北师大版高中数学选修第二章§应用创新演练(1)

合集下载

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.4知能演练轻松闯关

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.4知能演练轻松闯关

1.若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k 的值等于( )A .-2B .-12C .2 D.12解析:选B.直线2x +3y +8=0与x -y -1=0的交点为A (-1,-2),又∵x +ky =0过A (-1,-2),∴-1-2k =0,∴k =-12. 2.过原点和直线l 1:x -3y +4=0与l 2:2x +y +5=0的交点的直线方程为( )A .19x -9y =0B .9x +19y =0C .3x +19y =0D .19x -3y =0解析:选C.设所求直线方程为(x -3y +4)+k (2x +y +5)=0,将(0,0)代入得4+5k =0,解得k =-45.故所求直线方程为(x -3y +4)-45(2x +y +5)=0,即3x +19y =0,故选C. 3.直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,若l 1与l 2只有一个交点,则( )A .A 1B 1-A 2B 2=0 B .A 1B 2-A 2B 1≠0C.A 1B 1≠A 2B 2D.A 1B 2≠B 1B 2解析:选B.只有一个交点即l 1与l 2不平行,即A 1B 2-A 2B 1≠0.4.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:选D.直线x -2y +1=0过点A (0,12),B (-1,0),而A ,B 关于直线x =1的对称点,A ′(2,12),B ′(3,0)所以直线A ′B ′为y =-12(x -3),即x +2y -3=0,故选D. 5.直线3x +2y -2m -1=0与直线2x +4y -m =0的交点在第四象限,则m 的取值范围为( )A .(-∞,-2)B .(-2,+∞)C .(-∞,-23)D .(-23,+∞) 解析:选D.由方程组⎩⎪⎨⎪⎧ 3x +2y -2m -1=02x +4y -m =0⇒⎩⎨⎧ x =3m +24y =-m -28,∴两直线的交点为(3m +24,-m +28). ∵此交点在第四象限,∴⎝ ⎛3m +24>0,-m +28<0,∴⎩⎪⎨⎪⎧ m >-23,m >-2,∴m >-23,故选D. 6.(2013·南昌期中测试)直线(1+4k )x -(2-3k )y +(5k +4)=0所确定的直线必经过定点________.解析:由(1+4k )x -(2-3k )y +(5k +4)=0,得(x -2y +4)+k (4x +3y +5)=0.由⎩⎪⎨⎪⎧ x -2y +4=04x +3y +5=0,解得⎩⎪⎨⎪⎧x =-2y =1,即必过定点(-2,1). 答案:(-2,1)7.斜率为-2,且与直线2x -y +4=0的交点在y 轴上的直线方程为________. 解析:∵直线2x -y +4=0与y 轴的交点为(0,4),又直线的斜率为-2,∴所求直线方程为y -4=-2(x -0),即2x +y -4=0.答案:2x +y -4=08.已知A ={(x ,y )|x +y -2=0},B ={(x ,y )|x -2y +4=0},C ={(x ,y )|y =3x +b },若(A ∩B )C ,则b =________. 解析:A ∩B =⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y -2=0x -2y +4=0={(0,2)},由于(A ∩B )C ,所以(0,2)在直线y=3x +b 上,∴2=3×0+b ,∴b =2.答案:29.已知直线l 1:x -2y +4=0,l 2:x +y -2=0,设其交点为P .(1)求交点P 的坐标;(2)已知直线l 3:3x -4y +5=0,分别求出过点P 且与直线l 3平行和垂直的直线方程.解:(1)由于P 为直线l 1与直线l 2的交点,所以满足⎩⎪⎨⎪⎧ x -2y +4=0x +y -2=0,解得:x =0,y =2.∴P (0,2).(2)设与l 3平行的直线为:3x -4y +m =0,与l 3垂直的直线为4x +3y +n =0. 当P (0,2)在与l 3平行的直线上时,3×0-4×2+m =0,∴m =8,∴过P 与l 3平行的直线为3x -4y +8=0.当P (0,2)在与l 3垂直的直线上时,4×0+3×2+n =0,∴n =-6,∴过P 与l 3垂直的直线为4x +3y -6=0.10.若a +b +c =0,且a 、b 不同时为0,求证:直线ax +by +c =0必经过一个定点. 证明:因为a +b +c =0,且a ,b 不同时为0,不妨设b ≠0,则a =-(b +c ), 代入直线方程ax +by +c =0得-(b +c )x +by +c =0,即(x -y )+c b(x -1)=0. 此方程可视为直线x -y =0与x -1=0的交点的直线系方程.解方程组⎩⎪⎨⎪⎧ x -1=0x -y =0,得⎩⎪⎨⎪⎧x =1y =1, 即两直线的交点为(1,1).故直线ax +by +c =0必经过一个定点(1,1).1.已知直线mx +4y -2=0与2x -5y +n =0相交于点(1,p ),则m +n -p 的值为( )A .24B .20C .4D .0解析:选D.∵两条直线相交,且交点为(1,p ),∴(1,p )满足两直线方程,∴⎩⎪⎨⎪⎧2-5p +n =0m +4p -2=0, ∴m +n -p =0.2.过点A (ln 1,log 28)及直线3x -y +3=0与x 轴的交点的直线的一般式方程为________. 解析:点A 的坐标为(0,3),直线3x -y +3=0与x 轴的交点坐标为(-1,0),由截距式得x -1+y 3=1,即3x -y +3=0. 答案:3x -y +3=03.一长为3 m ,宽为2 m 缺一角A 的长方形木板(如图所示),长缺0.2 m ,宽缺0.5 m ,EF 是直线段,木工师傅要在BC 的中点M 处作EF 延长线的垂线(直角曲尺长度不够),应如何画线? 解:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则M (3,1),E (0,2,0),F (0,0.5),所以EF 所在直线的斜率k =0.5-0.2=-52,所以所求直线斜率为k ′=25. 因为该直线过点M (3,1),所以所求直线方程为y -1=25(x -3).令y =0,则x =0.5, 所以所求直线与x 轴的交点为 (0.5,0),故应在EB 上截EN =0.3 m ,得点N ,则MN 为要画的线.4.在直线l :3x -y -1=0上求一点P ,使得:(1)点P 到点A (4,1)和B (0,4)的距离之差最大;(2)点P 到A (4,1)和C (3,4)的距离之和最小. 解:如图,设点B 关于直线l 的对称点B ′的坐标为(a ,b ),则k ·k BB ′=-1,即3·b -4a=-1. ∴a +3b -12=0.①又由于BB ′的中点坐标⎝⎛⎭⎫a 2,b +42在直线l 上. ∴3×a 2-b +42-1=0,即3a -b -6=0.②由①②解得a =3,b =3,∴B ′(3,3).于是l AB ′:y -13-1=x -43-4,即2x +y -9=0. ∴⎩⎪⎨⎪⎧ 3x -y -1=0,2x +y -9=0,解得⎩⎪⎨⎪⎧x =2,y =5. 即直线l 与直线AB ′的交点坐标为(2,5).∵当P 点为l 与直线AB ′的交点时,P 点到两点的距离之差最大,∴P (2,5). (2)如图,设点C 关于直线l 的对称点为C ′,可求出C ′的坐标为⎝⎛⎭⎫35,245.∴直线AC ′所在直线方程为19x +17y -93=0,∴直线AC ′和直线l 的交点坐标为P ⎝⎛⎭⎫117,267.∵当P 点为直线AC ′与直线l 的交点时,P 到两点的距离之和最小,∴P 点坐标为⎝⎛⎭⎫117,267.。

北师大版高中数学选修第二章§应用创新演练(3)

北师大版高中数学选修第二章§应用创新演练(3)

1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,- 4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,-24,40)解析:对D 中向量g ,h ,16-2=-243≠405,故g ,h 不平行. 答案:D2.已知a =(2,- 1,3),b =(-4,2,x ),c =(1,-x, 2),若(a +b )⊥c ,则x 等于( ) A .4B .-4C. 12 D .-6解析:∵a +b =(-2,1,3+x )且(a +b )⊥c ,∴-2-x +6+2x =0,∴x =-4.答案:B3.若a =(1,λ,-1),b =(2,-1,2),且a 与b 的夹角的余弦为19,则|a |等于( ) A.94B.102C.32D.6解析:因为a·b =1×2+λ×(-1)+(-1)×2=-λ,又因为a·b =|a||b |·cos 〈a ,b 〉=2+λ2·9·19=132+λ2,所以13 2+λ2=-λ.解得λ2=14,所以|a |=1+14+1=32. 答案:C4.如图,在空间直角坐标系中有四棱锥P -ABCD ,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,E 为PD 的中点,则|BE |等于( )A . 2B. 5C. 6 D .22 解析:由题意可得B (2,0,0),E (0,1,1),则BE =(-2,1,1),|BE |= 6.答案:C5.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若ka -b 与b 垂直,则k =________ 解析:因为(ka -b )⊥b ,所以(ka -b )·b =0,所以ka·b -|b |2=0,所以k (-1×1+0×2+1×3)-(12+22+32)2=0,解得k =7.答案:76.若空间三点A (1,5,-2),B (2, 4,1),C (p,3,q +2)共线, 则p =________,q =________. 解析:由A ,B ,C 三点共线,则有AB 与AC 共线,即=λAC .又AB =(1,-1,3),AC =(p -1,-2,q +4),所以⎩⎪⎨⎪⎧ 1=λ(p -1),-1=-2λ,3=λ(q +4).所以⎩⎪⎨⎪⎧ λ=12,p =3,q =2.答案:3 2 7.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,建立适当的空间直角坐标系,求cos 〈1AC ,1AC 〉.解:建立如图所示的空间直角坐标系.则A (0,0,0),C (1,1,0),A 1 (0,0,1),C 1(1,1,1),可知1AC =(1,1,1),1A C =(1,1,-1).所以cos 〈1AC ,1AC 〉=1AC ·1A C| 1AC ||1A C |=13×3=8.已知空间三点A (0,2,3)、B (-2,1,6)、C (1,-1,5).(1)求以AB 、为邻边的平行四边形面积;(2)若|a |=3,且a 分别与AB 、AC 垂直,求向量a 的坐标.解:(1)由题中条件可知AB =(-2,-1,3),=(1,-3,2),|AB |=(-2)2+(-1)2+32=14,|AC |=12+(-3)2+22=14,∴cos 〈AB ,AC 〉=AB ·AC | AB ||AC | =-2+3+614×14=12. ∴sin 〈AB ,AC 〉=32. ∴以AB 、AC 为邻边的平行四边形面积 S =|AB ||AC |sin 〈AB ,AC 〉=14×32=7 3. (2)设a =(x ,y , z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0.解得⎩⎪⎨⎪⎧ x =1,y =1,z =1,或⎩⎪⎨⎪⎧ x =-1,y =-1,z =-1.∴a =(1,1,1)或a =(-1,-1,-1).。

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.5知能演练轻松闯关

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.5知能演练轻松闯关

1.数轴上两点A 、B ,若x A =3,|AB |=5,则x B =( )A .8B .-2C .8或-2D .-8或2解析:选C.∵|AB |=|x A -x B |=|3-x B |=5,∴x B =8或-2.2.点(1,-1)到直线x -y +1=0的距离是( )A.12 .32C.22 .322解析:选D.由点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2得d =|1+1+1|1+1=32=322,故选D.3.以A (5,5)、B (1,4)、C (4,1)为顶点的三角形是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选B.∵|AB |=(5-1)2+(5-4)2=17,|AC |=(5-4)2+(5-1)2=17, |BC |=(1-4)2+(4-1)2=18=32,∴△ABC 为等腰三角形.4.已知两直线l 1:2x +3y -3=0与l 2:mx +6y +1=0互相平行,则它们之间的距离等于( )A.21313 .52613 C.72613 D .4 解析:选C.∵l 1与l 2平行,∴2m =36, ∴m =4,l 2的方程为4x +6y +1=0.l 1的方程可化为4x +6y -6=0,由两平行线间的距离公式d =|C 1-C 2|A 2+B 2, 得l 1与l 2间的距离为d =|1-(-6)|42+62=7213=71326. 5.(2013·临川一中4月月考)如图,点A 的坐标为(1,0),点B 在直线y =-x 上运动,则当线段AB 最短时,点B 的坐标为( )A .(0,0)B .(12,-12) C .(22,-22) D .(-12,12) 解析:选B.当AB 与直线y =-x 垂直时,线段AB 最短.此时直线AB 的方程为y =x -1.由⎩⎪⎨⎪⎧ y =-x y =x -1,得⎩⎨⎧ x =12y =-12,∴B 点坐标为(12,-12). 6.原点到直线x +2y -5=0的距离为________.解析:d =|0+0-5|5= 5. 答案: 57.已知A (1,1),B (3,3),C (2,4),则△ABC 的面积为________.解析:由两点间距离公式,得|AB |=22;直线AB 的斜率k AB =1,则直线AB 的方程为y -1=x -1,即x -y =0.设点C 到直线AB 的距离为d ,则d =|2-4|2=2, ∴S △ABC =12×22×2=2. 答案:28.与A (-2,2),B (2,4)两点等距离,且在x 轴上的点的坐标是________.解析:设点P (x,0),则|AP |=(x +2)2+4,|BP |=(x -2)2+16,由于|AP |=|BP |,∴(x +2)2+4=(x -2)2+16,解得:x =32,∴P (32,0). 答案:(32,0) 9.正方形的中心为(-1,0),一条边所在直线方程为x +3y -5=0,求其他三条边所在的直线方程.解:正方形的边心距d =3105. 设与x +3y -5=0平行的一边为x +3y +C 1=0, 则|-1+3×0+C 1|12+32=3105, ∴C 1=-5(舍去)或C 1=7,∴x +3y +7=0.设与x +3y -5=0垂直的直线为3x -y +C 2=0. ∴|3×(-1)-0+C 2|(-1)2+32=3105, 解得C 2=-3或C 2=9.∴3x -y -3=0或3x -y +9=0.∴其他三条边所在直线方程为3x -y -3=0,3x -y +9=0,x +3y +7=0.10.已知直线l :x +y -3=0,点A (3,2),B (4,5),设点P 是直线l 上的动点,求点P 到A 与点B 的距离和的最小值.解:如图所示,作出点A (3,2)关于直线l :x +y -3=0的对称点A 1,其坐标为(1,0). ∵|P A |+|PB |=|P A 1|+|PB |,由两点之间线段最短,则当P ,A 1,B 三点共线时距离最短. ∴|BA 1|=(4-1)2+(5-0)2=34,即点P 到点A 与点B 的距离和的最小值为34.1.平面上一点到两个坐标轴和直线x +y =2的距离都相等,则该点的横坐标为( )A .2+ 2B .2±2C .±2D .(2±2)或±2解析:选D.设该点为(m ,n ),则|m |=|n |=|m +n -2|2.当m =n 时,则|m |=|2m -2|2,解得m =2±2;当m =-n 时,则|m |=|-2|2,解得m =±2. 2.已知两平行线l 1,l 2分别过点P 1(1,0),P 2(0,5),设l 1,l 2之间的距离为d ,则d 的取值范围是________.解析:若两直线的斜率不存在,则d =1.若两直线的斜率存在,设两直线的方程为y =k (x -1)与y =kx +5.由平行线之间的距离公式,得d =|5+k |k 2+1.整理,得(1-d 2)k 2+10k +25-d 2=0.∵k ∈R ,∴Δ=100-4(1-d 2)(25-d 2)≥0,解得d 2≤26.又∵d >0,∴0<d ≤26.综上所述,d 的取值范围为0<d ≤26.答案:(0,26]3.直线l 过点P (1,0),且被两条平行线l 1:3x +y -6=0,l 2:3x +y +3=0所截得的线段长为9,求l 的方程.解:若l 的斜率不存在,则l 的方程为x =1.由⎩⎪⎨⎪⎧ x =1,3x +y -6=0,得A (1,3), 由⎩⎪⎨⎪⎧x =1,3x +y +3=0,得B (1,-6). ∴|AB |=9,符合要求.若l 的斜率存在,设为k ,则l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧ y =k (x -1),3x +y -6=0,得A ⎝ ⎛⎭⎪⎫k +6k +3,3k k +3, 由⎩⎪⎨⎪⎧y =k (x -1),3x +y +3=0,得B ⎝ ⎛⎭⎪⎫k -3k +3,-6k k +3. ∴|AB |= ⎝ ⎛⎭⎪⎫k +6k +3-k -3k +32+⎝ ⎛⎭⎪⎫3k k +3--6k k +32 =91+k 2(k +3)2. 由|AB |=9,得1+k 2(k +3)2=1,∴k =-43. ∴l 的方程为y =-43(x -1),即4x +3y -4=0. 综上所述,l 的方程为x =1或4x +3y -4=0.4.如图,已知P 是等腰三角形ABC 的底边BC 上一点且不与B 、C两点重合,PM ⊥AB 于M ,PN ⊥AC 于N ,用解析法证明|PM |+|PN |为定值.证明:过点A 作AO ⊥BC ,垂足为O ,以O 为原点,建立如图所示的直角坐标系,设B (-a,0),C (a,0)(a >0),A (0,b )(b >0),P (x 1,0),a ,b 为定值,x 1为参数,-a ≤x 1≤a ,∴直线AB 的方程是bx -ay +ab =0,直线AC 的方程是bx +ay -ab =0.由点到直线的距离公式,得|PM |=|bx 1+ab |a 2+b 2,|PN |=|bx 1-ab |a 2+b 2. ∵a >0,b >0,-a ≤x 1≤a ,∴ab >0,-ab <0,∴bx 1+ab ≥0,bx 1-ab ≤0,∴|PM |+|PN |=bx 1+ab -(bx 1-ab )a 2+b 2=2ab a 2+b2(定值).。

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.2第二课时知能演练轻松闯关

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.2第二课时知能演练轻松闯关

1.下列说法正确的是( ) A.y -y 1x -x 1=k 是过点(x 1,y 1)且斜率为k 的直线 B .在x 轴和y 轴上的截距分别是a 、b 的直线方程为x a +xb=1C .直线y =kx +b 与y 轴的交点到原点的距离为bD .不与坐标轴平行或重合的直线方程一定可以写成两点式或斜截式解析:选D.对A ,∵y -y 1x -x 1=k 表示的直线不包含(x 1,y 1),∴A 错;对B ,当a 、b 为零时,不能写成x a +yb=1,∴B 错;因为截距与距离不同,∴C 错;只有D 正确.2.若2x 1+3y 1=4,2x 2+3y 2=4,则过点A (x 1,y 1),B (x 2,y 2)的直线方程为( ) A .2x +3y =4 B .2x -3y =4 C .3x +2y =4 D .不能确定解析:选A.由于(x 1,y 1),(x 2,y 2)都满足2x +3y =4,故A 、B 两点都在直线2x +3y =4上,故选A.3.直线x a +yb=1过一、二、三象限,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 解析:选C.根据截距的意义可知a <0,b >0.4.两直线x m -y n =1与x n -ym=1的图像可能是( )解析:选B.两直线方程可化为y =n m x -n 及y =m n x -m ,两直线的斜率n m 与mn同号,故倾斜角同为锐角或钝角,因而A ,C ,D 不正确,选B.5.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足( ) A .m ≠1B .m ≠-32C .m ≠0D .m ≠1且m ≠-32且m ≠0解析:选A.由直线方程的一般式Ax +By +C =0要求A ,B 不同时为0,因此由2m 2+m -3=0且m 2-m =0,解得m =1,所以当m ≠1时,2m 2+m -3与m 2-m 不同时为0,故选A.6.(2013·宜春高中质检)过点M (1,1),且在两坐标轴上的截距相等的直线的方程是________.解析:若直线过原点,则方程为y =x .若直线不过原点,设x a +ya=1,将M (1,1)代入得a =2,∴直线的方程为x +y =2.综上所述,所求直线的方程为y =x 或x +y =2. 答案:x -y =0或x +y -2=07.过两点(5,7)、(1,3)的直线方程为________;若点(a,12)在此直线上,则a =________. 解析:由两点式求得直线方程为y =x +2,即为x -y +2=0,把点(a,12)代入直线方程可求得a =10.答案:x -y +2=0 10 8.(2013·西安交大附中月考)不论k 为何值时,直线(k -1)x +y -k +1=0恒过定点________.解析:将直线方程整理得k (x -1)+y -x +1=0.∵k ∈R , ∴⎩⎪⎨⎪⎧ x -1=0y -x +1=0,即⎩⎪⎨⎪⎧x =1y =0. 答案:(1,0)9.一条光线从点A (3,2)发出,经x 轴反射,通过点B (-1,6),求入射光线和反射光线所在直线的方程.解:∵点A (3,2)关于x 轴的对称点为A ′(3,-2), 由两点式,得直线A ′B 的方程为 y -6-2-6=x +13-(-1) 即2x +y -4=0,同理,点B 关于x 轴的对称点为B ′(-1,-6),由两点式可得直线AB ′的方程为2x -y -4=0,故入射光线所在直线的方程为2x -y -4=0, 反射光线所在直线的方程为2x +y -4=0.10.已知直线l :5ax -5y -a +3=0.求证:不论a 为何值,直线l 总经过第一象限.证明:法一:直线l 的方程可化为y -35=a ⎝⎛⎭⎫x -15, ∴l 的斜率为a ,且过定点⎝⎛⎫15,35.而点⎝⎛⎭⎫15,35在第一象限,故l 总经过第一象限. 法二:直线l 的方程可化为(5x -1)a -(5y -3)=0. ∵上式对任意的a 总成立,必有⎩⎪⎨⎪⎧5x -1=05y -3=0,即⎩⎨⎧x =15y =35,即l 过定点⎝⎛⎭⎫15,35.而点⎝⎛⎭⎫15,35在第一象限,故l 总经过第一象限.1.方程|x |+|y |=1所表示的图形在平面直角坐标系中所围成图形的面积是( ) A .2 B .1 C .4 D. 2 解析:选A.原方程可化为⎩⎪⎨⎪⎧x +y =1x ≥0y ≥0或⎩⎪⎨⎪⎧x -y =1x ≥0y ≤0或⎩⎪⎨⎪⎧-x +y =1x ≤0y ≥0或⎩⎪⎨⎪⎧-x -y =1,x ≤0,y ≤0.分别表示四条线段,如图,在坐标系中围成一个边长为2的正方形,故面积为2.2.在直线方程y =kx +b 中,当x ∈[-3,4]时,恰好y ∈[-8,13],则此直线的方程为________.解析:由已知得k ≠0,当k >0时,由题意,得⎩⎪⎨⎪⎧-8=-3k +b ,13=4k +b ,解得⎩⎪⎨⎪⎧k =3,b =1, 此时直线方程为y =3x +1,即3x -y +1=0.当k <0时,由题意,得⎩⎪⎨⎪⎧ 13=-3k +b ,-8=4k +b ,解得⎩⎪⎨⎪⎧k =-3,b =4. 此时直线方程为y =-3x +4,即3x +y -4=0. 综上,直线的方程为3x -y +1=0或3x +y -4=0. 答案:3x -y +1=0或3x +y -4=0.3.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解:(1)当直线l 过原点时,该直线在x 轴和y 轴上的截距为零,显然相等,所以a =2,方程为3x +y =0;当a ≠2时,由a -2a +1=a -2,解得a =0,所以直线l 的方程为x +y +2=0.综上所述,所求直线l 的方程为3x +y =0或x +y +2=0. (2)将直线l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧-(a +1)≥0a -2≤0,解得a ≤-1,当a =2时,-(a +1)=-3<0,此时直线过第二象限. 综上所述,实数a 的取值范围是(-∞,-1].4.给定点B (3,2),若A 是直线l :y =3x 上位于第一象限内的一点,直线AB 与x 轴的正半轴相交于点C .试探究:△AOC 面积是否具有最小值?若有,求出点A 的坐标;若没有,请说明理由.若点A 为直线y =3x 上的任意一点,情况又会怎样呢?解:设A (m,3m )(m >0),C (x,0)(x >0),由A ,B ,C 三点共线得3m -2m -3=2-03-x ,解得x =7m3m -2,∴△AOC 的面积:S =12x ·3m =21m 26m -4.即21m 2-6Sm +4S =0.若S 有最小值时,则关于m 的一元二次方程有唯一解, 故Δ=(-6S )2-4×21×4S =0,解得S =283或S =0(舍去),即△AOC 面积的最小值为283.此时m =43,点A 的坐标为⎝⎛⎭⎫43,4. 若A 点是直线y =3x 上的任意一点,△AOC 面积不具有最小值. 因为当A 点无限地接近于原点O 时,△AOC 面积无限地接近于0.。

北师大版高中数学选修第二章§应用创新演练(3)

北师大版高中数学选修第二章§应用创新演练(3)

1.下列各组向量中不平行的是( ) A .a =(1,2,-2),b =(-2,- 4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,-24,40)解析:对D 中向量g ,h ,16-2=-243≠405,故g ,h 不平行.答案:D2.已知a =(2,- 1,3),b =(-4,2,x ),c =(1,-x, 2),若(a +b )⊥c ,则x 等于( ) A .4B .-4 C. 12D .-6解析:∵a +b =(-2,1,3+x )且(a +b )⊥c , ∴-2-x +6+2x =0,∴x =-4. 答案:B3.若a =(1,λ,-1),b =(2,-1,2),且a 与b 的夹角的余弦为19,则|a |等于( )A.94B.102C.32D.6解析:因为a·b =1×2+λ×(-1)+(-1)×2=-λ, 又因为a·b =|a||b |·cos 〈a ,b 〉=2+λ2·9·19=132+λ2,所以132+λ2=-λ.解得λ2=14,所以|a |=1+14+1=32. 答案:C4.如图,在空间直角坐标系中有四棱锥P -ABCD ,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,E 为PD 的中点,则|BE u u u r|等于( )A . 2 B. 5 C. 6D .22解析:由题意可得B (2,0,0),E (0,1,1),则BE u u u r =(-2,1,1),|BE u u u r|= 6.答案:C5.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若ka -b 与b 垂直,则k =________ 解析:因为(ka -b )⊥b , 所以(ka -b )·b =0, 所以ka·b -|b |2=0,所以k (-1×1+0×2+1×3)-(12+22+32)2=0, 解得k =7. 答案:76.若空间三点A (1,5,-2),B (2, 4,1),C (p,3,q +2)共线, 则p =________,q =________.解析:由A ,B ,C 三点共线,则有AB u u u r 与AC u u ur 共线,即=λAC u u u r .又AB u u u r=(1,-1,3),AC u u u r =(p -1,-2,q +4), 所以⎩⎪⎨⎪⎧1=λ(p -1),-1=-2λ,3=λ(q +4).所以⎩⎪⎨⎪⎧λ=12,p =3,q =2.答案:3 27.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,建立适当的空间直角坐标系,求cos 〈1AC u u u u r,1AC u u u u r 〉.解:建立如图所示的空间直角坐标系.则A (0,0,0),C (1,1,0),A 1 (0,0,1),C 1(1,1,1),可知1AC u u u u r =(1,1,1),1A C u u u u r=(1,1,-1).所以cos 〈1AC u u u u r ,1AC u u u u r〉= 1AC u u u u r ·1A C u u u u r | 1AC u u u u r ||1A C u u u u r |=13×3=13.8.已知空间三点A (0,2,3)、B (-2,1,6)、C (1,-1,5).(1)求以AB u u u r、为邻边的平行四边形面积;(2)若|a |=3,且a 分别与AB u u u r 、AC u u ur 垂直,求向量a 的坐标.解:(1)由题中条件可知AB u u u r=(-2,-1,3),=(1,-3,2), |AB u u u r|=(-2)2+(-1)2+32=14, |AC u u u r|=12+(-3)2+22=14,∴cos 〈AB u u u r ,AC u u u r 〉=AB u u u r ·ACu u ur | AB u u ur ||AC u u u r |=-2+3+614×14=12.∴sin 〈AB u u u r ,AC u u u r 〉=32.∴以AB u u u r 、AC u u ur 为邻边的平行四边形面积S =|AB u u u r ||AC u u u r |sin 〈AB u u u r ,AC u u u r 〉=14×32=7 3.(2)设a =(x ,y , z ), 由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0.解得⎩⎪⎨⎪⎧x =1,y =1,z =1,或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1.∴a =(1,1,1)或a =(-1,-1,-1).。

北师大版高中数学选修创新演练阶段质量检测第二章§应用创新演练(3)

1.双曲线x 216-y 29=1上一点P 到点F 1(5,0)的距离为15,则点P 到点F 2(-5,0)的距离为 ( )A .7B .23C .7或23D .5或25解析:由双曲线定义|PF 1|-|PF 2|=±2a ,而由双曲线方程知c =5,a =4,则点P 到F 2的距离为23或7.答案:C2.与椭圆x 24+y 2=1共焦点且过点Q (2,1)的双曲线方程是() A.x 22-y 2=1 B.x 24-y 2=1C.x 23-y 23=1 D .x 2-y 22=1解析:∵c 2=4-1=3,∴共同焦点坐标为(±3,0),设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则由⎩⎪⎨⎪⎧ 4a 2-1b 2=1,a 2+b 2=3,解得⎩⎪⎨⎪⎧ a 2=2,b 2=1,∴双曲线方程为x 22-y 2=1.答案:A3.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0 D .(3,0)解析:将双曲线方程化为标准方程为: x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,故右焦点坐标为⎝⎛⎭⎫62,0. 答案:C4.k <2是方程x 24-k +y 2k -2=1表示双曲线的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 解析:∵k <2⇒方程x 24-k +y 2k -2=1表示双曲线, 而方程x 24-k +y 2k -2=1表示双曲线⇒(4-k )(k -2)<0⇒k <2或k >4⇒/ k <2. 答案:A5.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.答案:46.椭圆x 24+y 2k 2=1与双曲线x 2k -y 22=1的焦点相同,则k 的值为________. 解析:双曲线焦点位于x 轴上,∴k >0,且有4-k 2=k +2即k 2+k -2=0,∴k =1或-2(负值舍去). 答案:17.过双曲线x 2144-y 225=1的一个焦点作x 轴的垂线,求垂线与双曲线的一交点到两焦点的距离.解:由题意,c 2=144+25=169,∴c =13,则焦点坐标F 1(-13,0),F 2(13,0).设过F 1且垂直于x 轴的直线l 交双曲线于A (-13,y )(y >0),∴y 225=132144-1=25144,∴y =2512, ∴|AF 1|=2512, 又∵|AF 2|-|AF 1|=2a =24,∴|AF 2|=24+|AF 1|=24+2512=31312, ∴垂线与双曲线的一交点到两焦点的距离为2512,31312.8.若双曲线x 2a 2-y 2b 2=1的两个焦点为F 1、F 2,|F 1F 2|=10,P 为双曲线上一点,|PF 1|=2|PF 2|,PF 1⊥PF 2,求此双曲线的方程.解:∵|F 1F 2|=10,∴2c =10,c =5.又∵|PF 1|-|PF 2|=2a ,且|PF 1|=2|PF 2|,∴|PF 2|=2a ,|PF 1|=4a .在Rt △PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2,∴4a 2+16a 2=100.∴a 2=5.则b 2=c 2-a 2=20.故所求的双曲线方程为x 25-y 220=1.。

北师大版高中数学选修第二章§应用创新演练(4)

1.下列关于流程图的说法中不.正确的是()A.流程图用来描述一个动态过程B.算法框图是一种特殊的流程图C.流程图只能用带箭头的流程线表示各单元的先后关系D.解决某一问题的流程图的画法是唯一的解析:A,C均符合流程图的特征,算法框图是一种特殊的流程图,故B正确.答案:D2.某人带着包裹进入超市购物的流程图如图所示,则在空白处应填()进入超市―→存放包裹―→在货架上选择物品―→付款―→―→离开超市A.退换物品B.归还货车C.取回包裹D.参加抽奖答案:C3.如图所示,已知集合A={x|框图中输出的x的值},集合B={y|框图中输出的y的值}.全集U=Z,Z为整数集.当x=-1时,(∁U A)∩B=() A.{-3,-1,5}B.{-3,-1,5,7}C.{-3,-1,7}D.{-3,-1,7,9}解析:根据程序框图功能知:y=-3,x=0;y=-1,x=1;y=1,x=2;…;y=9,x=6.所以A={0,1,2,3,4,5,6}.B={-3,-1,1,3,5,7,9}.则(∁U A)∩B={-3,-1,7,9}.答案:D4.(2012·辽宁高考)执行如图所示的程序框图,则输出的S值是()A .4B.32C.23 D .-1解析:第一次循环后, S =-1,i =2;第二次循环后,S =23,i =3;第三次循环后,S =32,i =4;第四次循环后S =4,i =5;第五次循环后S =-1,i =6,这时跳出循环,输出S =-1,故选D.答案:D5.某工程的工序流程图如图,则该工程的总工时最多为________天.解析:因为各个不同工序中用时最多的是①→②→④→⑥→⑦,即9天.答案:96.某算法的程序框图如图所示.若输出12,则输入的实数x 值为________.解析:该算法是求分段函数y =⎩⎪⎨⎪⎧x -1,x ≤1,log 2x ,x >1的函数值.由y =12,得x = 2. 答案: 27.如图是某工厂加工某种零件的一个工序操作流程图:按照这个工序流程图,回答下列问题:(1)一件成品最多经过几道加工和检验程序;(2)导致废品的产生有几种不同的情形.解:由流程图可得:(1)最多经过“粗加工”“检验”“返修加工”“返修检验”“精加工” “最后检验”六道加工和检验程序.(2)三种不同情形:①返修加工―→返修检验不合格.②检验――→合格精加工―→最后检验不合格.③返修检验――→合格精加工―→最后检验不合格.8.高考成绩公布后,考生如果认为公布的高考成绩与本人估算的成绩不符,可以在规定的时间内申请查分,其步骤如下:①本人填写《查分登记表》,交县(区)招生办申请查分,县(区)招生办呈交市招生办,再报省招生办.②省招生办复查,若无误,则查分工作结束后通知市招生办;若有误,则再具体认定并改正,也在查分工作结束后通知市招生办.③市招生办接通知后通知县(区)招生办,再由县(区)招生办通知考生.试画出该事件的流程图.解:流程图如图所示.。

北师大版高中数学选修创新演练阶段质量检测第二章§应用创新演练(3)

1.双曲线x 216-y 29=1上一点P 到点F 1(5,0)的距离为15,则点P 到点F 2(-5,0)的距离为 ( )A .7B .23C .7或23D .5或25解析:由双曲线定义|PF 1|-|PF 2|=±2a ,而由双曲线方程知c =5,a =4,则点P 到F 2的距离为23或7.答案:C2.与椭圆x 24+y 2=1共焦点且过点Q (2,1)的双曲线方程是() A.x 22-y 2=1 B.x 24-y 2=1C.x 23-y 23=1 D .x 2-y 22=1解析:∵c 2=4-1=3,∴共同焦点坐标为(±3,0),设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则由⎩⎪⎨⎪⎧ 4a 2-1b 2=1,a 2+b 2=3,解得⎩⎪⎨⎪⎧ a 2=2,b 2=1,∴双曲线方程为x 22-y 2=1.答案:A3.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0 D .(3,0)解析:将双曲线方程化为标准方程为: x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,故右焦点坐标为⎝⎛⎭⎫62,0. 答案:C 4.k <2是方程x 24-k +y 2k -2=1表示双曲线的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:∵k <2⇒方程x 24-k +y 2k -2=1表示双曲线, 而方程x 24-k +y 2k -2=1表示双曲线⇒(4-k )(k -2)<0⇒k <2或k >4⇒/ k <2. 答案:A5.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.答案:46.椭圆x 24+y 2k 2=1与双曲线x 2k -y 22=1的焦点相同,则k 的值为________. 解析:双曲线焦点位于x 轴上,∴k >0,且有4-k 2=k +2即k 2+k -2=0,∴k =1或-2(负值舍去). 答案:17.过双曲线x 2144-y 225=1的一个焦点作x 轴的垂线,求垂线与双曲线的一交点到两焦点的距离.解:由题意,c 2=144+25=169,∴c =13,则焦点坐标F 1(-13,0),F 2(13,0).设过F 1且垂直于x 轴的直线l 交双曲线于A (-13,y )(y >0),∴y 225=132144-1=25144,∴y =2512, ∴|AF 1|=2512, 又∵|AF 2|-|AF 1|=2a =24,∴|AF 2|=24+|AF 1|=24+2512=31312, ∴垂线与双曲线的一交点到两焦点的距离为2512,31312.8.若双曲线x 2a 2-y 2b 2=1的两个焦点为F 1、F 2,|F 1F 2|=10,P 为双曲线上一点,|PF 1|=2|PF 2|,PF 1⊥PF 2,求此双曲线的方程.解:∵|F 1F 2|=10,∴2c =10,c =5.又∵|PF 1|-|PF 2|=2a ,且|PF 1|=2|PF 2|,∴|PF 2|=2a ,|PF 1|=4a .在Rt △PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2,∴4a 2+16a 2=100.∴a 2=5.则b 2=c 2-a 2=20.故所求的双曲线方程为x 25-y 220=1.。

北师大版高中数学选修第二章§应用创新演练(2)

1.设函数f (x )=cos x ,则⎣⎡⎦⎤f ⎝⎛⎭⎫π2′=( ) A .0 B .1C .-1D .以上均不正确解析:注意此题中是先求函数值再求导,所以导数是0,故答案为A. 答案:A2.下列各式中正确的是( )A .(log a x )′=1xB .(log a x )′=ln 10xC .(3x )′=3xD .(3x )′=3x ·ln 3 解析:由(log a x )′=1x ln a ,可知A ,B 均错;由(3x )′=3x ln 3可知D 正确. 答案:D3.已知f (x )=x α,若f ′(-1)=-4,则α的值是( )A .-4B .4C .±4D .不确定 解析:f ′(x )=αx α-1,f ′(-1)=α(-1)α-1=-4,∴α=4.答案:B4.曲线y =1x在点P 处的切线的斜率为-4,则点P 的坐标为( ) A.⎝⎛⎭⎫12,2B.⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2C.⎝⎛⎭⎫-12,-2 D.⎝⎛⎭⎫12,-2 解析:y ′=⎝⎛⎭⎫1x ′=-1x 2=-4,x =±12,故B 正确. 答案:B5.若f (x )=x 2,g (x )=x 3,则适合f ′ (x )+1=g ′(x )的x 值为________. 解析:由导数的公式知,f ′(x )=2x ,g ′(x )=3x 2.因为f ′(x )+1=g ′(x ),所以2x +1=3x 2,即3x 2-2x -1=0,解得x =1或x =-13. 答案:1或-136.设函数f (x )=log a x ,f ′(1)=-1,则a =________.解析:∵f ′(x )=1x ln a ,∴f ′(1)=1ln a=-1. ∴ln a =-1.∴a =1e. 答案:1e7.求与曲线y =f (x )=3x 2在点P (8,4)处的切线垂直,且过点(4,8)的直线方程.解:∵y =3x 2,∴y ′=(3x 2)′=(x 23)′=23x 13-. ∴f ′(8)=23·813-=13. 即曲线在点P (8,4)处的切线的斜率为13. ∴适合条件的直线的斜率为-3.从而适合条件的直线方程为y -8=-3(x -4).即3x +y -20=0.8.求下列函数的导数.(1)y =2;(2)y =4x 3;(3)y =10x ;(4)y =log 12x ; (5)y =2cos 2x 2-1. 解:(1)∵y ′=c ′=0,∴y ′=2′=0.(2)∵y ′=(x n )′=n ·x n -1,∴y ′=(4x 3)′=(x 34)′=34x 314-=34x 14-=344x . (3)∵y ′=(a x )′=a x ·ln a ,∴y ′=(10x )′=10x ·ln 10.(4)∵y ′=(log a x )′=1x ·ln a , ∴y ′=(log 12x )′=1x ·ln12=-1x ·ln 2. (5)∵y =2cos 2x 2-1=cos x ,∴y′=(cos x)′=-sin x.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.空间向量中,下列说法正确的是( )
A .如果两个向量的长度相等,那么这两个向量相等
B .如果两个向量平行,那么这两个向量的方向相同
C .如果两个向量平行, 并且它们的模相等,那么这两个向量相等
D .同向且等长的有向线段表示同一向量
解析:只有两个向量方向相同且长度相等,才能为相等向量.故D 正确.
答案:D
2.在等腰直角三角形ABC 中,角B 为直角,则〈BC u u u r , CA u u u r 〉等于( )
A .45°
B .135°
C .45°或135°
D .不确定
解析:易知∠BCA =45°,由向量夹角的定义知〈BC u u u r ,CA u u u r 〉=135°.
答案:B
3.AB u u u r =CD u u u r 的一个必要不充分条件是( )
A .A 与C 重合
B .A 与
C 重合, B 与
D 重合
C .|AB u u u r |=|C
D u u u r |
D .A 、B 、C 、D 四点共线
解析:若AB u u u r =CD u u u r ,则|AB u u u r |=|CD u u u r |;若|AB u u u r |=|CD u u u r |,不一定能得出AB u u u r =CD u u u r .故应
选C.
答案:C
4.在正方体ABCD -A 1B 1C 1D 1中,平面ACC 1A 1的法向量是( )
A .BD u u u r
B .1B
C u u u u r C .1B
D u u u u r D .1A B u u u u r
解析:∵BD ⊥AC ,BD ⊥AA 1,
∴BD ⊥面ACC 1A 1,故BD u u u r 为平面ACC 1A 1的法向量.
答案:A
5.在正方体ABCD -A 1B 1C 1D 1中,以A 1为起点,以正方体的其余顶点为终点的向量中,与向量1BC u u u u r 垂直的向量有________.
解析:A 1B 1⊥面BCC 1B 1,∴11A B u u u u r ⊥1BC u u u u r ;A 1D ⊥AD 1,
而AD 1∥BC 1,∴1A D u u u u r ⊥1BC u u u u r .
答案:11A B u u u u r 1A D u u u u r
6.对空间向量a ,b ,有如下命题:
①〈a ,b 〉=〈b ,a 〉
②若a ⊥α,b ⊥α,且|a |=|b |,则a =b
③若a ≠b ,则|a|≠|b |
④若a ,b 都是直线l 的方向向量,则a ∥b
其中说法正确的是________
解析:①由两向量夹角的定义知为真;只有a ,b 同向时才能得出a =b ,故②为假;若两向量不相等,但其模可能相等,故③为假;由方向向量定义知④为真.
答案:①④
7.在平行六面体ABCD -A 1B 1C 1D 1顶点为起点或终点的向量中:
(1)写出与1BB u u u u r 相等的向量;
(2)写出与BA u u u r 相反的向量;
(3)写出与BA u u u r 平行的向量.
解:(1) 1CC u u u u r ,1DD u u u u r ,1AA u u u u r .
(2) DC u u u r ,11D C u u u u r ,11A B u u u u r .
(3) AB u u u r ,CD u u u r ,DC u u u r ,11D C u u u u r ,11C D u u u u r ,11A B u u u u r ,11B A u u u u r .
8.如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,
PB =PD =2a ,点E 是PD 的中点.
(1)试指出以E 为起点的直线PB 的一个方向向量;
(2)证明:PA u u u r 是平面ABCD 的法向量.
解:(1)连接BD 交AC 于O ,
连接OE .
由菱形ABCD 知O 是BD 的中点.
又E 是PD 的中点,
∴OE 綊12
BP . 则直线PB 的一个方向向量为EO u u u r .
(2)证明:∵底面ABCD 是菱形,∠ABC =60°,
∴AB =AD =AC =a .
在△P AB 中,
由P A 2+AB 2=2a 2=PB 2知P A ⊥AB . 同理P A ⊥AD .
∴P A ⊥平面ABCD .
故PA u u u r 是平面ABCD 的法向量.。

相关文档
最新文档