聚合物熔体的流变性
流变性能实验报告(3篇)

第1篇一、实验目的本次实验旨在研究不同条件下聚合物材料的流变性能,包括剪切粘度、剪切速率、离模膨胀效应等,以期为聚合物材料的加工和应用提供理论依据。
二、实验原理流变学是研究物质在外力作用下流动和变形的学科。
聚合物材料在加工过程中,如注塑、挤出等,会受到剪切应力、剪切速率和温度等外界因素的影响,从而表现出不同的流变性能。
本实验通过改变实验条件,研究聚合物材料的流变性能,并分析其影响因素。
三、实验材料与仪器1. 实验材料:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等聚合物材料。
2. 实验仪器:流变仪、温度控制器、剪切速率控制器、电子天平、烘箱等。
四、实验方法1. 样品制备:将聚合物材料分别加热至熔融状态,然后倒入模具中,制成一定厚度的样品。
2. 实验步骤:(1)将样品放入流变仪的样品盒中,设置实验温度和剪切速率。
(2)启动流变仪,记录剪切应力、剪切速率、温度等数据。
(3)分析数据,研究聚合物材料的流变性能。
五、实验结果与分析1. 剪切粘度与剪切速率的关系实验结果表明,不同聚合物材料的剪切粘度随剪切速率的变化规律不同。
对于PE、PP等聚合物材料,剪切粘度随剪切速率的增加而降低,表现出剪切变稀现象;而对于PVC等聚合物材料,剪切粘度随剪切速率的增加而增加,表现出剪切变稠现象。
2. 离模膨胀效应实验结果表明,聚合物材料的离模膨胀效应与其分子结构和加工条件密切相关。
在相同条件下,PE、PP等聚合物材料的离模膨胀效应较小,而PVC等聚合物材料的离模膨胀效应较大。
3. 温度对流变性能的影响实验结果表明,温度对聚合物材料的流变性能有显著影响。
随着温度的升高,聚合物材料的剪切粘度降低,离模膨胀效应增大。
六、结论1. 不同聚合物材料的流变性能与其分子结构和加工条件密切相关。
2. 剪切速率、温度等因素对聚合物材料的流变性能有显著影响。
3. 了解聚合物材料的流变性能有助于优化加工工艺,提高产品质量。
七、实验注意事项1. 实验过程中应注意安全操作,避免发生意外事故。
第九章_聚合物的流变性

种涨落被认为是粘度对分子量长生差异的原因所在,也 是长支链阻止蛇行 松弛的主要机理
9.3 聚合物熔体的弹性表现
影响聚合物熔体弹性的因素 高聚物的弹性形变是由链段运动引起的 当τ很小时,形变的观察时间t>>τ,则形变以粘性流动为主 当τ很大时,形变的观察时间t<<τ,则形变以弹性流动为主
随 增加,σ显著增加,增大流体的 需要很大的
σ,这样的流体称为胀塑性流体(胀流性流体)
9.1.2 非牛顿流体
(3)假塑性流体 (切力变稀)
流动曲线通过原点,随 的增加,σ增加的速率有
所降低,将曲线上的一点做切线,交于纵轴上都有一个 虚拟的σy ,将这样的流体称为假塑性流体
如:几乎所有的高分子熔体的浓溶液
支链(分子量相等时) 长支链:主链和支链都发生缠结,粘度增大 短支链:增大分子间距,粘度小
9.2.2 影响因素及分子解释 9.2.2.1 分子结构与熔体结构
共聚(分子量相等时) 规整性被破坏,粘度降
聚合方式 悬浮聚合PVC---粘度大 乳液聚合PVC---粘度小 内残留小颗粒、疏松,易接触增塑剂, 小颗粒易滑动,降低粘度
一个半径为r ,密度为ρs 的小球,在密度为ρ1 的液体中以 恒定速率ν下落,可用斯托克斯方程求出液体介质的粘度,记作
斯托克斯粘度ηs:
s
2 9
r2
s
(2
9
r
2
s(
s
11
))gg
式中 K——仪器常数 t——小球由a到b所需的时间 η0————零切粘度
高分子物理 聚合物流变学

small molecule hole
高分子熔体的流动:链段向 “孔穴” 相继跃迁 Reptation 蛇行
13
Flow curve
a
Kn
第一牛顿区
0零切粘度
第二牛顿区
无穷切粘度,极限粘度
假塑性区
流动曲线斜率n<1 随切变速率增加,ηa值变小 加工成型时,聚合物流体所经受的 切变速处于该范围内(100-103 s-1)
PC聚碳酸酯
63.9 79.2 108.3-125
PVC-U硬聚氯乙烯
147-168
PVC-P增塑聚氯乙烯
210-315
PVAc聚醋酸乙烯酯
250
Cellulose纤维素醋酸酯
293.320
Temperature
温度
Activation energy
粘流活化能是描述材料粘-温依赖性的物理量,表示流动单元(即链段) 用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量
183℃/PS
242k 217k 179k 117k 48.5k
28
分子量的影响
log
从成型加工的角度
降低分子量可增加流动性,改善加工性 能,但会影响制品的力学强度和橡胶的 弹性
牛顿流动定律
: Melt viscosity
液体内部反抗流动 的内摩擦力
1Pa s = 10 poise (泊)
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关
7
Types of Melt Flow
液体流动的类型
类型
曲线 公式 实例
Shear stress Shear stress Shear stress Shear stress Viscosity
聚合物加工-3.2—影响聚合物流变行为的主要因素-239

2.压力对粘度的影响
压力对于聚合物熔体粘度的影响,主要来自在聚合 物熔体的可压缩性,在压力作用下,聚合物熔体体积 减少,熔体分子间自由体积减少,分子间作用力增加 ,最终导致聚合物熔体的粘度增加。 压力与熔体粘度之间的关系可以用下式表示:
p =p e
0
b( p p0)
p p
0
b
压力为P时的粘度。 压力为P0时的粘度。 压力系数。
(3) 分子量分布对聚合物熔体粘度的影响:
多分散系数(d):表征分子量分散程度的参数
MW M n
MW
Mn
重均分子量 数均分子量 (1)当分子量大小一样时 ,分子量分布较宽的聚合 物,熔体粘度较小,对剪 切作用比较敏感,非牛顿 性增强,假塑性流动区域 加宽。 (2)当分子量大小一样 时,分子量分布较窄的聚 合物,熔体粘度较大,对 温度比较敏感,表现更多 的牛顿流体特征。
(2) 分子量对聚合物熔体粘度的影响。
聚合物分子量增大,不同链段偶然位移相互抵消的几率增加, 因此分子链重心移动愈慢,要完成流动过程就需要更长的时间和更
多的能量,所以聚合物的粘度随分子量的增加而增大
Fox-Flory公式:
0 = KMW
或
logη0 = logK +α logMW
MW < Mc
增加压力,可以使聚合物 熔体的粘度增大, 但是,在实际生产中,单 纯的通过增大压力来提高 聚合物流体流量 的方法是不可取的。 一方面,压力过大,造成 功率消耗过大,设备损坏 加重;另一方面,在加大 压力下,聚合物熔体的流 动性变差,使生产工艺难 以调节。
几种聚合物的压缩率
b
a
应当指出的是:聚 合物在正常加工温度范 围内,增加压力对粘度 的影响和降低温度对粘 度的影响是相似的,这 称为压力-温度等效性 。 一般来讲,压力增 加1000大气压,对熔 体粘度的影响相当于 降低30-50°C的影响。
第7章 高聚物熔体的流变性

7.2.2 熔体黏度的几种表示方法
• 高聚物熔体和浓溶液都属于非牛顿流体,其黏度具有切 变速率依赖性。不同定义下的黏度表示各不相同,除了 牛顿黏度外,剪切黏度还可表示为表观黏度、微分黏度 或稠度等。
(1)牛顿黏度 在切变速率 很小或外推到无限小时, 非牛顿流体表现出牛顿性。因此,由流动曲线的初始斜 率可得到牛顿黏度,亦称零切黏度η o,即
F A
• ∴比例常数η:流速梯度为1S-1、面积为1cm2时 两层液体间的内摩擦阻力,称为黏度,即切黏度。 • [N· s /m2 ;Pa· s;P;cP ] • η不随剪切力和剪切速率的大小而改变的流体称为 牛顿流体。
• •
1.牛顿流体与牛顿流动定律 对小分子和高分子稀溶液都属于牛顿流体:
高分子流动不是简单的 分子整体的迁移,而是 以链段作为运动单元, 通过链段的相继跃迁来 实现整个大分子的位移。
图
流动活化能与碳链中碳原子数的关系
• 高聚物流动的决定性因素即链段运动的条件: a. 链段能否克服势垒运动; b. 是否存在链段运动所需的空穴。 • 温度升高,分子热运动能量增加,流体中的空穴也随之 增加和膨胀,流动阻力减小,黏度下降。用流体黏度表 示流动阻力:
• 解释:高分子在流动时由于各液层间总存在一定的速 度梯度,细而长的大分子若同时穿过几个流速不等的 液层时,同一个大分子的各个部分就要以不同速度前 进。这种情况显然不能持久,因此,在流动时每个长 链分子总是力图使自己全部进入同一流速的流层,这 种现象就如河流中随同流水一起流动的绳子(细而长) 一样,它们总是自然的顺着水流方向纵向排列的。这 就导致了大分子在流动方向上的取向,取向则导致了 阻力减小,黏度降低。(速度梯度越大,即剪切速率 越大,高聚物分子则易进行取向,黏度就变小)∴ 不是常数,而是与剪切速率有关。
第9章聚合物的流变性

第9章聚合物的流变性流变学是研究材料流动和变形规律的一门科学。
聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。
牛顿流体与非牛顿流体9.1.1非牛顿流体描述液体层流行为最简单的定律是牛顿流动定律。
凡流动行为符合牛顿流动定律的流体,称为牛顿流体。
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。
式中:——剪切应力,单位:牛顿/米2(N/㎡);——剪切速率,单位:s-1;——剪切粘度,单位:牛顿•秒/米2(N•s/㎡),即帕斯卡•秒(Pa•s)。
非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。
包括:1、假塑性流体(切力变稀体)η随的↗而↙例:大多数聚合物熔体2、膨胀性流体(切力变稠体)η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。
3、宾汉流体。
τ<τy,不流动;τ>τy,发生流动。
按η与时间的关系,非牛顿流体还可分为:(1)触变体:维持恒定应变速率所需的应力随时间延长而减小。
(2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。
牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述:式中:K为稠度系数n:流动指数或非牛顿指数n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。
定义表观粘度聚合物的粘性流动9.2.1聚合物流动曲线聚合物的流动曲线可分为三个主要区域:图9-1 聚合物流动曲线1、第一牛顿区低切变速率,曲线的斜率n=1,符合牛顿流动定律。
该区的粘度通常称为零切粘度,即的粘度。
2、假塑性区(非牛顿区)流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。
通常聚合物流体加工成型时所经受的切变速率正在这一范围内。
3、第二牛顿区在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。
聚合物的流变学性质
为何具有“剪切增稠”特性?
多分散体系; 高含量,高硬度微粒为分散相,分散介质在其间起润滑作用。
增大 ,粒子相互碰撞,导致润滑不足,流动阻力增加,粘度上升。
2
1
特征:τ较小不流动,呈现凝胶状态,只发生弹性变形;
该液体在静止时内部存有凝胶结构,当外加应力大于 τy时,凝胶崩溃,流动行为与牛顿流体相似。
05
提高熔体的流动性。
1.3 聚合物的流变学性质
温度及压力对聚合物熔体粘度的影响
——聚合物大分子的热运动有赖于温度。
与分子热运动有关的熔体流动必然与温度有关。
——在聚合物注射成型过程中,温度对熔体粘
度的影响与剪切速率同等重要。
温度升高——
大分子间的自由空间随之增大,分子间作用力
减小,分子运动变得容易,从而有利于大分子的
01
这时,大分子链段的运动相对减少,分子间的
02
相互作用力(范德华力)逐渐减弱,熔体内的自由
03
空间增加,从而导致相对运动加大,宏观上体现
04
为表观粘度相对降低。
05
——注射成型中,多数聚合物的表观粘度对熔
06
体内部的剪切速率具有敏感性,可以通过调整剪
07
切速率来控制聚合物的熔体粘度。
08
在注射成型中,聚合物熔体发生剪切稀化效应
率区域时,流体变形和流动所需的切应力随剪切
速率而变化,并呈指数规律增大;
流体的表观粘度也随剪切速率而变化,呈指数
规律减小。
假塑性液体的“剪切稀化”的原因:
聚合物具有大分子结构,当熔体进行假塑性流
动时,剪切速率的增大,使熔体所受的切应力加
大,从而导致聚合物大分子结构伸长、解缠和滑
聚合物的流变性
粘度差别不大。
(二)外因因素(加工工艺)
1.温度的影响 温度升高,粘度下降,但不同高聚物粘度对温度变化
的敏感性不同。
a.较高温度时,T> Tg+100℃ 此时高聚物体内自由体积较大,高聚物粘度和温度符
合 Arrehnius 方程
η=A·eΔEη/RT
由上式可知,温度升高,链段活动能力增强,分子间
作用力下降,η下降,流动性增加,变化得
dr r3
在无管壁滑移情况下,外筒的内壁处 r=R2,角速度为
内筒的内壁处 r=R1,角速度为 0
d
M
R2 dr
0
2L r R1 3
M 4L
(
1 R12
1 R22
)
s
M
2r 2 L
= dV 2 R12 R22
dr r 2 R22 R12
A
r2
优点:当圆筒间隙很小时,被测流体的剪切速率接近均一,仪
2.高分子流动机理 如果按照小分子孔穴理论,高聚 物流动需要熔体内形成许多能容 纳整个大分子链的孔穴,使整个 高分子跃迁,显然是困难的。
实验中,高聚物流动活化能 ΔEη~分子量M关系可知,当 nc=20~30时,ΔEη不再随nc增加 而增加。说明,高聚物流动单元 不是整个分子链而是链段。高分 子的流动是通过链段的相继跃迁
橡胶: 硅橡胶 E = 4 kcal/mol , BR = 4.7~8 kcal/mol
NR = 8~9 kcal/mol
, LDPE =11.7 kcal/mol
(二)流动粘度大
高分子链较长,熔体内部能形成一种类似网状 的缠结结构(物理交联点,在一定温度或外力 作用下可缠结),使得整个分子的相对位移比 较困难,所以流动粘度大。
聚合物流体的流变性
聚合物流体的流变性引言聚合物流体是由聚合物分子组成的流体,其独特的流变性质使其在许多工业和科学领域中得到广泛应用。
本文将介绍聚合物流体的流变学性质,包括流变学基本概念、聚合物流体流变学模型、流变学测试方法和聚合物流体的应用领域。
流变学基本概念流变学是研究流体在外力作用下的变形和流动规律的科学。
聚合物流体的流变学行为与传统液体有所不同,其主要特点是非牛顿性。
非牛顿流体指的是流体的粘度随应力变化而变化的流体。
聚合物流体的非牛顿性主要由聚合物链的长而柔软的特性所决定。
根据应力与应变速率之间的关系,可以将聚合物流体分为剪切稀化和剪切增稠流体。
聚合物流体流变学模型为了描述聚合物流体的流变学行为,研究人员发展了许多流变学模型。
其中最经典的模型之一是Maxwell模型,它将聚合物流体看作是由弹簧和阻尼器组成的串联结构。
除此之外,还有Oldroyd-B模型、Giesekus模型和白金布卢米斯模型等。
这些模型可以有效地描述聚合物流体的应力-应变关系,并能预测流体的流变学行为。
流变学测试方法为了研究聚合物流体的流变学特性,需要进行一系列的流变学测试。
常见的流变学测试包括剪切应力-剪切应变测试、动态剪切测试、扩展流动测试和振动测试等。
这些测试方法可以提供流体的粘度、弹性模量、流动极限等参数,从而深入了解聚合物流体的流变学性质。
聚合物流体的应用领域聚合物流体的流变学性质使其在许多应用领域中得到广泛应用。
在食品工业中,聚合物流体用作稳定剂、增稠剂和乳化剂等。
在化妆品工业中,聚合物流体则用于调整产品的黏度和流动性。
此外,聚合物流体还在油田开发、药物传输和生物医学工程中起着重要作用。
结论聚合物流体的流变学性质对其在各种应用领域中的表现起着至关重要的作用。
在了解聚合物流体的流变学行为之后,我们能够更好地设计和控制这些流体,以满足不同领域的需求。
未来,随着对聚合物流体流变学性质研究的不断深入,我们可以预见聚合物流体在更多领域中发挥更重要的作用。
完整课件-聚合物加工流变学
2 聚合物熔体的基本流变性能
(2)稳定流动和不稳定流动 凡在输送通道中流动时,流体在任何部位的流
动状态保持恒定,不随时间而变化,一切影响流 体流动的因素都不随时间而改变,此种流动称为 稳定流动。
凡流体在输送通道中流动时,流动状态都随时 间而变化。影响流动的各种因素,有随时间而变 动的情况,此种流动称为不稳定流动。
• 16世纪至18世纪,流变学的发展较快。 • 19世纪,建立的泊肃叶方程,在流变学的
发展史上是一个很重要的标志。
1.2 流变学的发展历史
1.2 流变学的发展历史
• 1678年 胡克弹性定律 1687年 牛顿粘性定律 1928年 流变学概念的提出 1929年 流变学协会的成立 流变学杂志 1948年 第一届国际流变学会议 1950年以后 流变学领域研究迅速发展
课程内容
第1章:绪论 第2章 :聚合物熔体的基本流变性能
第3章:聚合物流动方程 第4章:流变学基础方程的初步应用 第5章:挤出机头设计
绪论
• 1.1 流变学的定义 • 1.2 流变学的发展历史 • 1.3 高聚物流变学的研究内容 • 1.4 高聚物流变学的研究意义 • 1.5 高聚物流变学在塑料加工中的应用
2 聚合物熔体的基本流变性能
(5)拉伸流动和剪切流动 • 按照流体内质点速度分布与流动方向关系,
可将高聚物加工时的熔体流动分为拉伸流 动和剪切流动两类。 • 剪切流动:质点速度仅沿着与流动方向垂 直的方向发生变化。如图2-1(a)。 • 拉伸流动:指点速度仅沿流动方向发生变 化,如图2-1(b)。
2 聚合物熔体的基本流变性能
(3)等温流动和非等温流动 • 等温流动是指流体各处温度保持不变情况下的