铁路信号新技术发展概述doc

铁路信号新技术发展概述doc
铁路信号新技术发展概述doc

铁路信号新技术发展概述

党的十六大胜利闭幕后,铁道部提出了铁路建设跨越式发展规划,即要建设一个发达完善的现代化铁路网,以适应国民经济发展的总体要求;要实现技术装备现代化和铁路指挥管理信息化,推进主要行车设备的自动化和智能化。第六次提速实施后,我局管内京广、陇海、京九干线进行了大幅度提速,其中京广线部分区段时速达到180-250Km/h、陇海线郑徐段时速达到180Km/h,为此采用了大量先进的信号高新技术设备,主要有ZPW-2000A型无绝缘移频自动闭塞、97型25Hz相敏轨道电路、CTC新一代的调度集中、JT1-C-2000型主体化机车信号等新设备、中国列车运行控制系统(CTCS-2地面列控设备和CTCS2-200H型车载设备)、车站区间一体化联锁系统等。高速铁路是当今世界铁路高新技术发展的一项重大成就,是铁路发展的必然趋势,它具有安全性能好、运行速度快、经济效益高、能源消耗低、环境污染轻等优点。高速铁路的行车特点是列车运行速度高(一般在200Km/h以上),列车运行间隔时间短(一般在5分钟以下)。为此,铁路信号设备必须采用一系列新技术,才能确保高密度运行的需要。铁路信号技术不再是过去那种单纯的、单一的信号概念了,而是囊括了计算机及网络、自动控制、电子电磁感应等领域的技术。

一、相关系统名称缩略含义介绍:

1.DMIS:是铁路运输调度指挥管理信息系统 (Dispatch

Management Information System)四个英文字母的缩写。

2.TDCS:是列车调度指挥系统 (Train operation Dispatching

Command System)四个英文字母的缩写;是在2005年部《铁路信息化总体规划》中重新定义的概念。

3.TMIS:是铁路运输信息管理系统(Transportation Management

Information System)四个英文字母的缩写。

4.CTC:是调度集中系统 (Centralized Traffic Control system)

四个英文字母的缩写;FZ-CTC:分散自律调度集中系统。

5.CTCS-2 Chinese Train Control System Level 2中国列车控

制系统2级

6.CTCS2-200H (Chinese Train Control System Level 2,时

速200km/h、和利时),中国列车控制系统车载设备

7.ATP( Automatic Train Protection )列车自动防护系统

8.ETCS European Train Control System 欧洲列车控制系统

9.ATO(Automatic Train Operation)列车自动驾驶系统

10.ATS(Automatic Train Supervision)列车自动监控系统

11.LEU(Line side Electronic Unit)轨旁电子单元

12.ATC(Automatic Train Control) 列车自动控制系统

13.GSMR(GSM for Railway)铁路专用全球移动通信系统

14.LKJ 列车运行监控装置

二、列车运行控制系统的发展趋势

列车运行控制系统是保证列车行车安全和提高行车效率最有效的信号设备。世界发达国家在高速铁路上都特别重视开发、研究和应用新系统,以满足列车运行安全和提高效益的需要。在普通速度线上,

司机是根据地面信号显示控制列车运行的;而在高速线上,由于速度高,司机在很短时间内要辨认地面信号是非常困难的,司机就不能按地面信号控制列车,而必须将地面发送的信息直接与机车制动系统相联系,要做到这一点,就必须强化列车速度控制系统。下面分别对机车信号、列车速度控制系统、地面信息发送设备的发展趋势进行探讨。

1、机车信号

机车信号是接收地面信息、复示或预告地面信号、给速度控制系统提供速度等级的一项重要设备。在高速铁路线上,机车信号提供的速度信息是直接指挥列车运行的命令,因此,必须具有高可靠、高安全的性质,不受环境因素影响,具有很高的抗干扰能力,确保接收信息在整个列车运行中的正确率达到100%。随着现代科学技术的高度发展,应把数字信号处理技术应用在机车信号设备中,使其能接收多种信息,以全数字化系统代替传统的模拟电路,以大规模、超大规模集成电路代替分立元件,使设备更加稳定、可靠,且体积小;在硬、软件设计上,应考虑故障弱化和故障——安全技术,应尽量避免在设备发生故障时由最高速度等级发出停车指令,使列车造成不必要的紧急制动,危及行车安全;在双机冗余系统中,因设备故障转换到副机工作时,其输出的速度等级中断时间不应影响速度控制系统的工作。研制新制式机车信号设备时,要考虑兼容既有线的信号设备,达到通用。

北方交通大学研制的JT1—A(B)型通用式机车信号采用了数字信号处理技术,现已适应了我国快速铁路的需要。北方交通大学研制的JT1-C-2000型主体化机车信号于2002年7月15日通过铁道部鉴定,它具有以下特点:①采用DSP、CPLD、USB接口,嵌入式结构等多项计算机技术,按主体化进行系统设计;②采用“二取二”的容错安全结构;

③采用32位浮点高速DSP运算,频域和时域处理相结合,提高信干比;

④各制式信号并行处理,提高信息处理速度;⑤采用双机热备、双线圈接收感应器等冗余结构;⑥设有机车信号记录器,记录器与接收主机一体化设计,可为处理故障和维护管理提供数据;⑦预留串行输出,可支持大信息量的双向传输;⑧电源系统采用动态检测技术;

⑨可用便携式机车信号测试仪进行自动闭环测试;⑩采用模块化设计,与JT1—A(B)型兼容;⑩采用双面点阵式数码显示器,直接显示信息代码。

2、列车运行控制系统

列车速度控制系统在高速铁路上应用时,要求其具有高安全性。目前在高速铁路线上大部分国家采用了列车自动防护系统(ATP)和列车自动限速系统(ATC)两种列车速度控制系统。我国在发展准高速铁路时,引进了法国的TVM300机车信号及超速防护系统,为发展高速铁路列车速度控制系统积累了经验。我国高速铁路的列车速度控制系统发展的档次应再高一些,应采用自动限速系统或模式限速曲线控制方式的超速防护系统(目前秦沈客运专线采用了TVM430机车信号及超速防护系统)。

为了确保列车运行安全,防止在出现故障时,列车停在隧道内,超速防护系统或自动减速系统还应该设计出一个超越距离,使列车只有驶出隧道后才能停下来。在高速铁路线运行的高速列车,应该考虑旅客的舒适性,实施制动时,当没有紧急情况出现时,一般都应采用常用制动。

在高速铁路线上使用的列车速度控制系统必须具有故障降级功能,当采用自动限速设备时,若发生故障应立即降为超速防护系统;当采用超速防护系统时,应降为自动停车功能。列车速度控制系统除

本身双套冗余外,还应增加一套独立的自动停车设备,使列车速度控制系统的安全、可靠性极大提高。

3、列车自动防护(ATP)系统

ATP系统的关键设备是轨道电路及车载设备,为保证ATP系统的独立及完整性,车站控制及轨道电路ATP编码的区域控制中心(计算机联锁及列车控制编码)。

⑴区域控制中心的主要功能可实现区域控制范围内正线信号设备的联锁控制;通过数字轨道电路为区域控制范围内的运行列车提供超速防护控制信息;可实现与ATS系统的结合;设置维护终端,提供系统监测功能。

⑵数字轨道电路的主要功能列车占用检查并将此信息传至区域控制中心;接受区域控制中心的列车运行的目标速度、空闲轨道区段、临时限速信息、运行方向及进路信息等经轨道电路传送给列车。

⑶车载ATP设备的主要功能

¨监督列车在任何情况下不会超出车辆的构造速度

¨监督列车在任何情况下不会超出线路的设计速度

¨监督并保证列车在停车点前停车

¨监督并保证列车在限速点前降到规定的速度

¨按照进路的情况,自动监督并保证列车的运行安全

¨防止列车错误退行

¨防止列车在移动中打开车门

¨列车停车时,防止司机或ATO错开车门

¨防止列车在站台停车时,没有停在规定范围内而打开车门(预留)

⑷系统的制动模式根据国外成熟经验,考虑我国国情以及今后列控系统的发展,我们的列车自动防护(ATP)系统方案采用连续速度控制的列控模式(或称一级速度控制模式)。地面区域控制中心通过进路控制以及地对车信息传输系统(数字无绝缘轨道电路)连续地向列车传送列车至目标点的距离、线路信息、目标点速度等数据,车载列控设备对其进行处理接收,并与列车的实际性能综合计算,由此生成相应的曲线,保证列车安全地运行。

如图3-1所示,一级速度控制模式不设定每个闭塞分区速度等级,采用一次制动。以前方列车占用的闭塞分区入口为目标点,向列车传输目标速度、目标距离等信息。

列车运行间隔距离为:Sz=S1+S2+S3。(S1-车载设备接收地面信号反应时间和制动响应时间走行距离;S2-列车从最高速度制动停车距离;S3-过走防护距离。)

4、地面信息发送设备

高速铁路线上地面发送的信息分为速度等级信息和线路信息两部分。为了得到列车速度信息必须要检测前方列车的位置,目前大部分国家都采用固定的闭塞方式,以列车是否占用闭塞分区来确定先行列车和后续列车间隔几个闭塞分区,以便确定后续列车的速度等级。也有部分同家的高速铁路采用移动闭塞的方式,列车通过信道向控制中

铁路信号毕业论文

辽宁铁道职业技术学院毕业论文 题目论铁路信号设备维护与安全保障 专业铁道通信信号 班级 xxxxxxx 姓名 xx xx 指导教师 xxxx 职称 xxxxxx 二0一一年 5 月

目录 1.铁路信号设备的概述………………………………………… 1.1铁路信号设备的发展史………………………………………… 1.2铁路信号设备的组成及原理…………………………………… 2.对铁路信号设备系统进行性能与故障分析,从而排除故 障………………………………………………………………… 2.1信号机的维护及注意事项……………………………………… 2.2转辙机的维护及注意事项……………………………………… 2.3轨道电路的维护及注意事项…………………………………… 3.铁路信号维护安全性问题……………………………………

3.1典型事故案例……………………………………………………

3.2.关于设备维护的建议…………………………………………… 谢辞………………………………………………………………… 参考文献…………………………………………………………… 注释………………………………………………………………… 附录………………………………………………………………… 摘要 铁路信号设备是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施。铁路信号设备是铁路主要技术之一。铁路信号的装备水平和技术水准是铁路现代化的重要标志。 铁路信号基础设备,包括信号继电器,信号机,轨道电路,转辙机等是构成铁路信号系统的基础,他们的质量和可靠性直接影响信号系统效能的发挥,可靠性能的提高,在铁路信号现代化的进程中,信号基础设备在不断的更新和改造。 信号设备具有结合部多、易受外界影响的特点,使得铁路各专业存在的问题,最终均要反映到信号设备上,因此,对于铁路运输企业来说,减少信号设备故

浅谈铁路通信信号一体化技术 赵永旺

浅谈铁路通信信号一体化技术赵永旺 发表时间:2019-07-24T15:51:34.720Z 来源:《基层建设》2019年第10期作者:赵永旺 [导读] 摘要:随着计算机及网络技术的快速进步,推动了信号系统的发展,在发展的过程中,通信系统、信号系统以及信息化系统之间逐渐的实现了融合及组合,向着数字化、智能化的方向发展,而这也是铁路通信信号系统发展的趋势。 赤峰市阿鲁科尔沁旗天山镇查布嘎电务工区内蒙古赤峰市 025550 摘要:随着计算机及网络技术的快速进步,推动了信号系统的发展,在发展的过程中,通信系统、信号系统以及信息化系统之间逐渐的实现了融合及组合,向着数字化、智能化的方向发展,而这也是铁路通信信号系统发展的趋势。在本文中,介绍了当前通信信号设备的现状,接着阐述了通信信号一体化系统结构及关键技术。 关键词:铁路通信信号;一体化技术;发展 一、通信信号设备现状 (一)机车信号与超速防护(ATP) 第一,轨道电路制式多。在当前的铁路通信系统中,通信的制式比较多,而且所采用的轨道电路制式也比较多,这种状态导致在传输信号时十分的混乱。第二,站内轨道电路电码化困难。站内电码化是一个过程,需要逐步的进行完善,不过在最初进行设计时,存在着许多的问题,比如兼容性差、协调性弱等。第三,站内干扰严重,站内轨道电路在工作时,经常会受到同频干扰、外界干扰等不同的干扰,从而导致电路经常问题。 (二)调度集中 目前,我国的铁路行业进行调度时,采用的方式为集中调度,这是一种传统的调度方式,效果并不理想,而且随着铁路现代化、信息化的发展,集中调度的方式已经不能满足铁路快速发展的需求。 (三)无线列调 第一,技术落后,在进行通信时利用模拟单信道,通信质量比较差,而且受到的干扰非常的严重;第二,能力饱和,我国现有的无线列调能力已经达到了饱和,因而无线列调就没有能力再进行列车控制、移动通信等业务;第三,效率低下,在专用系统中,各个部门在工作时,都是独立开展的,缺乏有效地沟通及联系性。 二、现代铁路信号 1949年后,60年来,随着我国铁路事业翻天覆地的变化,中国铁路信号也已经从零发展成为世界铁路信号的强国。今天的现代铁路信号系统,已经成为计算机、现代通信和控制技术在铁路运输生产过程中的具体应用,铁路信号的功能也从传统的保障铁路运输安全的“眼睛”,扩展为保证行车安全、实现集中统一指挥、提高运输效率、改善劳动条件和提升运营管理水平。现代信号技术已成为实现列车有效控制、提高铁路区间通过能力和编组能力、向运输组织人员提供实时信息的必备手段,是铁路的“中枢神经”,是铁路列车提速与发展高速铁路的关键技术之一。 三、通信信号一体化的优势及其系统结构 3.1通信信号一体化的优势 与传统的轨道电路传送信号相比,通信信号一体化具有五大优势:第一,传输可靠性高,传统的轨道电路在传输信号时,传输者只管发送,接受者是否接到信号无法得知,而实现了一体化之后,有效的实现了双向通信,从而保证了信号传输的可靠性;第二,运输效率高,通信信号一体化采用的通信方式为无线通信,这样一来,在传送信号时,实现了移动自动闭塞,使运输效率得到了有效的提高,武县城在设备系统接收信息具有较高的实时性与准确性;第三,传输信息量大,传统的轨道电路在传输信号时,载体是铁轨,这种方式虽能传输的信息量比较小,随着列车速度与目的的不断增加,列车控制信号不断增加,而实现通信信号一体化之后,由于是无线通信,所能传输的信息量大增;第四,降低工程投资和生存期成本,信息传输的方式发生了改变之后,所需要进行的工程投资也相对减少,信息传输不再依赖轨道电路,设备主要集中在室内与机车上,从而实现了投资的降低与故障面的减少;第五,具体有通用性和灵活性,在系统中,只需要保持原有的设备就可以实现双向运行,这样有效的保证了系统的性能和安全,由于系统中采用的是通用组件,所有未来相互独立的子系统升级或者换代时不会对列产的控制产生影响。 3.2通信信号一体化的系统结构及关键技术 从广义上来说,信号系统主要包含四层,从高到低的顺序分别为:第一层,局(部)调度中心,该层的主要作用是进行宏观决策;第二层为分局(局)调度中心,在该层中,包含着许多的结构,主要有调度集中、电力调度、机车调度、车辆调度、设备维修中心;第三层为安全控制设备,主要的作用就是保证安全,车站联锁、道口安全控制等都设置在该层;第四层为最低层,现场的信号机、机车信号等都归属于该层。 四、我国铁路通信、信号系统的发展方向 随着我国高速铁路的跨越式发展,铁路通信信号作为高铁核心技术的重要组成部分,也迎来了高速发展的黄金时期。目前,我国铁路通信信号技术已经迈上了新的台阶,尤其是通过引进吸收国外先进技术、我国已研发出了CTCS、TDCS、等一大批有自主核心技术的铁路通信、信号控制系统,在利用计算机、控制技术方面取得了长足的进步。中国高速铁路的发展需求决定了铁路通信信号的发展方向,不仅对行车安全保障有了更高的标准,还要求通信信号技术能够实现高速铁路站间接发车作业和区间运行的自动化,提高通过速度与列车密度,大大增强高铁运营效率。 4.1铁路通信的发展方向 (1)大力发展GSM-R技术 目前我国铁路对GSM-R技术应用的还不够充分,如有的线路利用GSM-R技术参与列车运行控制,而有的线路仅将其作为一种进行数据传输的移动通信手段。今后我国应重点围绕客运专线建设,做好对GSM-R移动通信核心网的整体布局规划并加大沿线无线网络的建设,全面推进高速铁路无线通信设备的技术进步。 (2)建设综合视频监控技术平台 为满足安全监控需要,需要建设综合视频监控技术平台,主要应用在几点:对铁路重点线路设备的监控;对客运车站重点区域的监

中国高速铁路信号系统分析与思考

文章编号:1673-0291(2012)05-0090-05 中国高速铁路信号系统分析与思考 郭 进,张亚东 (西南交通大学信息科学与技术学院,四川成都610031) 摘 要:介绍中国高速铁路信号系统的发展历程及成果,对比分析了中国高速铁路列车运行控制系统的技术水平及特点.在总结成果的基础上,针对现有信号系统的技术标准与体系结构存在缺陷、基础研究薄弱、安全保障体系不符合高速铁路安全需求等问题进行了思考,并提出了改进建议. 关键词:高速铁路;铁路信号;中国列控系统中图分类号:U284 文献标志码:A Study and consideration on Chinese high speed railway signal system G UO Jin ,ZH AN G Yadong (School of Infor matio n Science and T echnology,Southw est Jiaotong U niversity,Cheng du Sichuan 610031,China) Abstract:The paper introduced the achievement of Chinese high -speed railway signal system,and then analyzed the technical characteristics of China Train Control System (CTCS).After summarizing the development of CTCS,some problems of the technical standard and config uration on CTCS w ere men -tioned,and the modification suggestions w ere put forw ard to decrease the risk on CTCS.Key words:high -speed railw ay ;railw ay sig nal;China Train Control System 收稿日期:2011-10-20 基金项目:铁道部科技研究开发计划项目资助(2011X025-C,2012X007-D) 作者简介:郭进(1960 ),男,四川成都人,教授,博士,博士生导师.研究方向为铁路信号.email:jguo -scce@sw https://www.360docs.net/doc/fa15245277.html,. 近年来,我国高速铁路建设取得了迅猛发展,截至2011年底,高速铁路营业里程达7531km(不包括台湾地区),在建高速铁路1万多千米,已成为世界高速铁路运营速度最高,运营里程最长、在建规模最大的国家[1] .铁路信号系统是为了保证铁路运输安全而诞生和发展的,它的第一使命是保证行车安全,没有铁路信号,就没有铁路运输的安全[2].随着列车运行速度的提高,完全靠人工 望、人工驾驶列 车已经不能保证行车安全了,当列车提速到200 km/h 时,紧急制动距离将达到2km (常用制动距离超过3km ),因此,国际上普遍认为当列车速度大于时速160km 时,必须装备列车运行控制系统(简称列控系统),以实现对列车间隔和速度的自动控制,提高运输效率,保证行车安全.要实现列车自动控 制,需要解决许多关键技术问题,例如:车-地之间大容量、实时和可靠信息传输,列车定位,列车精确、安全控制等,需要车载设备、轨旁设备、车站控制、调度指挥、通信传输等系统良好的配合才能实现,以现代列车运行控制技术为核心的信号系统可以称为现代铁路信号系统. 高速铁路装备了列控系统后,提高了列车运行速度和行车密度,同时对中国铁路信号技术还具有积极的促进作用,但由于发展速度太快,设备、标准、管理与养护都免不了存在一些缺陷和不足.本文作者简要阐述了中国列车运行控制系统为我国铁路发展所产生的促进作用,也对现有系统存在的若干问题进行了分析,在分析的基础上,针对今后中国列车运行控制系统的建设提出了改进建议. 第36卷第5期 2012年10月 北 京 交 通 大 学 学 报 JOU RNAL OF BEIJING JIA OT ON G U N IV ERSIT Y Vol.36No.5Oct.2012

浅述我国铁道信号技术的现状及未来展望

浅述我国铁道信号技术的现状及未来展望 发表时间:2017-12-24T16:02:18.283Z 来源:《建筑学研究前沿》2017年第19期作者:卢挺峰 [导读] 笔者在分析铁道信号技术发展现状的同时,对于铁道信号技术的未来发展前景也给予了展望。 通号工程局集团有限公司北京 100070 摘要:当前我国的铁路网正在进一步的完善,铁路建设是我国基础建设的一个重要内容,而在进行铁路工程建设的过程中,铁道信号工程是一个非常重要的内容。基于此,笔者在分析铁道信号技术发展现状的同时,对于铁道信号技术的未来发展前景也给予了展望。 关键词:铁道信号技术;现状;未来展望 铁道信号的质量对于铁路的安全运营有着非常重要的影响,所以必须要对于铁道信号施工引起足够的重视。随着当前我国铁路运输业的不断完善,铁道信号的应用也变得越来越广泛,而且对于铁道信号的要求也变得越来越高。因此探究铁道先和技术现状和未来发展趋势极为必要。 一、铁道信号及铁道信号技术概述 要了解铁道信号,先从信号谈起。信号是人们受到某种刺激源的刺激时做出的某种反应或者信息回馈。从铁道信号的层面来说,主要应该是通过声音和影像来表达的。在看到铁道信号灯和鲜明的信号标志时,获取相应的信号;在听到火车鸣笛以及警报提示音后获取信号反应的信息,这些都是铁道信号的具体表现。将铁道信号分为机车信号和地面信号是一种合理的分类方法,通过地面信号发送指令,利用信号机等硬件设备发送给行进中的列车,这就起到了调度的作用。相对而言的机车信号,是铁路信号向司机发出的各种信号。当然在实际信号传送过程中还有信号与硬件设备的通信过程。比如,指挥列车改变轨道行进时候,道岔要接受信号,进行位置变换。综上所述,铁道信号就是通过硬件设备传送实时控制信息,保证列车能够避免事故,安全行驶,铁道信号可以实现自动控制功能。 铁道信号技术则是一种在控制铁路列车运行间隔的同时,进而控制铁路列车间交错运行的技术手段。铁道信号主要分为信号系统和信号设备器两个层次。其中信号系统层次包括车站联锁、区间闭塞以及列车运行控制和信号微机检测等等系统。信号设备器层次则主要包括了继电器、信号机以及控制台等等的设备。铁道信号技术能够提高铁路运输的效率、降低运输成本、改善铁路劳动条件和提高铁道服务质量。在铁路运输中,长久以来,提高运输效率都是铁路运输业的不懈追求。而在这方面,铁道信号技术正好能够推动火车密度的提高以及强化列车运输能力。与此同时,铁道信号技术的发展也给行车部门带来了巨大收益,不仅提高了铁路劳动生产率,还可以节省大量的行车人员,从而避免人力资源的浪费。根据电务部门的不完全统计,自从在铁道上使用了信号技术后,铁路工作人员的劳动生产率在短短 10 年里提升了百分之五十,节省了 6 万名行车人员。由于我国近现代的基本国情和各个地区间发展的极具不平衡状态,我国的铁路建设大大落后于世界各国,同时中国的铁路建设没有全面并科学的总结国内各城市铁道信号技术之间的问题以及矛盾,没能及时地进行各城市之间的管理沟通。 伴随着社会经济的飞速发展,我国铁路建设正朝着“高速度”以及“重载荷”等方向突飞猛进,所以对于铁道信号技术的要求更加精准。为了满足现阶段的发展要求,铁道信号技术必须使用计算机网络技术以及通信技术等现代化手段进而达到自身的进步发展。运输市场日益激烈的竞争大大提高了铁道运输的效率,旅客日益增高的运输要求促使铁路运输体质不断发展完善。为了提高铁路运输效率,世界各国都采取了相应措施,其中做的最好的是欧美的一些发达国家,为了实现铁路运输的“高速度”、“重载荷”,他们引进了较为高端的铁路信号设备,力求实现铁道信号技术的飞速发展。 二、铁道信号技术现状 我国铁道信号技术在不断进步,但是在铁道信号的自动化控制方面还有很多不足,自动化的程度不高。对于列车的整体调度和指挥,需要大量的人力投入来弥补自动化程度不足的问题。这制约了我国铁道信号技术的发展,给铁道运输带来了较大的安全隐患。可想而知,人工的调度工作繁重,在一些突发情况下还需要人为进行情况判断,做出指挥操作。但这种判断没有完整的数据作为分析依据,无法做到精确。同时人力的大量消耗,也提高了铁路运输的成本。人力指挥调度工作负担的增重,也提升了错误与故障出现的可能性。所以要不断地致力于铁道信号的发展,提升列车运行的安全性。从具体的技术层面来说,首先,数字信号亟需发展。数字信号技术课可以通过模拟信号转换的方式,把一些不易传送或者在传送过程中容易产生损耗的信号,转变成数字信号,完整地传送与保存。让信号传送更加准确和快捷。其次,铁道信号一体化覆盖程度低。信号的通信应该从列车、调度中转站、地区三方面形成完整的整体,而不是小规模简单的信号传送。只有覆盖程度不断提升,才能让多方协调工作,紧密配合,做好列车安全行驶保障。最后,与计算机网络程度结合度不足。计算机网络技术可以深度融合到铁道信号传送中来,尤其是分布式的实时网络管理技术。以时间片为单位,对信号进行管理与相应,让铁道信号通信实时更新,最大程度地提升了列车行驶的安全系数。 三、铁道信号技术应用与发展趋势 (一)数字信号处理技术在铁道建设方面的应用 由于列车运行的“高速化”以及“重载荷”等技术的飞速发展,国内相对落后的铁道信号处理系统以及技术设备也逐渐显示出其不足,以及有待改进的地方,传统的通过使用分立元器件和模拟信号处理技术的方式在铁道系统的高标准以及高要求下渐渐暴露出了众多的缺点。因为计算机具备快速分析以及计算的能力,所以电子计算技术这样的数字信号处理技术的引进是一种相对有效的、提升铁道信号传递效率的方式和手段,它的使用将会大大提高信号处理的速度。 (二)通信信号的整体化 现阶段逐渐得到改善的铁道系统和铁道信号技术的完善改进促使铁道通信系统也得到了相对应的完善,与此同时,铁路车站、地区间以及火车统一控制的整体化,以及铁道信号技术的不断改进完善和列车工作人员对于火车调度的高自动化技术,不再是单单坚持传统的分散性控制和单一的性能模式以及相对独立的铁道信号技术,而是实现了铁路信号技术的一体化发展,保证了列车通信技术实现更加智能化以及数字化。 (三)铁道信号实时传递技术的广泛应用 为了铁路运行高效率调控的实现,也需要进一步提升铁道信号的实时传递技术。铁道信号实时操作系统中最重要的部分就是实时多任

铁路信号系统新技术的发展与应用(论文)

铁路信号系统新技术的发展与应用(论文) [摘要]铁路为实现高速、高密度和重载运输的需要,积极引进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌现。[关键词]故障-安全技术、实时操作系统开发平台、数字信号处理、计算机网络技术的应用、通信技术与控制技术的结合、通信信号一体化近10多年来,运输市场竞争激烈,各国铁路,特别是我国铁路为实现高速、高密度和重载运输的需要,积极引进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌现。一、故障-安全技术的发展随着计算机技术、微电子技术和新材料的发展,故障—安全技术得到了飞速发展。高可靠性、高安全性的故障—安全核心设备出现了“二取二”、“二乘二取二”和“三取二”等不同结构形式,其同步方式有软同步和硬同步。西门子公司、阿尔斯通公司、日本日信公司等推出了不同类型的采用硬件同步方式的安全型计算机。故障—安全技术的提高为高可靠和高安全的铁路信号系统的发展打下坚实的基础。二、高水平的实时操作系统开发平台实时操作系统(RTOS,Real Time Operation System)是当今流行的嵌入式系统的软件开发平台。RTOS最关键的部分是实时多任务内核,它的基本功能包括任务管理、定时器管理、存储器管理、资源管理、事件管理、系统管理、消息管理、队列管理、旗语管理等,这些管理功能是通过内核服务函数形式交给用户调用的。在铁路、航空航天以及核反应堆等安全性要求很高的系统中引入RTOS,可以有效地解决系统的安全性和嵌入式软件开发标准化的难题。随着嵌入式系统中软件应用程序越来越大,对开发人员、应用程序接口、程序档案的组织管理成为一个大的课题。在这种情况下,如何保证系统的容错性和故障—安全性成为一个亟待解决的难题。基于RTOS开发出的程序,具有较高的可移植性,可实现90%以上设备独立,从而有利于系统故障—安全的实现。另外一些成熟的通用程序可以作为专家库函数产品推向社会,嵌入式软件的函数化、产品化能够促进行业交流以及社会分工专业化,减少重复劳动,提高知识创新的效率。三、数字信号处理新技术的应用随着铁路运输发展,基于分立元器件和模拟信号处理技术的传统铁路信号设备越来越满足不了铁路运输的安全性和实时性。因此,引进计算机技术,利用计算机的高速分析计算功能,来提高信号设备的技术水平已非常紧迫。数字信号处理技术(DSP,Digital Signal Pr ocessing)的出现为铁路信号信息处理提供了很好的解决方法。与模拟信号处理技术相比较,数字信号处理技术具有更高的可靠性和实时性。数字信号处理的频域分析和时域分析的两种传统分析方法有着各自的优缺点。频域分析的优点是运算精度高和抗干扰性能好,而缺点是在强干扰中提取信号时容易造成解码倍频现象,例如将移频的低频 11Hz误解成22Hz;时域分析的优点是定型准确,而缺点是定量精确地剔除带内干扰难度大。随着数字信号处理技术的新发展,在铁路信号处理中引入了新的实用技术,如ZFFT (ZOOM-FFT)、小波信号处理技术、现代谱分析技术等。目前,我国区间采用的ZPW2000-A 信号发送、接收以及机车信号的接收都采用了数字信号处理技术,日本的数字A TC和法国UM2000数字编码轨道电路也都采用了数字信号处理技术。四、计算机网络技术的发展随着计算机网络技术的飞速发展,实施企业网络化管理已成为企业实现管理现代化的客观要求和必然趋势。铁路信号系统网络化是铁路运输综合调度指挥的基础。在网络化的基础上实现信息化,从而实现集中、智能管理。(一)网络化,现代铁路信号系统不是各种信号设备的简单组合,而是功能完善、层次分明的控制系统。系统内部各功能单元之间独立工作,同时又互相联系,交换信息,构成复杂的网络化结构,使指挥者能够全面了解辖区内的各种情况,灵活配置系统资源,保证铁路系统的安全、高效运行。(二)信息化,以信息化带动铁路产业现代化,是铁路发展的必然趋势。全面、准确获得线

铁路信号技术及其发展应用

铁路信号技术及其发展应用 当前,对于铁路信号技术人们有不同的理解。有人仅将铁路信号技术解读为为了保证铁路运输过程的安全和设备;有人则将铁路信息技术解读为向行车人标示下达行车条件的命令;还有些人则把铁路信号技术解读为铁路信号就是铁路上一系列如连锁、闭塞设备、信号显示等设备的总称。 从十八世纪二十年代开始,世界上的第一列列车在英国开始运行,当时选择的方法是人工持信号旗骑马在前方引导列车前进的方式。之后一百多年里,铁路技术发生了翻天覆地的变化。中国铁路于十九世纪初期初次在大连---长春线路间开始装设壁板信号机。十九世纪二十年代,色灯信号机第一次投入使用。后来在中华人民共和国成立后,铁路信号技术终于开始了飞速发展。五十年代,在京广线的衡阳车站装设了中国自己设计、自己制造、自己施工的进路继电式集中连锁,此后在全国的铁路线上相继装设了半自动闭塞、自动闭塞、车站电气集中联锁和调度监督等设备,并建成机械化和半机械化驼峰调车场。此外,在北京的地下铁道上还成功地装设了行车自动指挥和列车自动控制系统。 在这一百多年,形成了今天的现代铁路信息系统。它是计算机、现代通信和控制技术三方面在铁路运输过程中的具体应用,在铁路运输的生产过程中,隶属信息与控制学科范畴。它为铁路列车提供了基本的安全保障,这些措施都是建立在以人为主体的基础上的安全保障体系。 一、铁路信息技术的发展历史 在党的十六大胜利闭幕之后,铁道部提出了铁路建设跨越式展规划,即要建设一个发达完善的现代化铁路网,以去适应国民经济发展背景下的总体要求。通过铁路运输的实践,即便是铁路路线、列车、桥梁等设备完好的情况下,也会发生列车冲突和颠覆之类的重大事故。

铁路信号系统的现状与发展

铁路信号系统的现状与发展 铁路是一个国家国民经济的主要保障,对每一个国家的发展都有着非常重要的作用。由于铁路运输具有较低的成本、较高的效率和安全性以及能源节约性等特点,当下世界各个国家都在对铁路运输技术的研发速度进行不断地加快和创新,现代铁路发展方向正逐渐走向高速、重载以及高密度。铁路信号系统不但能够在很大程度上保障列车运行的安全性,同时也是让铁路效率得到提升的重要设施之一,是现代化铁路系统中必不可少的重要组成部分。但是,当下我国铁路信号系统依旧还存在着很多问题有待解决,这对我国铁路运输的发展带来了严重阻碍。 1 我国铁路信号系统现状 1.1 自动化程度有待提升 我国继电技术虽然已经越发成熟,但由于较大的设备体积,智能控制和联网集中监测很难得到有效实现。随着微电子技术发展速度的不断加快,在工业控制行业中,继电控制技术已逐渐无法有效满足现代化工业要求,PLC和微机控制等智能控制技术逐渐开始得到普遍使用。而相对于工业控制领域而言,我国铁路信息系统却依旧还是运用继电控制设备,虽然也对一些计算机智能控制设备进行了简单使用,但是较慢的发展脚步,促使大规模的综合控制体系很难得到有效形成,从而也就无法让其整体效率得到显著提升,其资源配置也无法得到优化和完善。 1.2 较低的安全性 由于受到自动化程度的局限,铁路行车调度指挥工作都是运用人力进行,列车的控制也大都是依靠列车司机来观察和判断地面信号。虽然这在传统铁路运行发展过程中有着一定作用,但是随着当下列车速度和密度的不断提升与增长,行车调度指挥工作的也愈加繁忙,相关调度员如果工作时间过长,则很有可能发生疏忽大意的现象,这样

不但会让工作效率降低,同时也会对列车的安全运行造成非常严重的影响。而且,当列车速度超过160 km/h之后,想要单单依赖于列车司机的自身视力,是很难对列车安全运行做到有效保障的。 1.3 管理缺乏统一性,管理水平较为落后 铁路系统属于一个整体系统,时间和地区的不同也就存在较大差异。当下我国铁路信号系统中由于缺乏先进的通信方法,信息传递存在较慢的速度,同时也很难都整体上对资源进行合理分配,虽然已经对微机监测系统进行了运用,但是却并没有让其作用得到充分发挥。其次,我国铁路系统在以往大都是由相关政府部门来进行综合管理,当现行的管理机制促使很多铁路系统人员没有认清自身职责所在,从而也就造成了较低办事效率、较为落后的营销手段以及资源无法得到有效和合理利用的现状。从当下我国市场经济条件的角度上来看,我国铁路系统作为物理行业中主要核心结构之一,应交给企业来管理,通过现代化企业的管理制度,让整体效率得到提升,进而让整体效益得到增加。 2 现代铁路信号系统的特点 2.1 网络化特点 现代铁路信号系统不单单只是有多种信号设备而简单组成的一种系统,而是一种具有完善的功能和层次分明的控制系统。在系统内部中,各个功能单元彼此单独运行,同时又彼此相互联系,对信息进行交换,构建出来非常复杂的网络化结构,能够让相关指挥人员对辖区内的各种情况做到全面了解和掌握,让系统资源得到灵活配置,从而促使铁路系统运行的安全性、高效性得到有效保障。 2.2 信息化 想要保障高速列车运行的安全性就必须对列车线路过程中的信息全面、准确的掌握。因此,现代铁路信号系统大都运用了诸多较为先进的通信技术,例如:光纤通信、无线通信、GPRS以及卫星通信等。 2.3 智能化

铁道信号的发展现状及展望

龙源期刊网 https://www.360docs.net/doc/fa15245277.html, 铁道信号的发展现状及展望 作者:贺伟 来源:《中国新通信》2013年第14期 【摘要】我国地域广、人口多的特点及现状使得成本低、运量大的铁路运输成为主要的运输方式。而铁路信号则在指挥列车运行,提高运输作业管理效率等方面起着重要的作用,因此铁道信号的及时有效传送是铁路系统安全、高效运行的基础。本文在总结铁路信号发展现状的基础上,结合相关方面的发展,展望了铁路信号新的发展趋势。 【关键词】铁道信号铁路系统智能化铁路建设 一、铁路信号的现状 由于我国近代具体国情,及地方发展的不平衡。我国铁路建设相对落后,并且缺乏科学的总体规划。尤其是各地区以及地区内在铁路信号技术及管理方面存在很多问题;铁路信号技术总体落后,平台化建设缓慢管理不够规范等问题较为突出。 1.1技术方面 由于系统设备的总体落后,我国铁路的调度指挥很大程度上仍旧依赖于人工作业,采用传统的一支笔、一张图、一部电话的调度指挥方式。对地面信号的观察与判断,也任然依赖于司机。随着列车的提速和密度的不断增加,行车调度的指挥工作将会愈发繁忙,这样调度员出现疏略在所难免,这样既降低工作效率,更会影响到列车的安全运行。并且当车速超过一定程度的时候,单单依靠司机的视力很难保证列车的安全。 1.2管理方面 管理方面的问题主要体现在管理分散和管理水平的落后。铁路系统应该是一个整体,在不同的时间和地区的情况差异性较大。现在的铁路虽然装备了各种监测设备,但是由于通信方式的落后,信息处理的速度较慢,使得已有的系统无法真正的发挥作用,无法在整体上将信息进行整合。 1.3人才方面 由于我国通信技术发展想对落后,特别是铁路通信这一块不够重视,投入力度不够大,造成精通铁路信号处理及研发的人才比较匮乏,现在的大部分从事铁路信号方面工作的人员都不是特别专业的,大多是从相似专业或行业转入的。特别是同时精通铁路信号处理和列车调度的人才及其匮乏。 二、铁路信号的发展趋势

欧洲铁路信号系统概况

欧洲铁路信号系统概况 欧洲是世界上铁路最发达的地区之—。欧洲国家多,国土面积小,各国内部的铁路网很密集。近几年来,欧洲铁路公司和信号公司在对各自的既有信号系统进行升级或者技术改造的同时,在欧盟(EU)委员会和国际铁路联盟(UIC)的推动下,欧洲7大铁路信号公司,如法国的Alstom(阿尔斯通)公司、瑞典的Adtranz公司、德国的Siemens(西门子)公司、法国的Alcatel(阿尔卡特)公司、意大利的Ansaldo(安萨尔多)公司(含法国CSEE公司)、英国WestingHouse(西屋)公司,以及Invensys公司,联合起来为信号系统的互联和兼容问题制定信号标准,并制造了相关的产品: 在较大范围内开发并应用新型计算机辅助铁路运输管理系统; 在进路控制方面,随着区域计算机联锁技术逐步取代陈旧技术,自动化系统得到广泛应用; 在列车防护和控制系统方面,研制了基于通信的列车控制系统(CBTC); 为了欧洲铁路信号系统的互联和兼容问题,制定了统一的、开放性信号系统标准,从而实现欧洲各国铁路互通运营。 本章根据搜集到的有关欧洲铁路信号系统的论文、报道和技术资料,对它们进行了归纳整理,从列车运行控制系统、欧洲统一先进的列车运行控制系统(即ETCS)、联锁系统、行车指挥系统、高速铁路,以及磁悬浮铁路等方面介绍欧洲铁路信号系统的现状和发展,有关法国、英国和德国的铁路信号系统的详细情况在另外章节专门介绍。 第一节列车运行控制系统 一、种类繁多的列控系统 欧洲有7大铁路信号公司(Alstom、Adtranz、Siemens、Invensys、Alcatel、Ansaldo、WestingHouse,它们都是UNIFE的成员),它们研制生产的列车运行控制系统(ATP/A TC)有十余种,如德国的LZB系列和FZB系列、法国的TVM系列等。这些运行控制系统有的适用于中速铁路,有的适用于高速铁路。在欧洲铁路网上,各个国家的铁路部门使用各自不同的信号制式管理列车的运营。 二、基于通信的列车运行控制系统 近年来,几乎所有欧洲国家铁路都在建立列车运行管理和保证行车安全系统方面寻求新的经济有效的技术方案,其中包括地区性线路。德国铁路和Adtranz公司共同研究制定了无线通信管理列车运行(FFB)地区性线路运营规划,在建立的列车运行管理系统中,几乎全部通过无线通信系统来实现通信服务联系,完全不用地面信号和监督线路空闲的线路设备,保证在任何线路上的列车运行安全。基于通信的列车控制系统(CBTC)按欧洲统一的安全标准设计,系统符合欧洲PrEN50129和PrEN50128标准设计的一体化安全要求(SIL4,安全完善度等级4)。 三、列车控制系统向标准化、统一化发展 目前,欧洲由于种类繁多的铁路信号帛式互不兼容,影响了欧洲铁路跨国运输的效率。在欧盟(EU)和国际铁路联盟UIC的支持下,欧洲铁路制定了统一的列车运行管理系统ERTMS(欧洲铁路运输管理系统),包括欧洲列车运行控制系统ETCS(欧洲列车控制系统)、列车与地面的双向无线通信系统GSM-R和欧洲运输管理系统ETMS。

国内铁路信号技术发展及趋势

国内铁路信号技术发展及趋势 铁路运输与其他各种现代化运输方式相比较,具有受自然条件影响小、运输能力大,能够负担大量客货运输的显著特点。迫于运输市场愈演愈烈的竞争,各国铁路部门都在积极采取铁路新科技来提升铁路的运输能力。而在实现高速、重载运输的同时,要保证列车的行车的安全,就不能不提到铁路信号。铁路信号设备是保证列车行车安全的重要基础设备,其技术水平发展直接影响到了行车安全水平和铁路运输效率。 1.铁路信号的定义 铁路信号是用特定的物体(包括灯)的颜色、形状、位置,或用仪表和音响设备等向铁路行车人员传达有关机车车辆运行条件、行车设备状态以及行车的指示和命令等信息。铁路信号是铁路运输系统中,保证铁路行车安全、提高区间和车站通过能力以及编解能力的手动控制及远程控制的技术和设备的总称;是在行车、调车工作中,用于向行车人员指示行车条件而规定的符号;是显示、联锁、闭塞设备的总称。 2.铁路信号作用及发展历程 铁路信号的最主要的功能就是保证铁路行车安全。 随着列车运行速度的不断提升,从最初的人持信号旗、骑马前行、引导列车前进;到逐渐发展的球形固定信号装置、电报信号、连锁机、轨道接触器、自动停车装置;到后来出现的车内信号、调度集中控制、行车指挥自动化等设备。 每一次铁路速度的提升就会要求一种新型铁路信号的出现;每次铁路信号的革新,就会给铁路运输带来一次质的飞跃。随着铁路信號技术的发展和铁路信号的广泛应用,铁路信号的发展也成为提高铁路区间和车站通过能力、增加铁路运输经济效益的一种现代化技术手段。 3.铁路信号的组成

3.1信号控制设备 信号控制设备是指信号联锁系统,是保障铁路运输安全的核心,是铁路信号中最重要的组成部分。信号控制设备通过信号传输设备接收和发送不同的信息,经由联锁关系来控制信号设备及各种信号的显示。 3.2信号显示设备 信号显示设备指接收来自于信号控制设备的信息,通过信号机,机车信号,控制台、显示器,音响等设备,采用声、光等信息,来实时反应列车和相关信号设备状态的铁路信号设备。 3.3信号传输设备 指服务于信号控制系统与信号显示系统之间,进行各种信息互通的传输设备及媒介。 3.4信号防干扰措施及设备 指为防止信号被其他因素干扰而产生错误的信号显示而设立的防干扰设备及措施。 4.国内铁路信号技术及发展趋势 4.1信号控制设备的技术发展 信号控制设备中的核心是联锁系统。 国内联锁系统发展主要历经了早期的继电器联锁,90年代时期的计算机联锁加安全型继电器执行形式的控制系统,以及目前在广泛推广的计算机联锁系统。 计算机联锁除了自身的联锁系统管理之外,还可以向旅客服务系统、列车运行监督系统以及列车指挥系统等提供信息,加快铁路运输管理的一体化的实现。随着计算机技术的迅速发展,尤其是对于可靠性技术和容错技术的深入研究,计算机联锁技术日趋成熟,我国的计算机联锁也逐步开始由计算机联锁加安全型继电器控制型向全电子计算机联锁转变。 全电子计算联锁系统是基于未来铁路及城市轨道交通联锁设备集成度高、安装速度快、维护方便的使用需求而研制;具有模块化程

我国铁路信号系统概况

我国铁路信号系统概况 传统的铁路信号系统是由各类信号显示、轨道电路、道岔转辙装置等主体设备及其他有关附属设施构成的一个完整的“信号、联锁、闭塞”体系。在行内简称为“信、联、闭”体系。主要作用是: 为传达、指示列车运行命令、提供列车运行信息、反馈列车运行实时轨迹,以及表示某种特定信号警示。就需要包括地面固定信号、机车信号及各类信号标志等信号机设施。 为采集列车运行实时状况、表达钢轨线路占用情况、检查轨道性能的实际状态。就需要包括有绝缘(机械)、无绝缘(电气)等轨道电路。 为根据列车运行需要,接受控制命令自动分隔线路、开通并锁定列车通行进路。就需要包括电动、电液等转辙机。 为完成操作与控制信号设备、实时表示各类信号设备的实际运用状态。就需要包括电气集中、微机联锁、驼峰信号等联锁主机与控制台等控制设备。 为信号、联锁、闭塞设备提供电动力,并具备两路能自动转换的可靠电源。就需要包括车站、区间、驼峰等电源屏。 为沟通信号、联锁、闭塞设备,形成一体信号网落。就需要包括普通信号电缆、综合扭绞电缆、数字信号电缆、光缆等电线路。总之,铁路信号体系担负着路网上行车设备的运用状况、列车运行的实时状态、运输调度的指令控制等信息的传递与监控任务。保证铁路行车安全、扩大线路通过能力、提高运输组织效率、改善职工劳动条件。 铁路信号所具有技术密集度高、更新换代快;投资少、见效快、效益高的特点及优势。它渗透铁路运输各部门,由铁路信号产生的各种实时信息传输速度快、准确率高;控制命令逻辑关系严密,安全可靠度强,全程全网服务于铁路运输。铁路信号系统由车站联锁系统、区间闭塞系统、驼峰信号系统、列车运行控制系

2020年08高速铁路的信号与通信参照模板

8 高速铁路的信号与通信 8.1 概述 高速铁路的服务宗旨是“安全、正点、快速、舒适”。发展高速铁路不可能也不应只突出快速,更需要建立全新的运输模式,要在安全、正点、舒适上做文章。高速铁路信号系统是保障列车运行安全、提高运输效率的关键技术装备,对全面实现高速铁路的服务宗旨举足轻重。 当今信息产业正以超出人们预料的速度迅速发展,通信和控制领域正发生一系列深刻变化,这必会对铁路信号、通信产品和服务产生积极影响。这种影响主要表现在两方面:第一方面是产品的硬件和软件不断升级换代,产品安全性、可靠性、可用性和可维护性逐步提高,追求更高的性能价格比。第二是向综合自动化方向发展,向更便利的人机对话方向发展,向全面提高运输质量和路网运输能力的方向发展,以满足运营的要求。 高速铁路信号系统是完成行车控制、运营管理的综合自动化系统,主要是由用于指挥行车的综合调度系统,用于控制列车行车间隔的列车运行控制系统(简称列控系统),用于控制进路的联锁系统以及代用信号设备和专用通信设备组成。这是一套完整的信号安全制式,如图8-l所示。高速铁路信号系统的设备主要布置在调度中心、车站、区间信号室、车辆段、维修基地、线路旁和列车上。 8.2 高速铁路的信号技术 铁路信号技术是随着百年铁路的发展以及继电器、半导体、电子信息技术的变化而不断演进的。随着运行速度的提高,列控系统、超速防护系统以及综合调度系统等成为高速铁路必不可少的信号技术。 高速铁路与普通铁路不同之处主要有:①高速铁路设置综合调度系统,对列车运营指挥实行集中控制方式;②取消传统的地面信号机,采用列控系统;③采用计算机网络传输和交换与行车、旅客服务相关的信息。 高速铁路信号系统由综合调度系统、列控系统、计算机联锁系统等几个部分组成,各部分之间通过具有保护功能的广域网联接,并传输信息。传统的话音、信号凭证指挥方式不再适用于高速铁路。以下简要介绍一下综合调度系统、列控系统、计算机联

铁路信号系统新技术的发展趋势

铁路信号系统新技术的发展趋势 近20多年来,在运输市场激烈竞争的压力下,各国铁路,特别是发达国家铁路为实现提速、高速和重载运输,积极引进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌现。 一、故障-安全技术的发展 随着计算机技术、微电子技术和新材料的发展,故障—安全技术得到了飞速发展。高可靠性、高安全性的故障—安全核心设备出现了“二取二”、“二乘二取二”和“三取二”等不同结构形式,其同步方式有软同步和硬同步。西门子公司、阿尔斯通公司、日本京山公司、日本日信公司等推出了不同类型的采用硬件同步方式的安全型计算机。 故障—安全技术的提高为高可靠和高安全的铁路信号系统的发 展打下坚实的基础。 二、高水平的实时操作系统开发平台 实时操作系统(RTOS,Real Time Operation System)是当今流行的嵌入式系统的软件开发平台。RTOS最关键的部分是实时多任务内核,它的基本功能包括任务管理、定时器管理、存储器管理、资源管理、事件管理、系统管理、消息管理、队列管理、旗语管理等,这些管理功能是通过内核服务函数形式交给用户调用的,也就是RTOS 的应用程序接口(API,Application Programming Interface)。在

铁路、航空航天以及核反应堆等安全性要求很高的系统中引入RTOS,可以有效地解决系统的安全性和嵌入式软件开发标准化的难题。随着嵌入式系统中软件应用程序越来越大,对开发人员、应用程序接口、程序档案的组织管理成为一个大的课题。在这种情况下,如何保证系统的容错性和故障—安全性成为一个亟待解决的难题。基于RTOS开发出的程序,具有较高的可移植性,可实现90%以上设备独立,从而有利于系统故障—安全的实现。另外一些成熟的通用程序可以作为专家库函数产品推向社会,嵌入式软件的函数化、产品化能够促进行业交流以及社会分工专业化,减少重复劳动,提高知识创新的效率。 在铁路这样恶劣工作环境下的计算机系统,对系统安全性、可靠性、可用性的要求更高,必须使用安全计算机,以保证系统能安全、可靠、不间断地工作。而安全计算机系统的软件核心就是RTOS。目前,英国的西屋公司(Westinghouse)已经在列车运行控制系统中采用了RTOS,瑞典也有很多铁路通信和控制系统采用OSE实时操作系统。 采用实时操作系统可以满足如下性能或特性: 提高系统的安全性。实时操作系统可以成为整个软件系统的中间件,即实时操作系统通过驱动程序与底层硬件相结合,而上层应用程序通过API和库函数与实时操作系统相结合。实时操作系统完成系统多任务的调度和中断的执行,这样系统的安全模块和非安全模块将会得到有效的隔离,RTOS可以很好地解决硬件冗余模块的同步问题。

高速铁路信号系统发展现状及发展趋势分析

高速铁路信号系统发展现状及发展趋势分析 发表时间:2017-09-29T17:09:14.293Z 来源:《基层建设》2017年第14期作者:雷文超[导读] 摘要:随着经济的快速发展,铁路作为陆上交通的重要工具在我国的经济发展中发挥着越来越重要的作用。 武汉铁路局襄阳电务段湖北襄阳 443000 摘要:随着经济的快速发展,铁路作为陆上交通的重要工具在我国的经济发展中发挥着越来越重要的作用。尤其是近些年来,随着我国高速铁路网络的逐步建成并完善使得我国各地之间的交通更为方便、联系更为紧密。高速铁路信号系统是确保高速铁路能够正常运行的重要一环。基于此,本文主要阐述了高速铁路信号系统的发展现状和特点,并且探讨出高速铁路信号系统的发展趋势,从而进一步促进我国高速铁路信号系统的发展。 关键词:高速铁路;信号系统;现状;发展趋势 1我国高速铁路信号系统现状 1.1自动化程度有待提升 我国继电技术虽然已经越发成熟,但由于较大的设备体积,智能控制和联网集中监测很难得到有效实现。随着微电子技术发展速度的不断加快,在工业控制行业中,继电控制技术逐渐无法有效满足现代化工业要求,PLC和微机控制等智能控制技术逐渐开始得到普遍使用。而相对于工业控制领域而言,我国铁路信息系统却依旧还是运用继电控制设备,虽然也对一些计算机智能控制设备进行了简单使用,但是较慢的发展脚步,促使大规模的综合控制体系很难得到有效形成,从而也就无法让其整体效率得到显著提升,其资源配置也无法得到优化和完善。 1.2安全性方面存在不足 在自动化程度比较高的国家,铁路信号系统的控制和管理以及识别基本上都是依靠技术进行保障,但是由于我国铁路信号系统的自动化程度不高,这就更多的需要由人力来完成许多的工作,比如火车司机对于地面信号的观察和判断等,这种工作方法在以前铁路发展不太发达的时期较为有用,但随着铁路运输不断提速、高铁动车运输的发展,单纯的依靠人力进行控制和管理铁路信号系统己经很难适应了,而且这种方式的安全性存在很大问题,而且会严重影响工作效率。 1.3管理缺乏统一性,管理水平较为落后 首先,从我国当前的高速铁路信号系统管理模式来看,其管理缺乏统一性,管理水平相比于国外发达国家较落后。同时,自上到下的管理体系不健全,不能够将高速铁路信号系统的相关管理要求和规定落实到位,部门之间的配合不协调,以至于在实际情况中出现很多不必要的问题。其次,我国高速铁路系统在以往大都是由相关政府部门来进行综合管理,而现行的管理机制促使很多铁路系统人员没有认清自身职责所在,从而也就造成了较低办事效率、较为落后的管理手段以及资源无法得到有效和合理利用的现状。从当下我国市场经济条件的角度上来看,我国高速铁路系统作为交通运输行业中主要核心机构之一,应交给企业来管理,通过现代化企业的管理制度,让整体效率得到提升,进而让整体效益得到增加。 2现代铁路信号系统的特点 2.1网络化特点 现代铁路信号系统不单单只是由多种信号设备而简单组成的一种系统,而是一种具有完善的功能和层次分明的控制系统。在系统内部中,各个功能单元彼此单独运行,同时又彼此相互联系,对信息进行交换,构建出来非常复杂的网络化结构,能够让相关指挥人员对辖区内的各种情况做到全面了解和掌握,让系统资源得到灵活配置,从而促使铁路系统运行的安全性、高效性得到有效保障。 2.2信息化 想要保障高速列车运行的安全性就必须对列车运行过程中的信息全面、准确的掌握。因此,现代铁路信号系统大都运用了诸多较为先进的通信技术,例如:光纤通信、无线通信、GPRS以及卫星通信等。 2.3智能化 铁路信号系统的智能化主要分为两个部分:其一,系统的智能化;其二,控制设备的智能化。系统智能化主要是指相关管理部门结合铁路系统的实际状况,通过运用先进的计算机技术来对列车的运行进行合理规划,促使最优化的铁路系统能够得以有效实现。控制设备的智能化则主要是指通过对智能化的执行机构进行合理运用,促使指挥者所需要的信息能够得到准确、快速地获取,同时使其能够按照相关指令来对列车的运行进行合理指挥和控制,从而让列车运行的安全性得到有效保障。 3高速铁路信号系统发展趋势 3.1无线通信在高速铁路信号系统上的运用 无线通信的高速铁路信号系统通过利用车地间双向信息通道以实现对于运行列车的闭环控制,从而使得列车运行的安全性与可靠性大为提高。无线通信的高速铁路信号系统是现今高速铁路信号系统发展的重点,相较于原先所使用的CTCS中国列车控制系统对于列车运行的位置、速度等的相关信息都有着明确的显示,同时通过使用无线通信的方式与高速列车的车载设备进行数据交换与控制,从而实现对于列车运行状态的实时监控,在列车安全运行的前提下以最大限度的提升列车运行的密度。 3.2采用车地无线通道的控制方式 在现今的高速列车的控制中主要使用的是车地无线通道的控制方式以实现对于列车信息的交互。在列车的运行过程中,车载设备将高速列车的速度、位置等的运行信息通过使用GSM-R无线网络传输至无线闭塞中心中,无线闭塞中心通过对接收到的信息数据对比前车的占用信息来对当前列车的行车许可进行计算,待到计算符合要求后再将许可通过使用GSM-R无线网络发送至车载设备中。在这一高速列车的控制系统中,采用的是集中控制,无线闭塞中心通过联锁设备和列控设备对轨道的占用情况进行分析判断来对列车发出运行许可。由于在列车运行控制中采用的集中控制方式,不论控制中的任何一个环节出现故障都会导致高速列车行车许可计算失败从而造成安全事故的发生。为提高列车的安全运行,需要在对现今采用的车地信息交换的基础上研发出更为自主智能的通信方式,从而使得高速列车运行中的前后车的通信可以绕开列控中心,通过高速列车自身的自主定位和前后车之间的自主传递等的方式进行,从而进一步由车载设备自主计算列车的行车许可,自主实现高速列车超速紧急预警的方式控制高速列车的运行。通过构建车、车之前的信息传递,实现前后车之间的位置、速度等信息的传递,此外,在高速列车的运行过程中,前车还可以通过主动发送追尾碰撞警告、紧急事件预警以及道路信息通告等的信息以实现高速铁路运行的自主智能控制,确保列车的安全运行。

相关文档
最新文档