电化学处理环境污染物的基本方法及原理, 简单介绍了电化学技术在环境工程特别是在处理环境污染物中的应用 ,展望了电化学在环境治理领域的应用前景和发展方向。 关键词:电化学环境工程环境污染物 正文: 电化学是物理化学中的一个重要组成部分。电化学主要是研究电能与化学能之间的相互转化及转化过程中有关规律的科学。它是一门重要的边缘学科,应用范围很广。随着全球环境状况的日益严峻,环境保护及污染物处理问题引起了全世界人们的高度重视。电化学技术由于其自身的优点和特性, 近年来在环境工程中也得到了广泛的应用。 1 电化学在环境保护方面的优越性体现在以下几点:1)在电化学过程中使用高效、清洁的电子作为强氧化还原试剂,是一种基本上对环境无污染的绿色技术,环境兼容性高。2)由于电化学过程使用电场能为反应动力, 所以能量利用率高。 3)电化学利用电流和电压的变化就能对物质进行氧化或还原,易测定和自动控制。4)多功能性电化学过程具有直接或间接氧化与还原、相分离、浓缩与稀释、生物杀伤等功能。同时,与生化法相比,电化学方法一般不受反应物生物毒性的影响,可以作为高毒性、高腐蚀性有机物的有效处理方法,也可以作为生化方法的预处理。5)电化学技术仪器设备简单,易自动化,便于携带,灵敏度和准确度高,选择性好。 2 电化学技术处理环境污染物常用的基本方法及原理 (1)电化学氧化 电化学氧化分为直接氧化和间接氧化两种,属于阳极过程。直接氧化是通过阳极氧化使污染物直接转化为无害物质;间接氧化则是通过阳极反应产生具有强氧化作用的中间物质或发生阳极反应之外的中间反应,使被处理污染物氧化,最终转化为无害物质。

最新电化学在生活中的应用

电化学在生活中的应用 电化学是研究电和化学相互关系的科学。它主要通过原电池和电解池来时现,原电池为化学能转化为电能的反应,电解池为电能转化为化学能转化为电能的反应。 电化学与我们的生活息息相关,小的方面看,我们的日常生命活动离不开电化学,航空航天各个领域都离不开电化学。下面将详细进行介绍: 原电池是由电极和电解质溶液构成的一个整体,它主要包含以下两种类型。 (类型一) (类型二) 它们两个在构成上的主要差别为是否有盐桥,在反应速度上类型一更加快速,在相同的时间内能够提供更多的电能。构成原电池需要以下条件:1.存在电子的转移2.构成闭合回路3.存在合适的电解质溶液。在原电池中存在电子的定向移动而形成的电流,点在在外电路中是由负极流向正极的,因此电流是从正极流向负极的,而在内电路中恰恰相反是由正极流向负极的。当我们在外电路上接入用电器时它就能对外供电了,但是每种原电池的电动势都是由其自身所决定的,其电动势为E=EΘ- RTlnJa/ZF。一般情况下原电池的电动势都比较小(例如,普通电池的电动势为1.5V)

不能直接用于生活生产,只有某些小型的耗电设备能利用,并且需要串联使用,因此开发较大电动势的原电池是我们需要努力的方向。 原电池的组成用图示表达,过于麻烦。为书写简便,原电池的装置常用方便而科学的符号来表示。其写法习惯上遵循如下几点规定: 1. 一般把负极写在电池符号表示式的左边,正极写在电池符号表示式的右边。 2. 以化学式表示电池中各物质的组成,溶液要标上活度或浓度(mol/L),若为气体物质应注明其分压(Pa),还应标明当时的温度。如不写出,则温度为298.15K,气体分压为101.325kPa,溶液浓度为1mol/L。 3. 以符号“∣”表示不同物相之间的接界,用“‖”表示盐桥。同一相中的不同物质之间用“,”隔开。 4. 非金属或气体不导电,因此非金属元素在不同氧化值时构成的氧化还原电对作半电池时,需外加惰性导体(如原电池铂或石墨等)做电极导体。其中,惰性导体不参与电极反应,只起导电(输送或接送电子)的作用,故称为“惰性”电极。 按上述规定,Cu-Zn原电池可用如下电池符号表示: (-)Zn(s)∣Zn2+ (C)‖Cu2+ (C)∣ Cu(s) (+)① 从反应的机理来看构成原电池需要有电子的转移,由此来看需要为氧化还原反应,但是实际上并不是所有的原电池都是由氧化还原反应构成的,还存在一种浓差电池。 浓差电池是由于电池中存在浓度差而产生的,并且浓差电池也可分为两种:1.电解质浓度不同而形成的浓差电池2.电极不同而形成的浓差电池。标准的浓差电池的电动势为E=0. 另外浓差电池也可分为单液浓差电池和双液浓差电池两大类,其区别方法为:组成电池的两个电极液种类或活度相同,而两个电极的活度或逸度不同(如汞齐电极、气体电极)而组成的电池,称为单液浓差电池;电极相同,电极反应相同,只是电极液的浓度(或活度)不同,称为双液浓差电池。 另外腐蚀可分为两种:析氢腐蚀和吸氧腐蚀。其中析氢腐蚀时会释放出氢气,而吸氧腐蚀会吸收如部分氧气。从危害来讲析氢腐蚀的危害更加严重,它是原电池的一种反应,反应速度较快,对设备的危害最大,尤其是在酸雨频发的地区,另外对于炼油厂以及化工厂的危害也尤其巨大。 根据原电池的原理人们设计了很多很实用的设备,例如手机电池在放电时就是一个原电池,并且它可以进行充电,只不过在其充电时是一个电解池。另外原电池的

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

相关文档
最新文档