广义二阶动力学系统的鲁棒极点配置

广义二阶动力学系统的鲁棒极点配置
广义二阶动力学系统的鲁棒极点配置

实验 6 极点配置与全维状态观测器的设计(优.选)

实验 6 极点配置与全维状态观测器的设计 一、实验目的 1. 加深对状态反馈作用的理解。 2. 学习和掌握状态观测器的设计方法。 二、实验原理 在MATLAB 中,可以使用acker 和place 函数来进行极点配置,函数的使用方法如下:K = acker(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 K = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 [K,PREC,MESSAGE] = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵,PREC 为特征值,MESSAGE 为配置中的出错信息。 三、实验内容 1.已知系统 (1)判断系统稳定性,说明原因。 (2)若不稳定,进行极点配置,期望极点:-1,-2,-3,求出状态反馈矩阵k。 (3)讨论状态反馈与输出反馈的关系,说明状态反馈为何能进行极点配置? (4)使用状态反馈进行零极点配置的前提条件是什么? 1. (1) (2) 代码: a=[-2 -1 1;1 0 1;-1 0 1]; b=[1,1,1]'; p=[-1,-2,-3]'; K=acker(a,b,p) K = -1 2 4 (3)讨论状态反馈与输出反馈的关系, 说明状态反馈为何能进行极点配置?

在经典控制理论中,一般只考虑由系统的输出变量来构成反馈律,即输出反馈。在现代控制理论的状态空间分析方法中,多考虑采用状态变量来构成反馈律,即状态反馈。从状态空间模型输出方程可以看出,输出反馈可视为状态反馈的一个特例。状态反馈可以提供更多的补偿信息,只要状态进行简单的计算再反馈,就可以获得优良的控制性能。 (4)使用状态反馈配置极点的前提是系统的状态是完全可控的。 2.已知系统 设计全维状态观测器,使观测器的极点配置在12+j,12-j 。 (1)给出原系统的状态曲线。 (2)给出观测器的状态曲线并加以对比。(观测器的初始状态可以任意选取)观察实验结果,思考以下问题: (1)说明反馈控制闭环期望极点和观测器极点的选取原则。 (2)说明观测器的引入对系统性能的影响。 (1)A=[0 1;-3 -4]; B=[0;1]; C=[2 0]; D=[]; G=ss(A,B,C,D); x=0:0.001:5; U=0*(x<0)+1*(x>0)+1*(x==0); X0=[0 1]'; T=0:0.001:5; lsim(G,U,T,X0);

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

实验二 状态反馈与极点配置

实验二 状态反馈与极点配置 一、实验目的 a) 掌握状态反馈极点配置的设计方法。 b) 掌握运用模拟运算放大电路实现状态反馈。 c) 验证极点配置理论。 二、实验仪器 a) TDN —AC/ACS 型自动控制系统实验箱一台 b) 示波器 c) 万用表 三、实验原理和电路 为了更好地达到系统所要求的各种性能指针,需要通过设计系统控制器,改善原有系统的性能。由于系统的性能与其极点分布位置有密切关系,因而极点配置是系统设计的关键。极点配置就是利用状态反馈或输出反馈使闭环系统的极点位于所希望的极点位置。在系统综合设计中,状态反馈和输出反馈是两种常用的反馈形式,而在现代控制理论中系统的物理特性是采用系统内部状态变量来描述的,利用内部状态变量乘以系数(向量)与系统参考输入综合构成的反馈系统,具有更优的控制效果。 1、单输入单输出状态反馈的极点配置 受控系统如图2-1, 图2-1受控系统 其中状态变量1()1/G S S =,2()1/(0.051)G S S =+,状态变量1x 、2x ,对系统进行极点配置,达到系统期望的性能指针:输出超调量5%P M ≤;峰值时间 0.5p t s ≤;系统频宽10b ω≤;跟踪误差0p e =(对于阶跃输入)。 i. 确定受控系统的状态空间模型 211()()x u x G S =-,122()x x G S =,1y x =,系统的状态方程为: .11.2220200101x x u x x ??-?????? ??=+????????-????????? ?;[]1210x y x ??=???? ii. 确定期望的极点 P M = p t = ;b n ωω=可解得0.707ζ≥,选0.707ζ=;9n ω≥由10b ω≤选10n ω=。 这样期望极点为:* 17.077.07j λ=-+

控制器极点配置方法

控制器极点配置方法 如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。这种方法称为极点配置法。 例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。 图6-38 解:(1)校正前,闭环系统的极点: > 0 因而控制系统不稳定。 (2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点: 显然,当,时,系统可以稳定。但此对参数c 的选择依赖于 a 、b 。因而,可 选择控制器,c 、d ,则有特征方程: 当,时,系统稳定。 本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。 例6-13 已知一单位反馈控制系统的开环传递函数:

要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在 处。 解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为: 。 图6-39 为使主导极点向左偏移,宜采用超前校正装置。 (2)令超前校正装置,可采用待定系数法确定相关参数: 又

其中、、、为待定系数。 进一步可得: 即 将代入式子可以得到:,,,。进一步可得超前校正装置的传递函数: 校正后系统的根轨迹如图6-39所示。 该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。 在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。下面通过示例介绍其中的一种算法。 例6-14 考虑给定的系统,其状态方程模型如下:

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

全状态反馈系统极点配置的数字仿真(终)

实验一 全状态反馈系统极点配置的数字仿真 一、实验目的 1掌握全状态反馈系统的极点配置方法; 2研究不同极点配置对系统特性的影响。 二、实验原理 闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。 利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。 设SIMO (Single Input-Multi Output )受控系统的动态方程为 u A b x x += ,x y C = 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有 u v kx =+ 这样便构成了状态反馈系统,其结构图如图1-1所示 图1-1 SIMO 状态反馈系统结构图 状态反馈系统动态方程为 x ()A bk x bv =++,x y C = (1-1) 闭环系统特征多项式为 ()()f I A bk λλ=-+ (1-2) 设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式为 )())(()(21*n f λλλλλλλ---= (1-3) 欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即 )()(*λλf f = (1-4) 利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵 []n k k k 21=k 例如SISO (Single Input-Single Output )受控系统的开环传递函数为 3 1)(s s G = 若采用输出单位反馈构成闭环系统,则该系统显然是不稳定的,若按指定的极点配置,采用

全状态反馈构成闭环系统,则可以满足给定的性能要求。 原系统可控标准形形式的状态方程和输出方程为 u x x x u A ???? ? ?????+????????????????????=+=100000100010321b x x []???? ??????==321001x x x C y x 由于本系统是完全可控的,能够通过反馈向量k 的选择,使闭环系统的极点置于所希望的位置上,以满足系统的性能指标要求。 若根据系统的性能指标,希望配置的极点为31-=p ,2j 23,2±-=p ,则采用状态反馈后系统的特征多项式为 32321()det[I ()]f A bk k k k λλλλλ=-+=--- 希望的系统特征多项式为 *32()(3)(2j2)(2j2)72024f λλλλλλλ=++-++=+++ 比较上述两个多项式得系统状态反馈向量为 [][]123k 24207k k k ==--- 因此,加入状态反馈后,闭环系统的状态方程为 u x x x u A ???? ??????+????????????????????---=+=10072024100010321b x x 其结构图如图1-2所示 图1-2 状态反馈系统结构图 三、实验内容及步骤 实验通过MATLAB 软件实现。 1. 双击MATLAB 图标或单击开始菜单,依次指向“程序”、“MATLAB ”,单击MATLAB ,进入MATLAB 命令窗口。单击MATLAB 工具条上的Simulink 图标 ,运行后出现Simulink 模块库浏览器,并单击其工具条左边的图标,弹出新建模型窗口。

极点配置问题

5.2 极点配置问题 5.2.1 问题提出 控制系统的性能主要取决于系统极点在根平面上的分布。因此,作为综合系统性能指标的一种形式,往往是给定一组期望极点,或者根据时域指标转换成一组等价的期望极点。极点配置问题,就是通过选择反馈增益矩阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能。在经典控制理论中所介绍的根轨迹法就是一种极点配置法,不过它只是通过改变一个参数使闭环系统的极点沿着某一组特定的根轨迹曲线配置而已。因此,广义地说,不论综合系统的性能指标怎样不同,究其实质都是运用各种技术手段来实现系统极点零点的重新配置,以期获得所期望的性能。 本节讨论在指定极点分布的情况下,如何设计反馈增益阵的问题。为简单起见,只讨论单输入—单输出系统。 5.2.2 状态反馈与极点配置 定理三 采用状态反馈对系统()0 ,,A B C =∑任意配置极点的充要条件是0 ∑ 完全 能控。 证明 只证充分性。若 ∑ 完全能控,通过状态反馈必成立 []* det ()()I A bK f λλ-+= (5.26) 式中*()f λ—期望特征多项式。 * * *1 *1101 ()()n n n i n i f a a a λλ λλλλ--== -=++++∏ (5.27) 式中*(1,2,,)i i n λ= —期望的闭环极点(实数极点或共轭复数极点)。 ① 若 ∑ 完全能控,必存在非奇异变换 CI x T x = 式中CI T —能控标准I 型变换矩阵。 能将 ∑ 化成能控标准I 型 x+x A bu =

y Cx = 式中 1 012101000010CI CI n A T AT a a a a --????? ?==?? ? ? ----?? 1 001CI b T b -????? ?==?????? []011=C CI n C T b b b -= 受控系统 ∑ 的传递函数为 121 1210 01 110 ()=()n n n n n n n b s b s b s b W s C sI A b s a s a s a -------++???++-=++???++ (5.28) ② 加状态反馈增益阵 0 11n K k k k -??=? ? (5.29) 可求得对x 的闭环状态空间表达式 ()+x A bK x bu y Cx ?=+? ?=?? (5.30) 式中 01101101000 01 001()()()n n A b K a k a k a k --??? ?????+=? ??? ? ? ----- -?? 闭环特征多项式为 ()()f I A bK λλ=-+ 1110110()()()n n n n a k a k a k λλλ---=+-++-+- (5.31) 闭环传递函数为 121210 1 110110()=()()() n n n n k n n n n b s b s b s b W s s a k s a k s a k -------++???+++-+???+-+- (5.32) ③ 使闭环极点与给定的期望极点相符,必须满足 * ()()f f λλ=

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

状态反馈与极点配置报告

自 动 控 制 原 理 (课程设计)

一、题目 用MATLAB创建用户界面,并完成以下功能: (1)由用户输入被控系统的状态空间模型、闭环系统希望的一组极点; (2)显示未综合系统的单位阶跃响应曲线; (3)显示采用一般设计方法得到的状态反馈矩阵参数; (4)显示闭环反馈系统的单位阶跃响应曲线; (5)将该子系统嵌入到寒假作业中程序中。 分别对固定阶次和任意阶次的被控系统进行设计。分别给出设计实例。 二、运行结果 界面:如图 由用户输入被控系统的状态空间模型、闭环系统希望的一组极点 例如,输入 010 001 034 A ?? ?? =?? ?? -- ?? , 1 B ?? ?? =?? ?? ?? ,[] 2000 C=,0 D=,闭环系统 希望的一组极点:22j -+、22j --、5 -如图所示:

被控系统的单位阶跃响应曲线 闭环系统的单位阶跃响应曲线

状态反馈矩阵显示 三、讨论 该闭环控制系统的状态反馈与极点配置设计系统可用于任意阶次的控制系统。在此之前,我还做了一个固定阶次的控制系统状态反馈与极点配置的Matlab 控制台程序(见附录二)。 该系统的利用状态反馈进行极点任意配置所采用的方法为一般方法,其步骤如下: ①判断受控系统是否完全能控; ②由给定的闭环极点要求确定希望的闭环特征多项式的n个系数 ~ i a; ③确定原受控系统的特征多项式系数i a; ④确定系统状态反馈矩阵 ~ ~~ ~ [,,,] 12n f f f F=的诸元素~~1 1i i i f a a - =- -; ⑤确定原受控系统化为能控标准形的变换阵的逆1 P-, ⑥确定受控系统完成闭环极点配置任务的状态反馈阵 ~ 1 F F P-=。 四、参考文献 [1]黄家英.《自动控制原理》.高等教育出版社,2010.5 [2]唐向红,郑雪峰.《MATLAB及在电子信息类》.电子工业出版社,2009.6 [3]吴大正,高西全.《MATLAB新编教程》.机械工业出版社,2008.4 五、附录 function varargout = tufeiqiang(varargin) %TUFEIQIANG M-file for tufeiqiang.fig % TUFEIQIANG, by itself, creates a new TUFEIQIANG or raises the existing % singleton*. % % H = TUFEIQIANG returns the handle to a new TUFEIQIANG or the handle to % the existing singleton*. % % TUFEIQIANG('Property','Value',...) creates a new TUFEIQIANG using

基于输出反馈的区域极点配置

第22卷第2期南 京 理 工 大 学 学 报Vol.22No.21998年4月 Journal of Nanjing University of Science and Technology Apr.1998 基于输出反馈的区域极点配置 X 王子栋X X 郭 治 (南京理工大学信息学院,南京210094)摘要 该文研究输出反馈情形下线性定常连续及离散系统区域极点配置的统一代数刻划问题,即利用完全参数化方法,设计输出反馈控制器,使闭环极点配置于指定圆形区域内。文中导出了期望输出反馈控制器存在的充要条件,并进一步给出了这类控制器的全部参数化刻划。最后,得到了若干有益的推论,包括线性离散及连续系统稳定化控制器的统一代数表示等。 关键词 线性系统,输出反馈,极点配置,参数法,代数刻划 分类号 TP 202.1,T P 214.1 众所周知,线性定常系统的稳态及动态特性直接受其极点所在位置的影响,因而极点配置问题一直是控制理论研究中基本而重要的课题之一,其在工程实践中也具有明显的应用背景,如飞行控制系统的设计以及柔性结构的振动控制等[1]。迄今为止,精确极点的配置问题已得到了很好的研究。在过去的十年中,区域极点的配置问题也开始受到充分的注意,涌现出一批成果[2][3]。 目前,区域极点配置的相关文献中的大部分均是针对某性能指标给出具体的设计方法,且均集中于状态反馈情形,缺乏一定的通用性。本文对连续及离散线性定常系统使用统一的代数方法,给出了配置闭环极点至给定圆形区域的输出反馈控制器的全部参数化刻划,为区域极点配置问题提供了一条具有理论意义及应用价值的新途径。 1 问题的描述 考虑线性定常连续系统x a (t )=A x (t )+B u (t ),y (t )=Cx (t )及线性定常离散系统x (k +1)=A x (k )+Bu (k ),y (k )=Cx (k ),其中x ∈R n 为状态,u ∈R m 为控制输入,y ∈R p 为测量输出,A 、B 、C 为适维已知常数阵。(A ,B )及(A ,C )分别为可控和可观的。 考虑圆形区域D (A ,r ),其中在连续时间情形D (A ,r )表示圆心在A +j 0(A <0)处、半径为r (r <-A )的圆,在离散时间情形D (A ,r )表示单位圆内圆心位于A +j 0、半径为r 的圆。这里均考虑复平面。 X X XX 王子栋 男 32岁 副教授 国家自然科学基金及高校博士学科点专项科研基金资助项目 本文于1997年1月14日收到

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: 2 11 1 cos tan ξ βξ ξ -- - == 图3.22 系统在S平面上满足 时域性能指标的范围 n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

系统稳定性分析 、利用MATLAB 实现极点配置、设计状态观测器

实验报告 实验名称系统稳定性分析、利用MATLAB实现极点配置、设计状态观测器系专业班 姓名学号授课老师 预定时间实验时间实验台号 一、目的要求 掌握系统稳定性的概念。学会使用MATLAB确定线性定常系统和非线性定常系统的稳定性。 掌握状态反馈和输出反馈的概念及性质。 掌握利用状态反馈进行极点配置的方法。学会用MATLAB求解状态反馈矩阵。 掌握状态观测器的设计方法。学会用MATLAB设计状态观测器。 熟悉分离定理,学会设计带有状态观测器的状态反馈系统。 二、原理简述 函数eig()的调用格式为V=eig(A)返回方阵A的特征值。 函数roots()的调用格式为roots(den),其中den为多项式的系数行向量。计算多项式方程的解。 函数pole()的调用格式为pole(G),其中G为系统的LTI对象。计算系统传递函数的极点。 函数zpkdata()的调用格式为[z,p,k]=zpkdata(G,’v’),其中G为系统LTI对象。返回系统的零点、极点和增益。 函数pzmap()的调用格式为pzmap(G),其中G为LTI对象。绘制系统的零点和极点。 对于线性定常连续系统x Ax,若A是非奇异矩阵,则原点是其唯一的平衡状态。统在原点处大范围渐近稳定的充分条件是:存在李氏函数v(x)x T px,且v(x)正定,v(x)负定。 如果SISO线性定常系统完全能控,则可通过适当的状态反馈,将闭环系统极点配置到 任意期望的位置。 MATLAB提供的函数acker()是用Ackermann公式求解状态反馈阵K。 MATLAB提供的函数place()也可求出状态反馈阵K。 如果线性定常系统完全能观测,则可构造全维(基本)观测器。全维(基本) 状态观测器的状态方程为观测器的反馈矩阵L为 其中为系统的能观测矩阵。 其中为期望的状态观测器的极点。观测器设计是极点配置的对偶问题,故可利用函数acker()和place()进行求解。

鲁棒控制简介

当今的自动控制技术都是基于反馈的思想。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论应用于自动控制的关键是,做出正确的测量和比较后,如何利用误差才能更好地纠正系统(即控制器的设计)。 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 由于工作状况变动、外部干扰以及建模误差的缘故,实际工业过程的精确模型很难得到,而系统的各种故障也将导致模型的不确定性,因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为国内外科研人员的研究课题。 主要的鲁棒控制理论有:(1)Kharitonov区间理论;(2)H∞控制理论(IMPORTANT);(3)结构奇异值理论(μ理论)等等。 H∞控制理论 H∞控制理论是20世纪80年代开始兴起的一门新的现代控制理论。H∞控制理论是为了改变近代控制理论过于数学化的倾向以适应工程实际的需要而诞生的,其设计思想的真髓是对系统的频域特性进行整形(Loopshaping),而这种通过调整系统频率域特性来获得预期特性的方法,正是工程技术人员所熟悉的技术手段,也是经典控制理论的根本。 1981年Zames首次用明确的数学语言描述了H∞优化控制理论,他提出用传递函数阵的H∞范数来记述优化指标。1984年加拿大学者Fracis和Zames用古典的函数插值理论提出了H∞设计问题的最初解法,同时基于算子理论等现代数学工具,这种解法很快被推广到一般的多变量系统,而英国学者Glover则将H∞设计问题归纳为函数逼近问题,并用Hankel算子理论给出这个问题的解析解。Glover 的解法被Doyle在状态空间上进行了整理并归纳为H∞控制问题,至此H∞控制理论体系已初步形成。 在这一阶段提出了H∞设计问题的解法,所用的数学工具非常繁琐,并不像问题本身那样具有明确的工程意义。直到1988年Doyle等人在全美控制年会上发表了著名的DGKF论文,证明了H∞设计问题的解可以通过适当的代数Riccati方程得到。DGKF的论文标志着H∞控制理论的成熟。迄今为止,H∞设计方法主要是DGKF等人的解法。不仅如此,这些设计理论的开发者还同美国的The Math Works公司合作,开发了MA TLAB中鲁棒控制软件工具箱(Robust Control Toolbox),使H∞控制理论真正成为实用的工程设计理论。 研究——现代鲁棒控制(有界摄动) 鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动。因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。 现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。其设计目

直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告

一、直线一级倒立摆建模 根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示: 倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。 虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性 倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆的非线性控制正成为一个研究的热点。 2) 不确定性 主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。 3) 耦合性 倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。 4) 开环不稳定性 倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。由于机构的限制,如运动模块行程限制,电机力矩限制等。为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。 由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点: (1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度; (2)为保证倒立摆能顺利起立,要求初始偏角小于20°;

输出反馈极点配置

第五章 静态输出反馈、观测器和静态输出反馈观测器和 动态补偿器

§5-1静态输出反馈和极点配置 一、静态输出反馈的性质 若给定线性时不变系统方程为 =+=A B C x x u y x (5-1)若取静态输出反馈控制律u =K y +v (5-2) 可以得到闭环系统的动态方程为(),(53) A BKC B C x x v y x =++=?

(),=++=A BKC B C x x v y x x C B v y x ∫ A K 闭环系统结构图 )不改变系统的可观测性定理5-1反馈规律(5-2)不改变系统的可观测性。证明根据等式 ()?+????????I A BCK I BK I A s s (5-4)0=????????????C I C (54)

由于(5-4)式右端第一个矩阵是非奇异阵,因此)式右端第个矩阵是非奇异阵,因此对任意的s 和K ,均有 ?()(55) s s rank rank ?+????=?????????I A BKC I A C C 证完。 可见,系统(A +BKC , C )可观测的充分必要条件)可观测这表明是系统(A , C )可观测。这表明静态输出反馈不改变系统的可观测性。 )不可观测由(55)可知如果系统(A , C )不可观测,由(5-5)可知,静态输出反馈不会改变系统的不可观测模态。推论:u =K y +v 的反馈律不改变系统的可控性。把中看作态馈证明:把(A +BKC )中的KC 看作是状态反馈增益阵,而状态反馈不改变系统的可控性。证完。

二、循环矩阵 定义:称为是循环的系指其最小多项式1. 循环矩阵的定义: n ×n 方阵A 称为是循环的,系指其最小多项式就是特征多项式。等价的提法有: 1).s I ?A 的Smith 标准形只有一个非1的不变因子; 2)A 的若当形中一个特征值只有一个若当块2).A 的若当形中一个特征值只有一个若当块。特别地,有: 1A A )若的所有特征值互异,则为循环阵。 为循环矩阵则存在向量b 2)若A 为循环矩阵,则存在向量b , 使 221,,,,,??"b Ab A b A b A b n n A b n 可张成一个维空间,即(,)可控。

相关文档
最新文档