简易方程--怎样找等量关系

合集下载

五年级简易方程的解决问题

五年级简易方程的解决问题

环球雅思教育学科教师讲义年级:学员姓名:辅导科目:数学学科教师:课题简易方程解决问题课型□预习课□同步课□复习课□习题课授课日期及时段教学内容简易方程解决问题(2)一、解方程的步骤:①弄清题意,设未知量为x 。

设②分析题意,找等量关系。

找▲(关键)③根据等量关系列出方程。

列④解方程。

解⑤检验答案是不是方程的解。

验二、用方程解应用题常考类型。

1.通过抓不变量解决差倍问题例1:红红今年11岁,爸爸今年39岁,红红几岁时,爸爸的年龄是红红的3倍?设红红的年龄为x 岁,则爸爸的年龄就是3x 岁,根据年龄差不变,列方程解答。

解:设红红x 岁时,爸爸的年龄是3x 岁。

3x -x =39-112x =28x =14答:红红14岁时,爸爸的年龄是红红的3倍。

小结:在解决年龄问题时,关键是要找出题目中不变的量(即年龄差)。

练习1:李老师今年42岁,轩轩今年9岁,当轩轩几岁时,李老师的年龄是轩轩的4倍?2.通过抓信题目中的隐含条件解决鸡兔同笼问题。

例2:鸡兔共有8个头,26只脚,求鸡和兔各有几只。

⑴分析题目中的隐含条件:一只鸡有2只脚,一只兔有4只脚。

⑵根据等量关系:兔的脚数+鸡的脚数=总脚数,可列出方程:4x +2(8-x )=26解:设兔有x 只,那么鸡有(8-x )只4x +2(8-x )=264x+16-2x =262x+16=262x=102x÷2=10÷2x =5 8-x =8-5=3答:鸡有3只,兔有5只。

练习2:鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只?3.根据时间的一样来解决相遇问题例3:甲乙两地相距660千米,一辆货车的速度是每小时行32千米,一辆客车的速度是每小时行34千米,两车分别从甲乙两地同时出发相向而行,经过几小时相遇?根据“总路程=(甲车速度+乙车速度)×相遇时间”列出算式解:设经过x 小时两车相遇。

(32+34)x =660x =10答:经过10小时相遇。

《简易方程》单元小结

《简易方程》单元小结

《简易方程》单元知识梳理一、简易方程(一)简单方程(4个):x+a=b; x-a=b; ax=b; x÷a=b.解:x+a-a=b-a 解:x-a+a=b+a 解:ax÷a=b÷a 解:x÷a×a=b×a x=b-a x=b+a x=b÷a x=ba (二)稍复杂方程(5个):1、a-x=b 如:20-x=92、a÷x=b 如:2.1÷x=3 解:a-x+x=b+x 解:a÷x×x=b×xa=b+x a=b×xx+b=a bx=a3、ax+b=c 如:6x+3=9 4x- 2.8=10 3x+12×6=6 解:ax+b-b=c-bax=c-b4、a(x+b)=c 如:7(x+2.8)=35 (x-3)÷2=7.5 解:a(x+b)÷a=c÷a 或解:ax+ab=cx+b=c÷a ax+ab-ab=c-abax=c-ab5、ax±bx=c 如:2x+1.5x=17.5 8x-3x=105 3x+x-6=26解:(a±b)x=c(三)其他方程如: 1.2x÷3= 4.8 (5x-12)×8=24 (100-3x)÷2=8二、列方程解决实际问题-----典型例题解析列方程解决实际问题的步骤:1、找出未知数,用字母x表示;2、找出等量关系,列方程;3、解方程并检验作答。

(一)方程模型---x+a=b; x-a=b; ax=b ; x÷a=b甲数是b,甲数比乙数多(少)a,求乙数?或甲数是b,甲数是乙数的a倍,求乙数?等量关系式:乙数+a=甲数(乙数-a=甲数)或乙数×a=甲数典型例题:1、一件衣服现价178元钱,比原来降低了121元,这件衣服原价多少钱?2、黄豆长成豆芽后的质量是原来质量的8.5倍,现需要豆芽493千克,需要黄豆多少千克?(二)方程模型----ax+b=c或ax-b=c甲数是c,甲数比乙数的a倍多(少)b,乙数是多少?(设乙数为x.)等量关系式:乙数×a+b=甲数或乙数×a-b=甲数典型例题:1、一张桌子售价97元,比一把椅子售价的3倍多4元,一把椅子多少元?2、一只大象的体重是5吨,大象的体重比奶牛的8倍少200千克,奶牛的体重是多少千克?(三)方程模型-----ax+b×c=d已知甲乙两种商品的总价d与甲商品的单价b和数量c,求乙商品的单价或数量。

五年级数学下册典型例题系列之第一单元简易方程的应用题部分(解析版)

五年级数学下册典型例题系列之第一单元简易方程的应用题部分(解析版)

2021-2022学年五年级数学下册典型例题系列之第一单元简易方程的应用题部分(解析版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第一单元简易方程的应用题部分,该部分内容主要是列方程解应用题,考点编排由简入繁,难度逐次递增,考试多以应用题型为主,共分为十八个考点,考点较多,建议根据学生掌握情况选择性讲解,欢迎使用。

【知识点总览】1.列方程解应用题:列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值,从而解出应用题的办法。

解这类题的核心是正确找出等量关系,然后根据等量关系列出合适的方程。

2.解题的一般步骤:(1)审题:找出已知量和未知量。

(2)设未知数:找关键量。

①直接设未知数,即问什么设什么。

②间接设未知数,应设小不设多,设少不设多。

(3)找等量关系(列方程解应用题的核心)①根据语言描述来找等量:出现“比......多(少)”、“是”、“共”、“等于”、“总”、“和”、“差”、“倍”、“一样多”等。

②公式法:图形问题:长方形周长=(长+宽)×2 正方形周长=边长×4 长方形面积=长×宽正方形面积=边长×边长行程问题:路程=速度×时间速度=路程÷时间时间=路程÷速度价格问题:总价=单价×数量单价=总价÷数量数量=总价÷单价年龄问题:年龄差不变工程问题:工作总量=工作效率×工作时间(4)列方程,根据等量关系列方程。

(5)解方程。

(6)检验,检验答案正确与否。

(完整版)人教版小学五年级数学《简易方程》讲义

(完整版)人教版小学五年级数学《简易方程》讲义

五年级简易方程讲义第一课时:用字母表示数【学习目标】1、理解用字母表示数的意义和作用。

2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。

并能初步应用公式求周长、面积。

3、能正确进行乘号的简写,略写。

【学习重点】理解用字母表示数的意义和作用。

【学习难点】能正确进行乘号的简写,略写。

一、自主学习 (感知用字母表示数的意义)1、阅读教材主题图,理解图意。

在书上填出例1 中用图形、符号、字母表示的数。

2、思考:这3 道小题中,要求的未知数表示的方法都有一个共同的特点。

你还见过哪些用符号或字母表示数的例子,如,。

3、回忆学过哪些运算定律,怎样用字母表示,阅读理解例2 后完成下面的题。

加法交换律:加法结合律:乘法交换律:乘法结合律:乘法分配律:【在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写,是怎样表示的。

】a×b=b ×a 可以写成:a ·b=b ·a 或ab=ba(a ×b) ×c=a ×(b × c) (a ·b) ·c=a · (b ·c) 或(ab) c=a(bc) 。

4、阅读理解例3,用字母表示计算公式的意义和方法。

用S表示,C 表示,a 表示边长,试写出正方形的面积公式和周长公式,学生先自己试写,然后小组交流,看书讨论。

5、完成教材第46 页做一做。

二、合作探究、归纳展示1、㎡表示()相乘,读作();省略()和()的乘号后,数字一定要写在()的前面。

2、超市运回10箱方便面,每箱X元,卖出180 袋。

(1)用含有字母的式子表示超市还剩下方便面多少袋()(2)根据这个式子,求当X=24 时,超市还剩方便面多少袋?【自我检测】1、(1)省略乘号,写出下列格式。

x×y()7× a()1×a() y ×3+9()(2)下面式子对吗?如果不对请改正过来。

简易方程知识点归纳

简易方程知识点归纳

简易方程知识点归纳一、字母表示数字母既可以表示数,也可以表示运算定律和公式1、表示数时,注意规范书写①字母和字母相乘,乘号可以简写为“·”或省略不写。

如a×b=a.b 或a×b=ab。

相同字母相乘可以简写为平方;如:a×a=a²②数字和字母相乘,可以省略乘号不写,数字必须写在前边。

如3×m=3m③含有加减除法的代数式,如果要带单位名称,代数式必须加上小括号。

2、字母表示运算定律加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)减法的性质:a-b-c=a-(b+c) a-b-c=a-c-b乘法交换律:ab=ba乘法结合律:abc=a(cb)乘法分配律:a(b+c)=ab+ac除法的性质:a÷b÷c=a÷(bc) a÷b÷c=a÷c÷b3、字母表示公式:①长方形周长:C=2(a+b) 长方形面积:S=ab②正方形周长:C=4a 正方形面积:S=a²③行程问题路程=速度×时间:s=vt速度=路程÷时间:v=s÷t时间=路程÷速度:t=s÷v④工程问题工作总量=工作效率×工作时间c=at工作效率=工作总量÷工作时间a=c÷t工作时间=工作总量÷工作效率t=c÷a⑤总价单价和数量问题总价=单价×数量:c=ax单价=总价÷数量:a=c÷x数量=总价÷单价:x=c÷a二:解简易方程1、等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

2、等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

3、含有未知数的等式叫做方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

5、求方程的解的过程叫做解方程。

简易方程-五年级上册数学精品讲义(思维导图+知识梳理+例题精讲+易错专练) 人教版(含答案)

 简易方程-五年级上册数学精品讲义(思维导图+知识梳理+例题精讲+易错专练)    人教版(含答案)

第5讲 简易方程(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“.”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )乘法交换律:ab=ba乘法结合律:(ab )c=a (bc )乘法安排律:(a+b )c=ac+bc留意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。

3.用字母表示简单的数量关系(1)用字母可以表示数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

简易方程用字母表示数方程的意义解方程解简易方程实际问题与方程解不同类型的方程解方程等式的性质4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

学问点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。

2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍旧相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍旧相等。

留意:方程肯定是等式,但等式不肯定是方程。

学问点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.依据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,假如相等,所求的未知数的值就是原方程的解,否则就不是。

留意:解方程的依据是等式的性质;解方程时等号要上下对齐。

4.略微简单的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最终,解方程并检验作答。

(2)方程解法与算式解法的区分列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时依据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是依据题中已知数和未知数之间的关系确定解答步骤,再进行计算。

第9讲 解简易方程-五年级上册数学(人教版)

第9讲 解简易方程-五年级上册数学(人教版)

第9讲解简易方程五年级上册数学知识点汇总与错题专练(易错梳理+易错举例+易错题演练)【易错梳理】1、方程的意义。

含有未知数的等式叫方程。

2、等式的性质1。

等式两边加上或减去同一个数,左右两边仍然相等。

3、等式的性质2。

等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

4、方程的解。

使方程左右两边相等的未知数的值,叫作方程的解。

5、解方程。

求方程的解的过程叫作解方程。

6、检验方程的解是否正确。

将未知数的值代入原方程,看方程左边是否与方程右边相等,若相等,则是方程的解;若不相等,则不是。

7、用方程解决问题的方法。

将逆向思维变成顺向思维,把未知数用x表示,参与列式,即把未知数用x表示,根据数量关系把未知数代入等式,然后再列方程求解。

8、列方程解决问题的步骤。

步骤一:弄清题意,找出未知数,用x表示;步骤二:分析、找出数量之间的相等关系,列方程;步骤三:解方程;步骤四:检验,写答语。

9、方程解法和算术解法的区别。

(1)列方程解决问题时,未知数用字母表示,参加列式;算术解法中未知数不参与列式。

(2)列方程解决问题是根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成;算术解法是根据题目中已知数和未知数间的关系确定解答步骤,再列式计算。

10、一个式子是否是方程的两个必备条件为①是等式;②含有未知数。

11、不是所有的等式都是方程,但所有的方程都是等式。

12、方程的解是一个数值,解方程是求解未知数的值的过程。

13、运用等式的性质1解方程时,方程左右两边应同时加上或减去相同的数,而不是加上或减去方程两边各自的数。

14、在用方程解决问题时,若题目中有两个未知量,且两个量之间存在倍数关系,设1倍量为x,另一个量用含有x 的式子表示。

15、在用方程解决实际问题时,方程的解不能带单位。

【易错举例】易错点1:解方程时,等式的性质运用错误。

解方程:x-25=15【错误答案】【错解分析】本题错在左边加16,右边加24,致使计算结果错误。

小学数学简易方程解题方法梳理和实例解析

小学数学简易方程解题方法梳理和实例解析

小学数学简易方程总结和强化练习概念:含有未知数的等式叫做方程。

求方程的解的过程叫做解方程。

例题1:3x+9=27在学习方程之前,我们都是在学习加、减、乘、除法以及四则混合运算如何计算,也就是给出了数字和运算求出结果。

但是方程正好相反,方程是给出了结果和算式的一部分,求另一部分。

所以,解方程的顺序正好和运算顺序相反,解方程之前先要明确运算顺序,接下来的解方程的过程就水到渠成了。

回到上面的方程,方程的左边是乘法和加法的混合,运算的顺序是:先算乘法(乘3),后算加法(加9)。

所以解方程的顺序正好相反,先要让9消失,再让3消失。

如何才能让9消失呢?我们首先要看看在9上施加了什么运算?“+9”,所以方程的两边要同时“-9”,这样9就消失了。

3x+9-9=27-93x=18接下来的任务是让3消失,3x就是3×x,所以方程的两边要同时“÷3”,这样3x就变成了x。

3x÷3=18÷3x=6将整个过程合在一起,完整的过程如下:3x+9=27解:3x+9-9=27-93x=183x÷3=18÷3x=6怎样确定x=6是不是方程的解呢?这就需要进行检验,也就是将x=6代入方程,检验方程的两边是否相等。

检验的过程如下:检验:方程的左边=3x+9=3×6+9=18+9=27=方程的右边所以,x=6是方程3x+9=27的解。

例题2:100-x=80这个方程与上面的方程有些不同,不同之处就在x的前面是减号。

下面我们使用两种方法来解这个方程,同时作一比较。

法(一):等式的性质100-x=80解:100-x+x=80+x100 =80+x80+x=10080+x-80=100-80x=20法(二):加减乘除法各部分关系这个方程是一个减法,并且x是减数,根据减法中各部分之间的关系:减数=被减数-差,我们得出x=100-80。

具体过程如下:100-x=80解:x=100-80x=20对比一下我们会看到,x前面是“-”或“÷”时,使用加减乘除法各部分之间的关系会比使用等式的性质更加方便一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样找等量关系
一、抓住数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍””等术语表示。

在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年
级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程。

二、根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;亩产量×亩数=总产量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。

例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量
=总价”的数量关系,可以列出方程。

三、根据常用的计算公式找等量关系
常用的计算公式有:长方形面积=长×宽;圆面积=……在解题时,可以根据计算公式找等量关系。

例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程。

四、根据文字关系式找等量关系
例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:
一班+二班+三班=总数
一班+二班=总数-三班
一班+三班=总数-二班
二班+三班=总数-一班
根据这些文字等量关系式,可列出以下方程,如:
五、根据图形找等量关系
例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图。

从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数。

根据这个关系式,可列出方程。

相关文档
最新文档