人教版初一数学上期末试卷
人教版 数学七年级上册期末检测试卷 试卷1(解析版)

数学七年级上册期末检测试卷一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.2.方程2x+6=0的解是()A.3B.﹣3C.2D.03.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×1044.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.16.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.612.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是.18.若3a m b2与是同类项,则=.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)22.解方程:(1)6y+2=3y﹣4(2)23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解:根据相反数的含义,可得4的相反数是:﹣4.故选:A.2.方程2x+6=0的解是()A.3B.﹣3C.2D.0【分析】方程移项后,将x系数化为1,即可求出解.解:方程2x+6=0,移项得:2x=﹣6,解得:x=﹣3.故选:B.3.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30万=300000=3×105.故选:A.4.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的2乘到括号内,然后利用去括号法则求解.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.1【分析】根据单项式系数的定义进行解答即可.解:∵代数式﹣x2y的数字因数是﹣1,∴此单项式的系数是﹣1.故选:C.6.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c【分析】利用去括号添括号法则,逐项判断即可得出正确答案.解:A、D、a+(b﹣c)=a+b﹣c,故A和D都错误;B、C、a﹣(b﹣c)=a﹣b+c,故B错误,C正确;故选:C.7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短【分析】本题涉及直线,相交线的有关概念和性质.当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直.解:A、只有当相交的两条直线有一个角是直角时,才能叫做垂直,错误;B、经过一点可以画无数条直线,错误;C、平角和直线是两种不同的概念,说平角是一条直线,错误;D、两点之间的所有连线中,线段最短,是公理,正确.故选:D.8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)【分析】把方程的两边同时乘以10即可.解:方程的两边同时乘以10得,10x﹣5(x﹣1)=10﹣2(x+2).故选:B.9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的【分析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、是随机事件,选项错误;B、是必然事件,选项正确;C、是随机事件,选项错误;D、是随机事件,选项错误.故选:B.10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题【分析】根据有理数的乘方可以判断①,根据有理数的加减法可以判断②③,根据有理数的除法可以判断④.解:(﹣1)2020=1,故①错误,不符合题意;0﹣(﹣1)=0+1=1,故②错误,不符合题意;﹣=﹣,故③正确,符合题意;÷(﹣)=﹣1,故④正确,符合题意;故选:B.11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.6【分析】根据点A位于﹣3和﹣2之间求解.解:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.故选:C.12.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学【分析】从3个图形看,和我相邻的有爱、验、中、学,那么和我相对的就是实,和爱相对的就是验,和中相对的就是学.依此答题即可.解:根据三个图形的汉字,可推断出来,和我相对的就是实,和爱相对的就是验,和中相对的就是学,∴三种摆法的左侧面上三个字分别是爱、中、学.故选:D.13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解:因为没有男女生总数,只看所占百分比无法确定哪个班女生人数较多.故选:D.14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.解:2×2×2×2=24=16.故选:B.15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=﹣2代入2x+m﹣4=0得:2×(﹣2)+m﹣4=0解得:m=8.故选:A.二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=33°.【分析】根据∠2=180°﹣∠COE﹣∠1,可得出答案.解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是两点确定一条直线.【分析】根据公理“两点确定一条直线”,来解答即可.解:∵两点确定一条直线,∴建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.故答案为:两点确定一条直线.18.若3a m b2与是同类项,则=0.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m 的值,再代入代数式计算即可.解:∵3a m b2与是同类项,∴n=2,m=1,∴m﹣n=0故答案为:0.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=∴找到男生的可能性大,故答案为:大20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.【分析】根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)【分析】(1)依据同号相乘得正,异号相乘得负计算;(2)运用乘法分配律计算比较简便.解:(1)4×(﹣2)﹣(﹣8)÷2,=﹣8+4,=﹣4;(2)原式=(﹣3)2×()+(﹣3)2×(﹣),=3﹣4=﹣1.22.解方程:(1)6y+2=3y﹣4(2)【分析】(1)此题为整式方程,只需移项,化系数为1,即可得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而解出方程.解:(1)移项,得:6y﹣3y=﹣4﹣2;合并同类项,得:3y=﹣6;方程两边同除于3,得:y=﹣2;(2)去分母,得:2(x+1)﹣6=5x﹣1;去括号,得:2x+2﹣6=5x﹣1;移项、合并同类项,得:﹣3x=3;方程两边同除以﹣3,得:x=﹣1.23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,a﹣1=﹣2﹣1=﹣3.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层.解:如图所示:25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?【分析】(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分∠AOD的两部分角的度数即可说明.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)【分析】(1)求出中间一个数,即可得答案;(2)设中间的数为y,列出代数式比较得出结果;(3)观察可得四个数的关系.解:(1)设对角线中间一个数为x,那么左下角的数为x+6,右上角的数为x﹣6,x+x+6+x﹣6=39 解得x=13,这9个数的和为5+6+7+12+13+14+19+20+21=162;(2)不能.设中间的数为y,则9y=216,解得y=24,那么矩形右下角的数为24+8=32,这是不可能的,∴不能;(3)a=b﹣1=c﹣6=d﹣7或b=a+1=c﹣5=d﹣6或c=a+6=b+7=d﹣1或d=a+7=b+6=c+1.。
北京市人教版(七年级)初一上册数学期末测试题及答案

北京市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .32.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2C .1,4D .1,34.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃5.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 8.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1 B .1﹣a =1﹣b C .3a =3b D .2﹣3a =3b ﹣2 9.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60 C .300×0.2-x =60 D .300×0.8-x =60 11.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.若|x |=3,|y |=2,则|x +y |=_____. 14.|-3|=_________; 15.若523m xy +与2n x y 的和仍为单项式,则n m =__________.16.写出一个比4大的无理数:____________. 17.﹣213的倒数为_____,﹣213的相反数是_____. 18.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________19.52.42°=_____°___′___″.20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .23.单项式()26a bc -的系数为______,次数为______.24.已知7635a ∠=︒',则a ∠的补角为______°______′. 三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集.26.解方程:131142x x x +-+=- 27.计算:(1)(﹣0.5)+(﹣32)﹣(+1) (2)2+(﹣3)2×(﹣112) (3)3825-+|﹣2|﹣(﹣1)201828.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么? 29.计算:(1)1108(2)2⎛⎫--÷-⨯-⎪⎝⎭(2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦. 30.用白色棋子摆出下列一组图形:(1)填写下表:图形编号(1)(2)(3)(4)(5)(6)...图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?四、压轴题31.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和b(b a>),则线段AB的长(点A到点B的距离)可表示为AB=b a-.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?32.如图,数轴上有A、B、C三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.33.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.C解析:C 【解析】 【分析】 根据AC 比BC 的14多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.5.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.7.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.8.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】-或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,222+, (2)∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x +y |=|﹣3+2|=1(4)x =﹣3,y =﹣2时,|x +y |=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键. 18.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.22.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.23.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此解析:16【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc -的系数为16-;次数为2+1+1=4; 故答案为16-;4. 【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.24.25【解析】【分析】 根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.-4<x ≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232x x x +≤⎧⎪⎨+>-⎪⎩①②, 由①得:x ≤2,由②得:x>-4,所以不等式组的解集为:-4<x ≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【详解】去分母得,4+(1+3x)=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.(1)﹣3;(2)54;(3)﹣6.【解析】【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣1 12)=2﹣3 4=54;(3)原式=﹣2﹣5+2﹣1=﹣6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.28.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同【解析】【分析】(1)求出样本容量,进而求出厨余垃圾的吨数;(2)A 部分由400吨,总数量为800吨,求出所占的百分比,C 部分占整体的40800,因此C 部分所在的圆心角的度数为360°的40800. (3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,答:厨余垃圾有280吨;(2)400÷800=50%,360°×40800=18°, 答:在扇形统计图中,A 部分所占的百分比是50%,C 部分所对应的圆心角度数是18°. (3)80÷40=2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.【点睛】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.29.(1)-12;(2)0【解析】【分析】(1)将除法变乘法计算,最后计算减法即可;(2)先算乘方和括号内的式子,然后计算乘法,最后计算加减.【详解】(1)解:原式=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=12-(2)解:原式=()111192523--⨯⨯- =()1166--⨯- =11-+=0【点睛】 本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.30.(1)见详解;(2)3(n+1);(3)99枚.【解析】【分析】解题注意根据图形发现规律,并用字母表示.然后根据条件代入计算.【详解】解:(1)图形编号1 2 3 4 5 6 图形中的棋子 6 9 12 15 18 21 (3)设图形有99枚棋子,它是第x 个图形.根据题意得:3+3x=99解得x=32所以它是第32个图形.故答案为(1)6,9,12,15,18,21.【点睛】此题考査规律问题,观察图形,发现(1)中是6个棋子.后边多一个图形,多3个棋子.根据这一规律即可解决下列问题.四、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,33.(1)60°;(2)射线OP 是∠AOC 的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。
人教版数学七年级上学期期末测试题 (4)含答案

人教版数学七年级上学期期末测试题一、选择题(共10小题,每小题3分,共30分)1.﹣(﹣3)的绝对值是()A.﹣3B.C.3D.﹣2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为()A.8×108B.8×109C.0.8×109D.0.8×10103.下列式子计算正确的个数有()①a2+a2=a4;②3xy2﹣2xy2=1;③3ab﹣2ab=ab;④(﹣2)3﹣(﹣3)2=﹣17.A.1个B.2个C.3个D.0个4.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.某商店换季促销,将一件标价为240元的T恤打8折售出,获利20%,则这件T恤的成本为()A.144元B.160元C.192元D.200元6.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣17.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm8.若关于x的方程x m﹣1+2m+1=0是一元一次方程,则这个方程的解是()A.﹣5B.﹣3C.﹣1D.59.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>一b C.a+b>0D.ab<010.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d二、填空题(共6小题,每小题3分,共18分)11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是.12.若∠α的补角为76°28′,则∠α=.13.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=.14.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有间教室.15.现定义某种运算“☆”,对给定的两个有理数a,b,有a☆b=2a﹣b.若||☆2=4,则x的值为.16.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为.三、解答题17.(10分)计算(1)(﹣1)2018×5+(﹣2)3÷4(2)()×24﹣÷(﹣)3﹣|﹣25|.18.(10分)解方程(1)=1.(2)x﹣(3x﹣5)=2(5+x)19.(6分)先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.20.(8分)已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.21.(6分)一个角的补角比它的余角的3倍小20°,求这个角的度数.22.(10分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC 和∠COB的度数.23.(10分)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了9小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.24.(12分)某地区居民生活用电基本价格为每千瓦时0.40元,为了提倡节约用电,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)某户八月份用电100千瓦时,共交电费43.20元,求a.(2)若该用户九月份的平均电费为0.42元,则九月份共用电多少千瓦时?应交电费是多少元?2018-2019学年内蒙古巴彦淖尔市临河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】先根据相反数的定义化简,再根据正数的绝对值等于它本身解答.【解答】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C.【点评】本题考查了绝对值的性质,相反数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80亿=8×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解答】解:①a2+a2=2a2,故①错误;②3xy2﹣2xy2=xy2,故②错误;③3ab﹣2ab=ab,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B.【点评】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.【点评】考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.【分析】先设成本为x元,则获利为20%x元,售价为0.8×240元,从而根据等量关系:售价=进价+利润列出方程,解出即可.【解答】解:设成本为x元,则获利为20%x元,售价为0.8×240元,由题意得:x+20%x=0.8×240,解得:x=160.即成本为160元.故选:B.【点评】本题考查一元一次方程的应用,是中考的热点,对于本题来说关键是设出未知数,表示出售价、进价、利润,然后根据等量关系售价=进价+利润列方程求解.6.【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.7.【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.8.【分析】根据一元一次方程的定义求出m的值,代入后求出方程的解即可.【解答】解:∵x m﹣1+2m+1=0是一元一次方程,∴m﹣1=1,∴m=2,即方程为x+5=0,解得:x=﹣5,故选:A.【点评】本题考查了对一元一次方程的定义和解一元一次方程的应用,关键是求出m的值.9.【分析】根据数轴上点的位置判断出a与b的正负,比较即可.【解答】解:由数轴上点的位置得:b<0<a,且|a|<|b|,∴|a|<﹣b,a+b<0,ab<0,故选:D.【点评】此题考查了数轴,绝对值,以及有理数的加法与乘法,熟练掌握运算法则是解本题的关键.10.【分析】根据等式的性质,依次分析各个选项,选出变形正确的选项即可.【解答】解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据角的和差计算即可.【解答】解:∠2=∠AOB﹣∠1=90°﹣35°=55°.故答案为:55°【点评】本题主要考查了角的和差,属于基础题,比较简单.12.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.【点评】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.13.【分析】解方程x+5=7﹣2(x﹣2)得到x的值,代入6x+3k=14,得到关于k的一元一次方程,解之即可.【解答】解:解方程x+5=7﹣2(x﹣2)得:x=2,把x=2代入6x+3k=14得:12+3k=14,解得:k=,故答案为:【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.14.【分析】设有x间教室,根据若每间教室安排20名学生,则缺少3间教室,若每间教室安排24名学生,则空出一间教室,可列方程求解.【解答】解:设有x间教室.由题意,得:20(x+3)=24(x﹣1),解得x=21.故答案为:21.【点评】本题考查了列一元一次方程解实际问题的运用,解答时根据学生人数不变建立方程是关键.15.【分析】根据“a☆b=2a﹣b”,设||=m,得到关于m的一元一次方程,解之,根据不绝对值的定义,得到关于x的一元一次方程,解之即可.【解答】解:设||=m,则m☆2=4,根据题意得:2m﹣2=4,解得:m=3,则||=3,即=3或=﹣3,解得:x=﹣5或7,故答案为:﹣5或7.【点评】本题考查了解一元一次方程和有理数的混合运算,正确掌握一元一次方程的解法和有理数的混合运算是解题的关键.16.【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,于是得到结论.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.【点评】本题考查了两点间的距离.解题时,注意“数形结合”数学思想的应用.三、解答题17.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的灵活运用.【解答】解:(1)(﹣1)2018×5+(﹣2)3÷4=1×5+(﹣8)÷4=5﹣2=3;(2)()×24﹣÷(﹣)3﹣|﹣25|=15﹣16﹣÷(﹣)﹣25=15﹣16+2﹣25=﹣24.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【解答】解:(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=,(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】原式去括号合并得到最简结果,将m的值代入计算即可求出值.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.21.【分析】首先设这个角的度数为x°,则这个角的补角为(180﹣x)°,余角为(90﹣x)°,根据题意列出方程即可.【解答】解:设这个角的度数为x°,由题意得:180﹣x=3(90﹣x)﹣20,解得:x=35.答:这个角的度数为35°.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角22.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.【分析】设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,根据顺流航行的时间+逆流航行的时间=9h建立方程求出其解即可.【解答】解:设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,由题意,得解得:x=30,则A、B两码头间的距离为:30+10=40(km)答:A,B两地之间的路程是40km.【点评】本题考查了一元一次方程的应用,航行问题的数量关系的运用,顺水速度=静水速度+水速,逆水速度=静水速度﹣水速,列一元一次方程解实际问题的运用,解答时根据行程问题的数量关系建立方程是关键.24.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出.【解答】解:(1)根据题意可得:0.4a+0.4(1+20%)(100﹣a)=43.20解得:a=60答:a为60(2)设九月份共用电x千瓦0.42x=0.4×60+0.48×(x﹣60)解得:x=80∴0.42×80=33.6元答:九月份共用电80千瓦时,应交电费是33.6元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版七年级上册数学期末考试试卷带答案

人教版七年级上册数学期末考试试题一、单选题1.﹣2021的绝对值是()A .2021B .12021C .12021-D .﹣20212.中国的领水面积约为370000km 2,将数370000用科学记数法表示为()A .37×104B .3.7×104C .0.37×106D .3.7×1053.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A .20﹣3+5﹣7B .﹣20﹣3+5+7C .﹣20+3+5﹣7D .﹣20﹣3+5﹣74.方程24x a +=的解是2x =-,则=a ()A .–8B .0C .2D .85.若40α∠=︒,则α∠的余角的度数是()A .40°B .50°C .60°D .140°6.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .7.下列运算正确的是()A .12xy -20xy =-8B .3x +4y =7xyC .3xy 2-4y 2x =-xy 2D .3x 2y -2xy 2=xy8.已知方程216x y -+=,则整式3610x y --的值为()A .5B .10C .12D .159.《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x 尺,则符合题意的方程应为()A .114134x x -=-B .3x+4=4x+1C .114134x x +=+D .3(x+4)=4(x+1)10.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示()A .C n H 2n+2B .C n H 2n C .C n H 2n ﹣2D .C n H n+3二、填空题11.如果零上2℃记作+2℃,那么零下3℃记作____℃.12.若单项式3mxy 与nxy -是同类项,则m n -的值是__________.13.计算:3545'7219'︒+︒=__________.14.“垃圾分类”知识竞赛规定:答对的得10分,答错或不答扣5分,如果初一(2)班答对了a 道题,答错了b 道题,那么初一(2)班的得分可以表示为:______分.15.现定义一种新运算,对于任意有理数a ,b ,c ,d 满足a b ad bc cd=-,若对于未知数x的式子满足2331x x =+,则未知数x =__________.16.某货轮O 在航行过程中,发现灯塔A 在它的南偏东65°方向上,同时在它的北偏东40°方向发现了一座海岛B ,则∠AOB 的度数是__________.17.已知2a b -=,当1b =时,=a __________.三、解答题18.计算:()()220212101-+-+-19.解方程:1224x x+-=20.根据下列要求画图(1)连接线段OB;(2)画射线AO,射线AB;,过点O,点C画出直线OC.(3)用圆规在射线AB上彼取AC OB21.为了有效控制酒后驾驶,广州交警的汽车在一条东西方向的公路上巡逻,约定向东为正方向,从出发点A开始所走的路程为(单位:千米):+14.﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定交警最后所在地相对于A地的方位?(2)若汽车每千米耗油0.2升,如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?22.若代数式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x的取值无关,求代数式5ab2-[a2b+2(a2b-3ab2)]的值.23.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:若制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?24.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC 是AOB ∠的平分线,这时有数量关系:AOB ∠=______.(2)如图2:AOB ∠被射线OP 分成了两部分,这时有数量关系:AOB ∠=______.(3)如图3:直线AB 上有一点M ,射线MN 从射线MA 开始绕着点M 顺时针旋转,直到与射线MB 重合才停止.①请直接回答AMN ∠与BMN ∠是如何变化的?②AMN ∠与BMN ∠之间有什么关系?请说明理由.25.某校七年级A 班有x 人,B 班比A 班人数的2倍少10人,如果从B 班调出8人到A 班.(1)用代数式表示两个班共有多少人?(2)用代数式表示调动后,B 班人数比A 班人数多几人?(3)x 等于多少时,调动后两班人数一样多?26.将一副三角板ABC 和三角板BDE (∠ACB=∠DBE=90°,∠ABC=60°)按不同的位置摆放.(1)如图1,若边BD ,BA 在同一直线上,则∠EBC=;(2)如图2,若∠EBC=165°,那么∠ABD=;(3)如图3,若∠EBC=120°,求∠ABD 的度数.参考答案1.A 【分析】根据绝对值的意义即可作答.【详解】﹣2021的绝对值即为:20212021-=.故选:A .【点睛】本题考查了求解一个数的绝对值的知识,负数的绝对值是它的相反数,非负数的绝对值是其本身.2.D 【分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:370000=3.7×105.故选D .【点睛】本题考查科学记数法—表示较大的数3.C 【分析】先把加减法统一成加法,再省略括号和加号.【详解】解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.【点睛】此题主要考查有理数的加减,解题的关键是熟知有理数的运算法则.4.D 【分析】把2x =-代入方程求解即可;【详解】把2x =-代入方程可得:()224a ⨯-+=,解得:8a=.故答案选D .【点睛】本题主要考查了一元一次方程的求解,准确计算是解题的关键.5.B 【分析】根据余角的定义即可求解.【详解】解:∵∠α=40°,∴它的余角=90°-40°=50°.故选:B.【点睛】本题考查了余角的知识,熟记互为余角的两个角的和等于90°是解题的关键.6.B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选:B.【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.7.C【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】解:A、12xy-20xy=-8xy,故本选项不合题意;B、3x与4y不是同类项,所以不能合并,故本选项不合题意;C、3xy2-4y2x=-xy2,故本选项符合题意;D、3x2y与-2xy2不是同类项,所以不能合并,故本选项不合题意;故选:C.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.8.A【分析】根据题意求出x-2y,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.9.D【分析】设井深为x尺,则根据①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,即可列出方程.【详解】解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:D.【点睛】本题主要考查了列一元一次方程的应用,解题的关键在弄清题意,找到等量关系并用未知数表示.10.A 【详解】试题分析:设碳原子的数目为n (n 为正整数)时,氢原子的数目为a n ,观察可知:a 1=4=2×1+2,a 2=6=2×2+2,a 3=8=2×3+2,…,即可得a n =2n+2.所以碳原子的数目为n (n 为正整数)时,它的化学式为C n H 2n+2.故选:A .考点:数字规律探究题.11.-3【详解】以0℃作为数轴原点,则往左右两边每1个单位为1℃,当零上2℃记作+2℃时,则零下3℃为原点相反方向上记作-3℃.故答案为:-3.【点睛】本题难度较低,主要考查学生对数轴与实数的学习.作图最直观,要求考生学习数学时,应做到数形结合思想的应用.12.0【分析】先根据同类项的定义求得m 和n ,然后计算即可.【详解】.解:∵3xy m 与-x n y 是同类项,∴n=1,m=1∴m-n=1-1=0.故答案为:0.【点睛】本题考查了同类项的定义,根据同类项的定义求得m 和n 的值是解答本题的关键.13.1084︒'【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60则转化为度.【详解】解:35°45'+72°19'=108°4'故答案为:108°4'.【点睛】本题考查的知识点是角度的计算,注意度分秒之间的进率为60即可.14.()105a b -【分析】由答对的得10分,答对了a 道题求出所得10a 分,由答错或不答扣5分,答错了b 道题求出所扣5b ,从得分中去掉扣分是最后初一(2)班的得分可以表示为()10-5a b 分.【详解】解:答对的得10分,答对了a 道题得10a 分,答错或不答扣5分,答错了b 道题扣5b ,初一(2)班的得分可以表示为()10-5a b 分.故答案为:()10-5a b .【点睛】本题考查列代数式,用字母表示数,代数式书写规则知识,掌握列代数式的方法与要求是解题关键.15.-1【分析】根据题中计算方法,代入可得一元一次方程,然后求解即可得.【详解】解:∵a b ad bc cd=-,∴2331xx =+,∴()2133x x +-=,解得:1x =-,故答案为:1-.【点睛】题目主要考查一元一次方程的解法,理解题意新定义的运算方法是解题关键.16.75°【分析】首先根据方向角的定义,作出图形,根据图形即可求解.【详解】解:如图,180406575AOB ∠=︒-︒-︒=︒,故答案为:75︒.【点睛】本题考查了方向角的定义,正确理解方向角的定义,理解A 、B 、O 的相对位置是解题的关键.17.3或-1【分析】将b =1代入|a ﹣b|=2,再根据绝对值的意义解方程即可.【详解】解:当b =1时,|a ﹣b|=|a ﹣1|=2,可得a ﹣1=±2,解得a =3或﹣1,故答案为:3或﹣1.【点睛】本题主要考查了绝对值的方程,熟练掌握绝对值的意义和熟练解方程是解答此题的关键.18.13【详解】解:原式4101=+-141=-13=.【点睛】本题考查了有理数的混合运算,解题关键是熟练掌握有理数混合运算的顺序和方法.19.6x =【分析】先去分母,再去括号,移项、合并同类项、(化系数为1)即可解题.【详解】解:去分母:()218x x +-=去括号:228x x +-=移项:282x x -=-合并同类项:6x =.【点睛】本题考查解一元一次方程,是重要考点,难度较易,掌握相关知识是解题关键.20.(1)见解析(2)见解析(3)见解析【分析】(1)连接OB ,可得线段OB ;(2)连接AO 并延长即为射线AO ,连接AB 并延长可得射线AB ;(3)以点A 为圆心,OB 长为半径画弧,交AB 于点C ,可得AC OB =,然后连接OC 并双向延长即可得直线.(1)连接OB ,可得线段OB ,如图所示;(2)连接AO 并延长即为射线AO ,连接AB 并延长可得射线AB ,如图所示;(3)以点A 为圆心,OB 长为半径画弧,交AB 于点C ,可得AC OB =,然后连接OC 并双向延长即可得直线,如图所示.【点睛】题目主要考查线段、射线的作法,理解题意,熟练掌握线段、射线的作法是解题关键.21.(1)距离A地正东方向20千米处;(2)18.8升.【分析】(1)将巡逻记录相加求出结果,然后根据正负数的意义回答;(2)将巡逻记录的绝对值相加在加上返回的路程,求出总路程;用总路程乘以单位耗油量可得总耗油量.++-+++-+++-+++-=.【详解】(1)(14)(9)(8)(7)(13)(6)(12)(5)20答:交警最后所在地距离A地正东方向20千米处.++-+++-+++-+++-.(2)14987136125=74此次巡逻最后位置距离A地正东方向20千米处.∴总路程为742094+=千米⨯=(升).0.29418.8答:这次巡逻(含返回)共耗油18.8升.【点睛】本题考查了有理数加法的实际应用,正负数是实际应用,绝对值的意义,解题关键是理解”正“和“负”的相对性,确定一对具有相反意义的量.22.-60.【分析】先将代数式进行去括号合并,然后令含x的项系数为0,即可求出a与b的值,最后代入所求的式子即可求得答案.【详解】(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,由结果与x的取值无关,得到2-2b=0,a+3=0,解得a=-3,b=1,则5ab2-[a2b+2(a2b-3ab2)]=5ab2-a2b-2a2b+6ab2=11ab2-3a2b=-33-27=-60.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.第二种方案可以多得1500元的利润.【分析】方案一:根据制成奶片每天可加工1吨,求出4天加工的吨数,剩下的直接销售鲜牛奶,求出利润;方案二:设生产x天奶片,(4-x)天酸奶,根据题意列出方程,求出方程的解得到x的值,进而求出利润,比较即可得到结果.【详解】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(9-4)×500=10500(元);方案二:设生产x天奶片,则生产(4-x)天酸奶,根据题意得:x+3(4-x )=9,解得:x=1.5,∴2.5天生产酸奶,加工的鲜奶3×2.5=7.5吨,则利润为:1.5×2000+3×2.5×1200=3000+9000=12000(元),∴12000-10500=1500.得到第二种方案可以多得1500元的利润.【点睛】此题考查了一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(1)2AOC ∠(答案不唯一);(2)AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒,见解析.【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线MN 从射线MA 开始绕着点M 顺时针旋转可知AMN ∠逐渐增大,BMN ∠逐渐减小;②由∠AMB 是平角即可得出结论.【详解】解:(1)∵射线OC 是AOB ∠的平分线,∴22AOB AOC COB ∠=∠=∠,故答案为:2AOC ∠(或2COB ∠);(2)由图可知,AOB AOP BOP ∠=∠+∠,故答案为:AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒.证明:∵180AMB ∠=︒,AMN BMN AMB ∠+∠=∠,∴180AMN BMN ∠+∠=︒.【点睛】本题考查了角平分线定义,角的有关计算,注意利用数形结合的思想.25.(1)(3x-10)人;(2)(x-26)人;(3)x 等于26时,调动后两班人数一样多.【分析】(1)由A 班人数结合A 、B 两班人数间的关系可找出B 班人数,将两班人数相加即可得出结论;(2)根据调动方案找出调动后A 、B 两班的人数,二者做差即可得出结论;(3)根据调动后两班人数一样多,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵七年级A 班有x 人,B 班比A 班人数的2倍少10人,∴B 班有(2x-10)人.x+2x-10=3x-10.答:两个班共有(3x-10)人(2)调动后A班人数:(x+8)人;调动后B班人数:2x-10-8=(2x-18)人,(2x-18)-(x+8)=x-26(人).答:调动后B班人数比A班人数多(x-26)人.(3)根据题意得:x+8=2x-18,解得:x=26.答:x等于26时,调动后两班人数一样多.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据A、B两班人数间的关系找出B班人数;(2)根据调动方案找出调动后A、B两班的人数;(3)找准等量关系,正确列出一元一次方程.26.(1)150°;(2)15°;(3)30°.【分析】(1)由∠EBC=∠DBE+∠ABC,可得结果;(2)由∠ABD=∠CBE-∠ABC-∠DBE,可得结果;(3)由∠ABD=∠ABC+∠DBE-∠EBC可得结果.【详解】解:根据题意可知,(1)∠EBC=∠DBE+∠ABC=90°+60°=150°;故答案为150°;(2)∠ABD=∠CBE-∠ABC-∠DBE=165°-90°-60°=15°;故答案为15°;(3)∠ABD=∠ABC+∠DBE-∠EBC=90°+60°-120°=30°.∴∠ABD的度数为:30°.。
温州市人教版(七年级)初一上册数学期末测试题及答案

温州市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q3.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5ht =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒 B .4秒C .5秒D .6秒4.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .5.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6 D .3(x +1)﹣2×2x ﹣1=6 8.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x + C .22x x - D .3221x x -+ 9.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=010.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-411.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .312.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 15.把53°30′用度表示为_____.16.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.17.9的算术平方根是________18.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.20.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.21.如图,若12l l //,1x ∠=︒,则2∠=______.22.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 23.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.24.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.三、解答题25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马. (1)当良马追上驽马时,驽马行了 里(用x 的代数式表示). (2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?26.计算:()1()---+20230()2()()22-÷--⨯-+4231427.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?28.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).29.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A'处,∠=︒,求'A BDBC为折痕.若54ABC∠的度数;(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA重合,折痕∠的度数.为BE,如图2所示,求CBE30.我们已学习了角平分线的概念,现用正方形纸折叠:将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕.(1)若∠AEF=54°,求∠BEB′ 和∠FEH的度数;(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图如图所示的正方形EFGH,且不重合的部分也是一个正方形。
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列各数中,比﹣2小的数是()A .﹣12B .﹣32C .﹣52D .﹣13.若x=0是方程1-324x +=36k x-的解,则k 值为()A .2B .3C .4D .04.下列各式中成立的是()A .﹣3﹣5=﹣2B .3x ﹣(2x+1)=3x ﹣2x+1C .(﹣3)3=﹣9D .|π﹣3|=π﹣35.由6个相同的立方体搭成的几何体如图所示,则从它的正面看到的图形是()A .B .C .D .6.以下问题,不适合普查的是()A .学校招聘教师,对应聘人员的面试B .进入地铁站对旅客携带的包进行的安检C .调查本班同学的身高D .了解全市中小学生每天的零花线7.如果﹣2x 2﹣a y 与x 3y b ﹣1是同类项,那么﹣a ﹣b 的值是()A .﹣3B .﹣2C .﹣1D .18.如图,在直线l 上有A ,B ,C 三点,则图中线段共有()A .4条B .3条C .2条D .1条9.下列等式变形错误的是()A .若a=b ,则2211a bx x =++B .若a=b ,则33a b=C .若a=b ,则ax bx =D .若a=b ,则a bm m=10.如图,AM为∠BAC的平分线,下列等式错误的是()A.12∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC二、填空题11.数据“7206万”用科学记数法表示是______.12.903251'18''︒-︒=____.13.一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售___________.14.如图,若要使图中的平面展开图折叠成正方形,相对面上两个数相等,则x-y=_____15.如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于________.16.一组按规律排列的式子:4682,,,,357a a aa⋅⋅⋅则第n个式子是___.17.如图,D为线段CB的中点,AD=8厘米,AB=10厘米,,则CB的长度为______厘米.18.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”_____个.三、解答题19.计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣13).20.2151136x x +--=21.如图,已知,,,A B C D 四点,按下列要求画图形:(1)画射线CD ;(2)画直线AB ;(3)连接DA ,并延长至E ,使得AE DA =.22.小丽放学回家后准备完成下面的题目:化简(□x 2﹣6x+8)+(6x ﹣5x 2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x 2﹣6x+8)+(6x ﹣5x 2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?23.我们规定,若关于x 的一元一次方程ax b =的解为b a -,则称该方程为“差解方程”,例如:24=x 的解为2,且242=-,则该方程24=x 是差解方程.请根据上述规定解答下列问题:(1)判断3 4.5x =是否是差解方程;(2)若关于x 的一元一次方程51x m =+是差解方程,求m 的值.24.一辆客车和一辆卡车同时从A 地出发沿同-公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千来/小时,客车比卡车早2小时经过B 地,A 、B 两地间的路程是多少千米?25.如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)证明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.26.如图,点A,B,C在数轴上对应数为a,b,c.-+-;(1)化简a b c b(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.27.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.若∠AOC=40°.(1)求∠DOE的度数;(2)图中互为余角的角有.参考答案1.B【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B.【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.C【分析】根据两个负数,绝对值大的反而小,可得比-2小的数是-2.5.【详解】解:根据两个负数,绝对值大的反而小可知-52<-2.故选C.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.3.B【分析】将x=0代入方程计算即可求出k的值.【详解】解:将x=0代入方程得:1-12=6k,解得:k=3,故选B.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.D【分析】直接利用有理数的混合运算法则以及合并同类项法则分别判断得出答案.【详解】解:A、﹣3﹣5=﹣8,故此选项错误;B、3x﹣(2x+1)=3x﹣2x﹣1,故此选项错误;C、(﹣3)3=﹣27,故此选项错误;D、|π﹣3|=π﹣3,正确.故选:D.【点睛】考核知识点:整式加减.掌握有理数的混合运算法则是关键.5.C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到的图形是两层,底层是三个小正方形,上层左边有一个小正方形,右边一个小正方形,中间是空的.故选:C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A .学校招聘教师,对应聘人员的面试,适合全面调查,故此选项不合题意;B .进入地铁站对旅客携带的包进行的安检,必须全面调查,故此选项不合题意;C .调查本班同学的身高,人数不多,容易调查,因而适合全面调查,故此选项不合题意;D .了解全市中小学生每天的零花线,不适合普查,故此选项符合题意.故选:D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C 【分析】直接利用同类项的定义得出a ,b 的值,进而得出答案.【详解】解:∵﹣2x 2﹣a y 与x 3y b ﹣1是同类项,∴2﹣a =3,b ﹣1=1,解得:a =﹣1,b =2,∴﹣a ﹣b =﹣(﹣1)﹣2=1﹣2=﹣1.故选:C .8.B 【详解】线段有:AB 、AC 、BC.故选:B.9.D 【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】A.若a=b ,∵210x +≠,∴2211a b x x =++正确,该选项不符合题意;B.若a=b ,则33a b =正确,该选项不符合题意;C.若a=b ,则ax bx =正确,该选项不符合题意;D.若a=b ,当0m ≠时,则a b m m=,错误,该选项符合题意.故选:D【点睛】本题考查了等式的性质.等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.10.C 【分析】根据角平分线定义即可求解.【详解】解:∵AM 为∠BAC 的平分线,∴12∠BAC=∠BAM ,∠BAM=∠CAM ,∠BAM=∠CAM ,2∠CAM=∠BAC .故选C.11.7.206×107【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:7206万=72060000=7.206×107.故答案为:7.206×107.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.【分析】两个度数相减,被减数可借1°转化为60′,借一分转化为60″,再计12.578'42''算.【详解】解:90°-32°51′18″=89°59′60″-32°51′18″=57°8′42″.故答案为:57°8′42″.【点睛】本题考查了度分秒的换算.解题的关键是掌握度数的减法运算的方法,注意分位上不够减时,要借位,且1°=60′.13.160元【分析】根据“售价=标价×折扣”计算即可.【详解】解:200×80%=160(元)故答案为:160元.【点睛】此题考查的是有理数乘法的应用,掌握实际问题中的等量关系是解决此题的关键.14.-2【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“x”是相对面,“3”与“y”是相对面,∵相对面上两个数相同,∴x=1,y=3,∴x-y=1-3=-2.故答案为:-2【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.4【分析】首先根据C是线段BD的中点,可得:CD=BC=3,然后用AD的长度减去BC、CD的长度,求出AB的长度是多少即可.【详解】解:∵C 是线段BD 的中点,BC=3,∴CD=BC=3;∵AB+BC+CD=AD ,AD=10,∴AB=10-3-3=4.故答案为:4.16.221n a n -(n 为正整数)【详解】解:已知式子可写成:21222324,,,211221231241a a a a ⨯⨯⨯⨯⋅⋅⋅⨯-⨯-⨯-⨯-,分母为奇数,可写成2n-1,分子中字母a 的指数为偶数2n .∴第n 个式子是221na n -(n 为正整数).故答案为:221na n -(n 为正整数).17.4【详解】因为AD=8,AB=10,所以DB=2,因为D 是BC 的中点,所以CD=DB=2,所以CB=2×2=4.故答案为:418.5【分析】设“●”“■”“▲”分别为x 、y 、z ,根据前两个天平列出等式,然后用y 表示出x 、z ,相加即可.【详解】解:设“●”“■”“▲”分别为x 、y 、z ,由图可知,2x=y+z ①,x+y=z ②,②两边都加上y 得,x+2y=y+z ③,由①③得,2x=x+2y ,∴x=2y ,代入②得,z=3y ,∵x+z=2y+3y=5y ,故答案为5.19.213.【分析】先计算有理数的乘方、化简绝对值、括号内的减法,再计算有理数的乘除法与加法即可得.【详解】解:原式213(3)3=-÷-⨯,2113=+⨯,213=+,213=.20.3x =-【详解】解:2151136x x +--=去分母得,()()221516x x +--=去括号得,42516x x +-+=移项合并同类项得,3x -=解得:3x =-21.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据射线的定义画图即可;(2)根据直线的定义画图即可;(3)连接DA ,并延长至E ,使得AE DA =即可.【详解】解:(1)画射线CD ,如图所示,射线CD 即为所求;(2)画直线AB ,如图所示,直线AB 即为所求;(3)连接DA ,并延长至E ,使得AE DA =,如图所示线段DA 和AE 即为所求.【点睛】此题考查的是画射线、直线和线段,掌握射线、直线和线段的定义是解决此题的关键.22.(1)﹣2x 2+6;(2)a =5.【分析】(1)原式去括号、合并同类项即可得;(2)设“□”是a ,将a 看做常数,去括号、合并同类项后根据结果为6知二次项系数为0,据此得出a 的值.【详解】解:(1)(3x 2﹣6x+8)+(6x ﹣5x 2﹣2)=3x 2﹣6x+8+6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“□”是a ,则原式=(ax 2﹣6x+8)+(6x ﹣5x 2﹣2)=ax 2﹣6x+8+6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案是6,∴a ﹣5=0,解得a =5.【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.23.(1)3 4.5x =是差解方程;(2)214m =.【分析】(1)先解方程:3 4.5x =,再利用差解方程的定义进行验证即可得到答案;(2)先解方程:51x m =+,再由差解方程的定义可得:1155m m ++-=,再解关于m 的一元一次方程即可得到答案.【详解】解:(1)∵3 4.5x =,∴ 1.5x =,∵4.53 1.5-=,∴3 4.5x =是差解方程;(2)由51x m =+,1,5m x +∴=∵关于x 的一元一次方程51x m =+是差解方程,∴1155m m ++-=,14,5m m +∴-=5201,m m ∴-=+421,m ∴=解得:214m =.【点睛】本题考查的是新定义情境下的一元一次方程的解法,掌握一元一次方程的解法是解题的关键.24.240千米.【分析】设A 、B 两地间的路程为x 千米,根据题意分别求出客车所用时间和卡车所用时间,根据两车时间差为2小时即可列出方程,求出x 的值.【详解】解:设AB 、两地间的路程为x 千米,.根据题意得24060x x -=解得 240x =答:AB 、两地间的路程是240千米.【点睛】题主要考查了一元一次方程的应用的知识,解答本题的关键是根据两车所用时间之差为2小时列出方程.25.(1)见解析(2)57.5°(3)40°【分析】(1)利用角平分线、对顶角的性质,可得结论;(2)根据∠AOC=50°,根据互补、角平分线的意义可求出答案;(3)设未知数,利用角平分线的意义,分别表示∠DOF ,∠EOB ,∠COB ,再根据平角的意义求出结果即可.(1)解:∵OE 平分∠COB ,∴∠COE=12∠COB ,∵∠AOD=∠COB ,∴∠AOD=2∠COE ;(2)解:∵∠AOC=50°,∴∠BOC=180°-50°=130°,∴∠EOC=12∠BOC=65°,∴∠DOE=180°-∠EOC=180°-65°=115°,∵OF 平分∠DOE ,∴∠EOF=12∠DOE=57.5°;(3)解:设∠AOC=∠BOD=α,则∠DOF=α+15°,∴∠EOF=∠DOF=α+15°,∴∠EOB=∠EOF+∠BOF=α+30°,∴∠COB=2∠EOB=2α+60°,而∠COB+∠BOD=180°,即,3α+60°=180°,解得,α=40°,即,∠AOC=40°.【点睛】本题考查了角平分线、互为补角的意义,掌握找出各个角之间的关系是正确解答的关键.26.(1)c a-(2)10a =-,5b =-,5c =,见解析(3)6秒或14秒【分析】(1)根据数轴可得c >b >a ,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)根据P ,Q 两点间的距离为6,列出方程计算即可求解.(1)解:∵c >b >a ,∴a-b<0,c-b>0,∴a b c b -+-=b-a+c-b=c-a ;(2)解:原点位置如图:∵BC=10,∴c-b=10,又∵b+c=0,∴c=5,b=-5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b-a=5,∴a=-10;(3)解:∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:-10+t,Q:5-0.5t,若P,Q两点间的距离为6,则有|-10+t-(5-0.5t)|=6,解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键,本题属于中档题,难度不大,但解题过程稍显繁琐,细心仔细是得分的关键.27.(1)∠DOE=20°;(2)图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD 和∠DOE.【分析】(1)利用平角的定义求得∠BOC,然后利用角平分线的性质求得∠COD,再利用余角的定义即可求得结论;(2)利用角平分线的性质及余角的定义和性质即可找到.【详解】(1)∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=12∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°.(2)∵∠COE=90°,∴∠AOC+∠BOE=90°,∠COD+∠DOE=90°,∵OD平分∠BOC,∴∠COD=∠BOD,∴∠BOD+∠DOE=90°,∴图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE;。
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.单项式﹣2ab 2的系数是()A .﹣2B .2C .3D .43.下列各组单项式是同类项的是()A .4x 和4yB .xy 2和4xyC .4xy 2和﹣x 2yD .﹣4xy 2和y 2x4.下列图形通过折叠能围成一个三棱柱的是()A .B .C .D .5.若∠α与∠β互余,且∠α:∠β=3:2,那么∠α的度数是()A .54°B .36°C .72°D .60°6.下列等式变形正确的是()A .由7x =5得x =75B .由10.2x=得2x=10C .由2﹣x =1得x =1﹣2D .由3x﹣2=1得x ﹣6=37.下列比较大小,正确的是()A .﹣|﹣5|>0B .(﹣2)2<(﹣2)3C .﹣34>﹣45D .﹣1﹣(﹣2)<08.如图,几何体的左视图是()A .B .C .D .9.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为()A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+10.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+1二、填空题11.某县2018年元旦的最高气温为5℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高_____℃.12.将数12000000科学记数法表示为_____.13.把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列为_____.14.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____.15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测小岛A 在它北偏东63°49′8″的方向上,观测小岛B 在南偏东38°35′42″的方向上,则∠AOB 的度数是_____.16.与原点的距离为3个单位的点所表示的有理数是_____.三、解答题17.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+318.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2+a﹣1),其中a=4.(2)已知m、n互为倒数,求:﹣2(mn﹣3m2)﹣m2+5(mn﹣m2)的值.20.解方程:(1)2121136x x+--=;(2)1(35)2(5)2x x x--=+.21.如图,点A、O、B在一直线上,已知∠AOC=50°,OD是∠COB的平分的角平分线,求∠AOD的度数.22.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.23.某地宽带上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.06元/分;第二种是包月制,72元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.01元/分.(1)若小明家一个月上网的时间为x小时,用含x的代数式分别表示出两种收费方式下,小明家一个月应该支付的费用;(2)若小明估计自家一个月内上网的时间为25小时,你认为他家采用哪种方式较为合算?(3)小明的姑姑也准备给家里安装宽带,请为她选择一种合算的方式(直接写出方案即可)参考答案1.D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.A【分析】直接利用单项式的系数确定方法得出答案.【详解】单项式﹣2ab2的系数是:-2.故答案选:A.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.3.D【解析】【分析】利用同类项的定义判定即可.【详解】解:A.4x和4y所含字母不同,不是同类项;B.xy2和4xy所含相同字母的指数不同,不是同类项;C.4xy2和﹣x2y所含相同字母的指数不同,不是同类项;D.﹣4xy2和y2x符合同类项的定义,故本选项正确.故选:D.【点睛】本题主要考查了同类项,解题的关键是熟记同类项的定义.4.C【解析】【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【详解】A、通过折叠能围成一个三棱锥,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.【点睛】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.5.A【解析】【分析】由∠α与∠β互余可得两角之和为90°,再由角度比例关系即可求解角度.【详解】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,解得x=18.∴∠α=3x°=54°,故选A.【点睛】本题考查了余角的概念.6.D【分析】分别利用等式的基本性质判断得出即可.性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式【详解】解:A、等式的两边同时除以7,得到:x=57,故本选项错误;B、原方程可变形为1012x,故本选项错误;C、在等式的两边同时减去2,得到:-x=1-2,故本选项错误;D、在等式的两边同时乘以3,得到:x-6=3,故本选项正确;故选D.【点睛】此题主要考查了等式的基本性质,熟练掌握性质是解题关键.7.C【分析】先把各数化简,再根据有理数的大小比较方法比较即可.【详解】A.∵﹣|﹣5|=-5,∴﹣|﹣5|<0,故不正确;B.∵(﹣2)2=4,(﹣2)3=-8,∴(﹣2)2>(﹣2)3,故不正确;C.∵3445-<-,∴﹣34>﹣45,故正确;D.∵﹣1﹣(﹣2)=1,∴﹣1﹣(﹣2)>0,故不正确;故选C.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.本题也考查了绝对值的意义、有理数的乘方、有理数的减法等知识点. 8.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.9.C【分析】她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.【详解】她家到游乐场的路程为xkm,根据题意得:x8x5 1060860+=-,故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.10.D【解析】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .点睛:本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.11.7【分析】用最高气温减去最低气温列式计算即可.【详解】由题意得5-(-2)=7℃.故答案为7.【点睛】本题考查了有理数减法的实际应用,根据题意正确列出算式是解答本题的关键.12.1.2×107【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数12000000科学记数法表示为1.2×107,故答案是:1.2×107,【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.13.﹣x 3+5x 2+4x ﹣3【分析】一个多项式按照某个字母的降幂排列,即按照这个字母的指数从高到底排列即可.【详解】根据题意,得把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列是﹣x 3+5x 2+4x ﹣3故答案为﹣x 3+5x 2+4x ﹣3.【点睛】本题考查多项式.14.23【详解】∵x +5=7-2(x -2)∴x=2.把x=2代入6x +3k =14得,12+3k =14,∴k=23.15.77°35′10〃【分析】根据已知条件结合补角的定义可直接确定∠AOB 的度数.【详解】∵OA 是表示北偏东6349'8︒''方向的一条射线,OB 是表示南偏东383542'︒''方向的一条射线,∴∠AOB=180°-6349'8︒''-383542'︒''=77°35′10〃,故答案是:77°35′10〃.【点睛】本题考查了余角和补角、方向角及其计算,基础性较强16.±3【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是x ,则x =3,±.解得:x=3故本题答案为:3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.17.(1)10;(2)﹣1;(3)0;(4)2.【解析】【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.18.(1)①如图所示,射线AC即为所求,见解析;②如图所示,线段AB,BC,BD即为所求,见解析;③如图所示,线段CF即为所求,见解析;(2)根据两点之间,线段最短.【解析】【分析】(1)①连接AC并延长即可;②连接AB,BC,BD即可;③以点A为圆心,BD长为半径画弧交AC于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.19.(1)2a2﹣4a+1,17;(2)3mn,3.【分析】(1)先去括号合并同类项,再把a=4代入计算即可;(2)由m、n互为倒数,可知mn=1,然后把所给代数式去括号合并同类项后代入计算即可.【详解】解:(1)原式=4a2﹣3a﹣2a2﹣a+1=2a2﹣4a+1,当a=4时,原式=32﹣16+1=17;(2)根据题意得:mn=1,则原式=﹣2mn+6m2﹣m2+5mn﹣5m2=3mn=3.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变. 20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=3 2;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.∠AOD=115°.【分析】根据补角的定义可求出∠COB的度数,利用角平分线的定义求出∠COD=65°,进而利用角的加法可求出∠AOD的度数.【详解】解:∵∠AOC=50°,∴∠COB=180°﹣50°=130°,∵OD是∠COB的角平分线,∴∠COD=65°,∴∠AOD=50°+65°=115°.【点睛】本题考查了补角的定义,角平分线的定义及角的和差从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线..22.(1)6(2)12cm(3)16cm或20cm【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20cm.综上所述:BE的长为16cm或20cm.【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段. 23.(1)计时制:4.2x元;包月制:(72+0.6x)元;(2)小明家采用包月制合算;(3)见解析.【解析】【分析】(1)记时制费用=上网时间费用+上网通讯费,包月制费用=包月费用+上网通讯费,把相关数值代入即可求解;(2)把x=25代入(1)得到的式子,计算结果比较即可;(3)设小明的姑姑家一个月内上网m小时,让两种费用相等,列出方程求出费用相等的时间,然后根据题意回答即可.【详解】解:(1)采用计时制应付的费用为:0.06x×60+0.01x×60=4.2x元;采用包月制应付的费用为:72+0.01x×60=(72+0.6x)元.(2)当x=25时,4.2x=4.2×25=105,72+0.6x=72+0.6×25=87.∵105>87,∴小明家采用包月制合算.(3)设小明的姑姑家一个月内上网m小时,两种方式收费相同,根据题意得:4.2m=72+0.6m,解得:m=20.由(2)可知,上网时间为25小时,即多于20小时时,选择包月制较合算.综上所述:一个月内上网时间少于20小时时,选择计时制较合算;一个月内上网时间等于20小时时,两种方式一样合算;一个月内上网时间多于20小时时,选择包月制较合算.【点睛】本题考查列代数式及一元一次方程的应用,得到两种付费方式的代数式是解决本题的关键.。
人教版七年级上学期数学《期末考试卷》及答案

期末测 试 卷
学校________班级________姓名________成绩________
满分100分时间90分钟
一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个备选答案中,只有一个是正确的,请你将正确答案涂在答题纸上指定位置,答到试卷上不得分.)
[答案]
[解析]
8.如图,把矩形 沿 对折后使两部分重合,若 则 ()
A. B. C. D.
[答案]B
[解析]
[分析]
根据翻折的性质可得∠2=∠3,再由平角的定义求出∠3.
[详解]解:如图
∵矩形 沿 对折后两部分重合, ,
∴∠3=∠2= =65°,.
故选:B.
[点睛]本题考查了矩形中翻折的性质,平角的定义,掌握翻折的性质是解题的关键.
[详解]解:由一元一次方程的特点得a−2=0,
解得:a=2;
故原方程可化为2x+1=0,
解得:x= .
故答案为: .
[点睛]本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件,高于一次的项系数是0.
18.已知如图,直线 、 相交于点 , 平分 ,若 ,则 的度数是______.
[详解]解:由题意可知A、B两点表示的数互为相反数,
设A表示的数为a,则B表示的数为-a,
则 .
解得 ,
所以 、 对应的数分别是3,-3或-3,3.
故答案为:3,-3或-3,3.
[点睛]本题考查数轴上两点之间的距离,绝对值方程.能通过A、B两点关于原点对称得出A、B两点表示的数互为相反数是解题关键.
1.下列四个数中,其相反数是正整数的是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 5 页
七年级上学期数学期末试题
A卷(100分)
一、选择题(共15个小题,每小题2分,共30分)
1.如果向东走80m记为80m,那么向西走60m记为 ( )
A.60m B.|60|m C.(60)m D.60m
2.某市2010年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温
高 ( )
A.-10℃ B.-6℃ C.6℃ D.10℃
3.-6的绝对值等于 ( )
A.6 B.16 C.16 D.-6
4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元
用科学记数法表示为 ( )
A.40.8510亿元 B.38.510亿元 C.48.510亿元 D.28510亿元
5.当2x时,代数式1x的值是 ( )
A.1 B.3 C.1 D.3
6.下列计算正确的是 ( )
A.33abab B.32aa
C.225235aaa D.2222ababab
7.将线段AB延长至C,再将线段AB反向延长至D,则图中共有线段 ( )
A.8条 B.7条 C.6条 D.5条
8.下列语句正确的是 ( )
A.在所有联结两点的线中,直线最短
B.线段A是点A与点B的距离
C.三条直线两两相交,必定有三个交点
D.在同一平面内,两条不重合的直线,不平行必相交
9.已知线段AB和点P,如果PAPBAB,那么 ( )
A.点P为AB中点 B.点P在线段AB上
C.点P在线段ABAB外 D.点P在线段AB的延长线上
第 2 页 共 5 页
10.笔记本每本m元,圆珠笔每支n元,买x本笔记本和y支圆珠笔,共需( )
A.(mx+ny)元 B.(m-n)(x-y)元
C.(nx+my)元 D.mn(x+y)元
11.若xy,则下列式子错误的是( )
A.33xy B.33xy
C.32xy D.33xy
12.三个数-34,-56,-78的大小顺序是( )
A. -78<-56<-34 B. -78<-34<-56
C. -56<-<78-34 D.-34<-56<-78
13.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55° 则∠AOC= ( )
A.35° B.55° C.70° D.110°
14.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0
分.一支球队共比赛了15场比赛,共得22分,若其中只负5场,那么
这支球队胜( )场。
A.4 B.5 C.6 D.7
15.下列去括号正确的是( )
A.-3a-(2b-c)=-3a+2b-c B.-3a-(2b-c)=-3a-2b-c
C.-3a-(2b-c)=-3a+2b+c D.-3a-(2b-c)=-3a-2b+c
二、填空题(共10个小题,每小题2分,共20分)
16.比较大小:6_________8(填“<”、“=”或“>”)
17.计算:|3|2_________
18.如果a与5互为相反数,那么a=_________
19.甲数x的23与乙数y的14差可以表示为_________
20.单项式-xmy2的次数是5,则m= .
21.已知关于x的方程(k-2)x|k|-1+5=3k是一元一次方程,则k= .
22.如图,将一副三角板叠放在一起,使直角顶点重合于0点,则∠AOC+∠DOB=____ 度.
23.如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=140°,则
第 3 页 共 5 页
∠EOD=___________度.
24.已知2|312|102nm,则2mn___________.
25.观察下面的一列单项式:2342,4,8,16xxxx,…根据你发现的规律,第7个单项式
为___________;第12个单项式为___________.
三、计算或化简(共4个小题,每小题4分,共16分)
26.计算:42)3(18)2(2
27.计算:32)2(311323211
28.计算:18°20′32″+30°15′22″
29.化简:22(521)4(382)aaaa
四、解方程(共2个小题,每小题5分。共10分)
30.解方程:163.56.57xxx
31.解方程:132x--353x-=1
第 4 页 共 5 页
五、列方程解应用题(共2个小题,每小题5分,共10分)
32.某学校组织爱心捐款支援灾区活动,七年级某班55名同学共捐款1180元,捐款情况见
下表,表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你求出表中捐
款10元和20元的人数.
33.某车间每天能 制作甲种零件500只,或者制作乙种零件250只,甲、乙两种零件各一
只配成一套产品,现要在30天内制作做多的成套产品,则甲、乙两种零件各应制作多少天?
六、解答题(本题共3个小题,共14分)
34.(4分)一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
1张桌子可以坐______人,2张桌子拼在一起可坐______人,3张桌子拼在一起可坐____人,
n张桌子拼在一起可坐______人。
35.(5分)如图,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在
该位置的小立方体的个数,请你画出它的主视图与左视图;
36.(5分)已知:线段AB=5cm,延长AB到c,使AC=7cm,在AB的反向延长线上取点D,
使BD=4BC,设线段CD的中点为E,问线段AE是线段CD的几分之一?
1
2 4 1 3
第 5 页 共 5 页
B卷(50分)
一.填空题(每空3分,共33分)
(1)把下列各数填入下面指定数的集合{ }内。
-1,-2, 0, 3.4,︱-13︳,-(-4),-34
自然数集合:{ …}
整数集合:{ …}
分数集合:{ …}
负数集合:{ …}
(2)立方等于本身的数是____,倒数等于本身的数是____。
(3)132172000用科学记数法应记为_________,精确到百万为记为_________,
保留两个有效数字应记为_________。
(4)有理数中最大的负整数是____,绝对值最小的数是____。
二.求代数式的值(每题4分,共8分)
(1)当x=-3时,求代数式2x2-5x+x2+4x的值
(2)当|x-2|+(y-3)2=0时,请你对代数式-(-3xy2-xy+3)-(-xy2-12xy+1)先化简,再求值.
三.列方程解应用题。(9分)
公园门票价格规定如下表,某校七年级(1)、(2)两个班共104人去游园,其中(1)班
人数有40多人,不足50人.经估算,如果两班都以班为单位分别购票,则一共应付
1240元. 问:
(1)两班各有多少名学生?
(2)如果两班联合起来,作为一个团体购票,则可以节省多少钱?
(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?
购票张数 1 ~50张 51 ~ 100张 100张以上
每张票的价格 13元 11元 9元
第 6 页 共 5 页