解圆锥曲线问题常用的八种方法及七种常规题型
(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
高考数学圆锥曲线大题所有题型解法

高考数学圆锥曲线大题所有题型解法
高考数学圆锥曲线大题的题型多种多样,以下是常见的几种题型和解法:
1.求圆锥曲线的方程:通过给定的条件,根据圆锥曲线的定义和性质,可以求出圆锥曲线的方程。
例如,已知圆锥曲线的焦点、准线或者过定点的直线方程,可以根据定义和性质求出圆锥曲线的方程。
2.求圆锥曲线的性质:通过已知的条件,可以利用圆锥曲线的性质来求解问题。
例如,已知圆锥曲线的焦点和准线,可以求出其焦距、离心率等性质。
3.求直线与圆锥曲线的交点:通过已知的直线方程和圆锥曲线的方程,可以求出它们的交点。
可以将直线方程代入圆锥曲线方程,解方程得到交点的坐标。
4.求切线和法线:通过已知的条件,可以求出圆锥曲线上某点的切线和法线方程。
例如,已知圆锥曲线上一点的坐标,可以求出该点处的切线和法线方程。
5.求曲线的参数方程:对于给定的圆锥曲线方程,可以通过变量替换的方法,将其转化为参数方程。
例如,对于抛物线,可以令y=xt^2,将方程转化为参数方程。
这些只是一些常见的题型和解法,实际上高考数学圆锥曲线大
题的题型和解法还有很多,需要根据具体的题目来进行分析和解决。
掌握圆锥曲线的基本定义、性质和常见的解题方法,能够更好地应对这类题目。
圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。
(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。
齐次化解圆锥曲线

齐次化妙解圆锥曲线题型1定点在原点的斜率问题题型2定点在原点转化成斜率问题题型3定点不在原点之齐次化基础运用题型4定点不在原点的斜率问题题型5定点不在原点转化为斜率问题题型6定点不在原点之二级结论第三定义的使用题型7齐次化妙解之等角问题题型8点乘双根法的基础运用题型9点乘双根法在解答题中的运用题型1定点在原点的斜率问题圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y=kx+b,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x1+x2和x1⋅x2代入,得到关于k、b的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax2+bxy+cy2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x、y的二次项.如果公共点在原点,不需要平移.1直线mx+ny=1与抛物线y2=4x交于A x1 , y1 , B x2 , y2,求k OA+k OB , k OA⋅k OB.(用m , n表示)【解析】联立mx+ny=1y2=4x,齐次化得y2=4x mx+ny,等式两边同时除以x2,yx2-4n y x -4m=0,∴∴k OA+k OB=y1x1+y2x2=4n , k OA k OB=y1x1⋅y2x2=-4m.1直线mx +ny =1与椭圆x 24+y 23=1交于A x 1 , y 1 , B x 2 , y 2 ,求k OA ⋅k OB (用m , n 表示).【解析】mx +ny =1x 24+y 23=1齐次化联立得:x 24+y 23=mx +ny 2,等式两边同时除以x 2,12n 2-4 y x 2+24mn y x +12m 2-3=0,∴k OA ⋅k OB =y 1x 1⋅y 2x 2=12m 2-312n 2-4.2抛物线y 2=4x ,直线l 交抛物线于A 、B 两点,且OA ⊥OB ,求证:直线l 过定点.【解析】设直线AB 方程为mx +ny =1,A x 1 , y 1 , B x 2 , y 2 ,mx +ny =1y 2=4x 联立得y x 2-4n y x-4m =0,∵k OA k OB =y 1y 2x 1x 2 , ∴-4m =-1 , ∴m =14,∴直线AB :14x +ny =1过定点4,0 .3不过原点的动直线交椭圆x 24+y 23=1于A 、B 两点,直线OA 、AB 、OB 的斜率成等比数列,求证:直线l 的斜率为定值.【解析】设直线AB 方程为mx +ny =1,A x 1 , y 1 , B x 2 , y 2 ,mx +ny =1x 24+y 23=1联立得12n 2-4 y x2+24mn yx+12m 2-3=0,于是k OA k OB =y 1x 1y 2x 2=12m 2-312n 2-4,又k AB =-m n ,∴12m 2-312n 2-4=m 2n2,得k AB =-m n =±32.4已知直线y =kx +4交椭圆x 24+y 2=1于A ,B 两点,O 为坐标原点,若k OA +k OB =2,求该直线方程.【解析】法一(齐次化解法):设A (x 1,y 1),B (x 2,y 2),步骤1:构建关于x 、y 的齐次式:将直线变形为y -kx 4=1代入x 24+y 2=1进行“1”的代换得x 24+y 2=y -kx 42,整理得15y 2+2kxy +(4-k 2)x 2=0;步骤2:构建关于斜率k =yx的方程:因为x≠0,方程两边同除以x2,得15yx2+2k y x +(4-k2)=0;步骤3:利用韦达定理转化目标:易知k OA=y1x1和k OB=y2x2是方程15yx2+2k y x +(4-k2)=0的两个根,由韦达定理得k OA+k OB=-2k15=2,即k=-15,故所求直线方程为y=-15x+4.法二(常规解法):设A(x1,y1),B(x2,y2),联立y=kx+4①x24+y2=1②,①代入②消去y得(4k2+1)x2+32kx+60=0,设A(x1,y1),B(x2,y2),则x1+x2=32k4k2+1,x1x2=604k2+1,所以k OM+k ON=y1x1+y2x2=kx1+4x1+kx2+4x2=2k+4(x1+x2)x1x2=2k+32k15=2,解得k=-15,故所求直线方程为y=-15x+4.【方法小结】本题属于曲线上的两个点与原点连线的斜率之和为定值(斜率之积为定值也可以用本法)问题,通过对直线变形,采取“1”的巧用,一般二次方不变,一次方项直接乘以“1”,常数项乘以“1”的平方,从而构建关于x,y的二元二次的齐次方程,再两边同时除以x2得到一个是以原点与曲线上连线的斜率k为根的一元二次方程,再借助韦达定理使得问题运算得到简化,我们把这种操作手法称之为“齐次化”.5设Q1,Q2为椭圆x22b2+y2b2=1上两个动点,且OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,求D的轨迹方程.【解析】法一:(常规方法)设Q1(x1,y1),Q1(x2,y2),D(x0,y0),设直线Q1Q2方程为y=kx+m,联立y=kx+mx22b2+y2b2=1化简可得:(2b2k2+b2)x2+4kmb2x+2b2(m2-b2)=0,所以x1x2=2b2(m2+b2)2b2k2+b2,y1y2=b2(m2-2b2k2)2b2k2+b2,因为OQ1⊥OQ2,所以x1x2+y1y2=2b2(m2+b2)2b2k2+b2+b2(m2-2b2k2)2b2k2+b2=2(m2-b2)2k2+1+m2-2b2k22k2+1=0,∴3m2=2b2(1+k2)①又因为直线Q1Q2方程等价于为y-y0=-x0y0(x-x0),即y=-x0y0x+x20y0+y0,对比于y =kx +m ,则-x0y 0=kx 2y 0+y 0=m代入①中,化简可得:x 20+y 20=23b 2.法二:(齐次化解法)设直线Q 1Q 2方程为mx +ny =1,联立mx +ny =1x 22b2+y2b 2=1,可得mx +ny =1x 22b2+y 2b 2-1=0,所以x 22b 2+y 2b 2-(mx +ny )2=0,化简可得x 22b 2+y 2b 2-m 2x 2-n 2y 2-2mnxy =0,整理成关于x ,y 的齐次式:(2-2b 2n 2)y 2+(1-2m 2b 2)x 2-4mnb 2xy =0,进而两边同时除以x 2,则(2-2b 2n 2)y x 2-4mnb 2yx+1-2m 2b 2=0,记OQ 1,OQ 2的斜率分别为k 1,k 2,则k 1,k 2为方程(2-2b 2n 2)y x 2-4mnb 2yx+1-2m 2b 2=0的两个根,由韦达定理得k 1k 2=1-2m 2b 22-2b 2n 2,因为OQ 1⊥OQ 2,所以k 1k 2=1-2m 2b 22-2b 2n2=-1,∴3m 2=2b 2(1+k 2)①又因为直线Q 1Q 2方程等价于为y -y 0=-x 0y 0(x -x 0),即y =-x 0y 0x +x 20y 0+y 0,对比于y =kx +m ,则-x0y 0=kx 2y 0+y 0=m,代入①中,化简可得:x 20+y 20=23b 2.题型2定点在原点转化成斜率问题圆锥曲线齐次化原理是:过程中为了式子整齐好记,所以将它齐次化。
(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(其中K 是直线AB 的斜率) (2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率)4、弦长公式法弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。
5、数形结合法解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。
如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“23+-x y ”,令23+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率……6、参数法(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。
如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。
除设P (x 1,y 1)外,也可直接设P (2y 1-1,y 1) (2)斜率为参数当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。
(3)角参数当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。
7、代入法这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。
不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。
八、充分利用曲线系方程法一、定义法【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,为 。
分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。
(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 三点共线时,距离和最小。
解:(1)(2,2)连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF 的方程为)1(13024---=x y 即 y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为(2,21-),它为直线AF 与抛物线的另一交点,舍去) (2)(1,41)过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q点的纵坐标为1,代入y 2=4x 得x=41,∴Q(1,41) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
例2、F 是椭圆13422=+y x 的右焦点,A(1,1)为椭圆内一定点,上一动点。
(1)PF PA +的最小值为 (2)PF PA 2+的最小值为分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '解:(1)4-5设另一焦点为F ',则F '(-1,0)连A F ',P F '542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。
(2)作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=21, ∴PH PF PH PF ==2,21即 ∴PH PA PF PA +=+2当A 、P 、H 三点共线时,其和最小,最小值为3142=-=-A x ca 例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,的轨迹方程。
分析:作图时,要注意相切时的“图形特征”:图中的A 、M 、C 共线,B 、D 、M 共线)径”(如图中的MD MC =)。
解:如图,MD MC =,∴26-=--=-MB MA DB MB MA AC 即 ∴8=+MB MA (*)∴点M 的轨迹为椭圆,2a=8,a=4,c=1,b 2=15轨迹方程为162+x 点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出4)1()1(2222=+-+++y x y x ,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程。
分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系。
解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=-即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。
分析:(1)可直接利用抛物线设点,如设A(x 1,x 12),B(x 2,X 22),又设AB 中点为M(x 0y 0)用弦长公式及中点公式得出y 0关于x 0的函数表达式,再用函数思想求出最短距离。
(2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。
解法一:设A(x 1,x 12),B(x 2,x 22),AB 中点M(x 0,y 0)则⎪⎩⎪⎨⎧=+=+=-+-0222102122221221229)()(y x x x x x x x x x 由①得(x 1-x 2)2[1+(x 1+x 2)2]=9即[(x 1+x 2)2-4x 1x 2]·[1+(x 1+x 2)2]=9 ④ 由②、③得2x 1x 2=(2x 0)2-2y 0=4x 02-2y 0 代入④得 [(2x 0)2-(8x 02-4y 0)]·[1+(2x 0)2]=9∴220041944x x y +=-, 1149)14(4944202020200-+++=+=x x x x y ≥,5192=- 450≥y 当4x 02+1=3 即 220±=x 时,45)(min 0=y 此时)45,22(±M 法二:如图,222+=AA MM ① ② ③∴232≥MM , 即23411≥+MM , ∴451≥MM , 当AB 经过焦点F 时取得最小值。
∴M 到x 轴的最短距离为45 点评:解法一是列出方程组,利用整体消元思想消x 1,x 2,从而形成y 0关于x 0的函数,这是一种“设而不求”的方法。
而解法二充分利用了抛物线的定义,巧妙地将中点M 到x 轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A 、B 到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB 是否能经过焦点F ,而且点M 的坐标也不能直接得出。
二、韦达定理法【典型例题】例6、已知椭圆)52(1122≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次交于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。