钢筋混凝土水池结构计算分析

钢筋混凝土水池结构计算分析

矩形水池结构计算书

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规及参考书目: 《水工混凝土结构设计规》(SL 191-2008),以下简称《砼规》 《建筑地基基础设计规》(GB 50007-2002),以下简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型: 无顶盖,半地下水池 水池长度L =11940 mm,宽度B =5990 mm,高度H =4180 mm 地面标高=0.000 m,池底标高=-4.180 m 池壁厚度t3=400 mm,池壁贴角c1=0 mm 底板中间厚度t2=400 mm,底板两侧厚度t4=400 mm 底板贴角长度c2=0 mm,底板外挑长度a =400 mm 池壁顶端约束形式: 自由 底板约束形式: 固定 3.地基土、地下水和池水信息: 地基土天然容重γ=18.00 kN/m3,天然容重γm=20.00 kN/m3 地基土摩擦角φ=30.00 度,地下水位标高=-2.000 m 池水深H W=0.00 mm,池水重度γs=10.00 kN/m3 地基承载力特征值f ak=120.00 kPa 宽度修正系数ηb=0.00,埋深修正系数ηd=1.00 修正后地基承载力特征值f a=170.89 kPa 浮托力折减系数=1.00,抗浮安全系数K f=1.05

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

水泵设计计算分析

平顶山工学院市政工程系0214081-2班 《水泵及水泵站》课程设计任务书 一、课程设计的目的 1、通过课程设计,使学生所获得的专业理论知识加以系统化,整体化,以 便于巩固和扩大所学的专业知识; 2、培养学生独立分析,解决实际问题的能力; 3、提高设计计算技巧和编写说明书及绘图能力; 4、为适应工作需要打一下的基础。考虑美观以及便于施工等要求,根据可 能和合理方案进行技术经济比较选定工程枢纽的布局,建筑物的结构型式,材 料和施工方法等。 二、设计题目:海口城市净水厂送水泵站 三、设计原始资料 1、任务书 某城市所需用水量22.8×104 m3/d,用水最不利点地面标高66.60 m、服务水头24m,泵站处的地面标高65.3 m、水池最高水位64.60m、水池最低水位标 61.60m,经计算管网水头损失19.93m。试进行泵站工艺设计。 2、地区气象资料: 最低气温:-5~15℃,最高气温:35~41℃,最大冰冻深度15㎝。 3、泵站地址1∕100~1∕500地形图(暂缺) 4、站址处要求抗震设计烈度为7°。 5、电源资料:采用双回路供电,电压等级为:220V、380 V、10KV。 四、课程设计内容 城镇给水厂送水泵站扩初设计。 五、设计成果: 1. 说明书:概述:包括设计依据、机组选择、台数、泵站形式和建筑面积、 启动方式等。 2.计算书:按教材中所要求步骤计算,写明计算过程并附必要草图。 图纸:泵站平、剖面图各一张(比例1∕50~1∕200)。 六、设计依据

1、《水泵与水泵站》教材 2、《给排水设计手册》第一、十、十一册 3、《快速给排水设计手册》第四、第五册 七、设计时间安排 给水排水工程泵站课程设计时间18周一周(2010年12月27日—31日),要求学生集中时间完成全部内容,时间安排如下: 1、基础资料收集0.5d 2、泵站规模计算及运行方式确定1d 3、水泵选型及泵房布置0.5d 4、泵房平面图、剖面图绘制2d 5、整理设计计算书和说明书1d 八、设计纪律要求 1、设计中要自主完成,杜绝抄袭现象。 2、正常上课期间所有设计学生必须到教室进行设计,上午8:00 ~ 12:00,下午2:00 ~ 3:45,不得迟到和早退。 3、设计期间指导教师实行不定期点名制度,两次无故不到者设计成绩降级。四次无故不到者设计成绩为不及格。 4、由于设计时间较紧,希望同学们克服困难,按时、认真完成本次设 计任务。 九、成绩评定 学生的课程设计成绩由指导老师根据学生在设计期间的设计图纸、设计计算说明书、答辩、出勤等情况综合评定。成绩分:优、良、中、及格、不及格五个等级。 其中,设计图纸占50%,设计说明书占30%,答辩占10%,出勤占10%。成绩评定标准如下: 优:能认真完成设计指导书中的要求,设计过程中,严格要求自己,独立完成设计任务,图纸整洁、绘制标注规范,设计方案合理,思路清晰,设计说明书内容充实工整,应用理论正确,有创新性。答辩正确,设计期间出满勤。 良:能较好的完成设计指导书中的要求,能独立完成设计任务,设计思路

矩形水池力学计算

水池结构计算 2009-08-17 23:19 水池一般由底板和壁板组成,有些水池设有顶板。当平面尺寸较大时,为了减少顶板的跨度,可在水池中设中间支柱 设计要求在水压及其他荷载的作用下,池体的各部分应有足够的强度、刚度和耐久性;贮存水的渗透量应在允许的范围内;水池的材料应能防腐和抗冻,对水质无影响。 结构计算水池所受的荷载除自重外,还有水压力、土压力和下述各种荷载。在地震区,地震时可能引起自重惯性力、动水压力及动土压力;在寒冷地区,如无防寒措施,有可能产生冰压力。此外,水池内外的温湿度差及季节温湿度差,也在水池中产生温湿度应力。 由正方形板和矩形板组成的钢和钢筋混凝土矩形水池可用有限元法进行较为精确的分析,或采用近似方法计算。矩形水池高宽比大于2的称为深池;小于0.5的称为浅池;介于0.5~2.0之间的称为一般池。深池壁板在高度的中间部分受顶板和底板的影响很小,可按水平框架进行计算;在靠近顶板和底板的某一高度范围内(通常取等于宽度的一半),壁板受顶、底板的影响较大,应按三边支承一边自由的双向板计算;在平面尺寸较小时,深池的底板和顶板可按四边嵌固的板计算。浅池的壁板高度小、宽度大,中间部分受相邻壁板的影响很小,可作为竖直的单向板计算;壁板两侧边部分因受相邻壁板的影响,应按双向板计算。一般池的底板、壁板和顶板都是双向板,当每块板的四边都有支承时,整个水池可看作连续的双向板,各板的边缘弯矩可用双向板的弯矩分配法求得;然后用叠加法求各板的跨中弯矩。在目前所采用的双向板弯矩分配法中,假定矩形板的边缘弯矩是按正弦曲线分布的,这一假定对均布荷载情况比较合理;但对非均布荷载(如作用于壁板上的水压力是三角形的荷载),则有一定的误差。此外,弯矩传递系数还没有反映与板接触的地基的影响。 无论是圆形水池或是矩形水池,作用在底板上的地基反力应按弹性地基理论计算。但当水池的平面尺寸较小时,地基反力可以假定按直线规律变化。 对钢、钢筋混凝土和砖石水池,都应进行强度计算。对池壁较薄的钢水池和钢筋混凝土水池还应验算刚度。当钢筋混凝土水池的构件为轴心受拉或小偏心受拉时,应进行抗裂度的验算;当构件为受弯、大偏心受拉或大偏心受压时,应进行裂缝开展验算,裂缝的宽度应不大于容许值。除了各种外荷载可能导致裂缝外,由于水泥的水化热以及温湿度的变化,水池的各部分将发生收缩,当收缩受到基底的约束时,就在构件中引起拉应力而可能出现裂缝。为了防止裂缝的出现或减小裂缝的宽度,可采取下列措施:①每隔一定距离设置伸缩缝;②在底板与垫层间设置滑动层,以减少垫层对底板的摩擦力;③采用小直径的变形钢筋;④在施工中采取措施,以减少混凝土中的温湿度变化。 对半地下式及地下式的水池,当底板处于地下水位之下时,应验算水池的抗浮稳定性。

圆管涵结构计算书

圆管涵结构计算书 项目名称________________ 日期______________________ 设计者_________________ 校对者____________________ 一、基本设计资料 1.依据规范及参考书目: 公路桥涵设计通用规范》 (JTG D60-2004 ),简称《桥规》 公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004 ) 公路桥涵地基与基础设计规范》 (JTG D63-2007 ) 公路砖石及混凝土桥涵设计规范》 (JTJ 022-85) 《公路小桥涵设计示例》2.计算参数: 圆管涵内径D = 1000 mm 填 土深度H = 1200 mm 混凝土 强度级别:C15 修正后地基 土容许承载力管节长度L = 1000 mm 钢筋强度等级: R235 刘培文、周卫编著) 圆管涵壁厚t = 100 mm 填土容重丫i = 18.00 kN/m3 汽车荷载等级:公路-n级 [fa] = 150.0 kPa 填土内摩擦角0 = 35.0度 钢筋保护层厚度as = 25 mm 受力钢筋布置方案:0 10@100 mm 1 .恒载计算填 土垂直压力: q 土= 丫用=18.0 1200/1000 = 21.60 kN/m 2 管节垂直压力: q 自=24 末=24 1200/1000 = 2.50 kN/m 2 故: q 恒=q 土+ q 自=21.60 + 2.50 = 24.10 kN/m 2 2.活载计算按《公路桥涵设计通用规范》第4.3.1 条和第4.3.2条规定,计算采用车辆荷载;当填土厚度大于或等于0.5m 时,涵洞不考虑冲击力。按《公路桥涵设计通用规范》第4.3.5 条规定计算荷载分布 宽度。 一个后轮单边荷载的横向分布宽度=0.6/2+1200/1000 x tan30° =0.99 m 由于一个后轮单边荷载的横向分布宽度=0.99 m > 1.8/2 m 故各轮垂直荷载分布宽度互相重叠,荷 载横向分布宽度a应按两辆车后轮外边至外 边计算: a=(0.6/2+1200/1000x tan30°)x 2+1.3+1.8x2=6.89 m 一个车轮的纵向分布宽度 =0.2/2+1200/1000x tan30° =0.79 m 由于一个车轮单边的纵向分布宽度=0.79 m > 1.4/2 m 故纵 向后轮垂直荷载分布长度互相重叠,荷载纵向分布宽度b 应按二轮外边至外边 计算: b=(0.2/2+1200/1000x tan30°)x 2+1.4=2.99 m q 汽=2 x( 2 x 140) / (a x b) =560/ (6.89X 2.99) = 27.24 kN/m 2 3.管壁弯矩计算 忽略管壁环向压力及径向剪力,仅考虑管壁上的弯矩。管壁中线半径R = ( D/2 + t/2 ) = ( 1000/2 + 100/2 ) /1000 = 0.55 m 荷载计算

蓄水池的结构

蓄水池的结构 蓄水池是用人工材料修建、具有防渗作用的蓄水设施。根据其地形和土质条件可以修建在地上或地下,即分为开敝式和封闭式两大类,按形状特点又可分为圆形和矩形两种,因建筑材料不同可分为:砖池、浆砌石池、混凝土池等。蓄水池布置原则和水窖基本相同。 (一)蓄水池结构设计要求 蓄水池结构设计除应符合前述蓄水工程设计要求外,尚应考虑下列要求: 1.:不考虑,只考虑蓄水池自重、水压力和。对开敞式蓄水池,荷载组合为池内满水,池外无土;对封闭式水池,荷载组合为池内无水,池外有土。计算时,砌体及混凝土的容重取为2.4t/m。地下式水池,池壁外面要求夯实,计算土压力时填土容重取为 1.8t/m,取为30°。 2.应按地质条件推求容许,如地基的实际承载力达不到设计要求或地基会产生不均匀沉陷,则必须先采取有效的地基处理措施才可修建蓄水池。蓄水池底板的基础要求有足够的承载力、平整密实,否则须采用碎石(或)铺平并夯实。

3.蓄水池应尽量采用标准设计,或按五级建筑物根据有关规范进行设计。水池池底及边墙可采用、或。最冷月平均温度高于5℃的地区也可采用砖砌,但应采用抹面。池底采用浆砌石时,应座浆砌筑,水池砂浆标号不低于M10,厚度不小于25cm。采用混凝土时,标号不宜低于C15,厚度不小于10cm。土基应进行翻夯处理,深度不小于40cm。池墙尺寸应按标准设计或按规范要求计算确定。 4.蓄水池的基础是非常重要的,尤其是地区,如有轻微渗漏,危及工程安全。因而在湿陷性黄土上修建的蓄水池应优先考虑采用整体式钢筋混凝土或素混凝土蓄水池。地基土为弱湿陷性黄土时,池底应进行翻夯处理,翻夯深度不小于50cm;如基土为中、强湿陷性黄土时,应加大翻夯深度,采取浸水预沉等措施处理。 5.蓄水池内宜设置,池底应设排污管,封闭式水池应设清淤检修孔,开敞式水池应设护栏,护栏应有足够强度,高度不低于1.1m。 (二)蓄水池结构特点 1.开敞式圆形蓄水池 开敞式蓄水池池体由池底和池墙两部分组成。它多是季节性蓄水池,不具备防冻、防蒸发功效。圆形池

涵洞孔径计算

涵洞计算 1、涵洞的布设 本路段小桥涵设置时主要考虑了:上游洞口应考虑流向,下游洞口以不危及农田村镇为原则,同时考虑到圆管涵利于施工,又经济简便,所以大部分形式均采用无压力式圆管涵形式。本设计所取标准跨径为1.0m 。本设计中涵洞的位置以及孔径见表1所示: 表1 涵洞一览表 序号 涵洞位置 结构类型 交角(°) 孔数及孔径 洞口型式 1 K16+708 钢筋混凝土圆管涵 90 1-Φ1.5 一字 2 K17+200 钢筋混凝土圆管涵 90 1-Φ1.5 一字 管涵的标准跨径通常取50、75、100、125、150(cm )。下面以排水总体规划图中K16+708处的涵洞计算为例。 采用的方法为径流形成法,此法是以暴雨资料为主推算小流域洪水流量的一种方法,是公路部门目前普遍使用的一种计算方法,该公式只适用于汇水面积F ≤30 km 2的小流域。 汇水面积:0.0312km ,主河沟平均比降:12.4%,流域土壤吸水类属:Ⅲ,年平均降雨量:793mm ,设计洪水频率1/50,汇流时间:30min ,径流系数:0.95,粗糙度系数n=0.014。 我国公路系统最常采用的是公路科学研究所提出的简化公式,其中未 考虑洪峰削减的公式为:由涵洞设计手册得洪峰流量计算:。 ()βγδ?5 42 30m z -h F Q = 式中 Q P ——规定频率为P 时的雨洪设计流量(m 3/s ) F ——汇水面积(km 2) h ——暴雨径流厚度(mm ) Z ——被植物或坑挖滞流的径流厚度 φ——地貌系数,根据地型、汇水面积F 、主河沟平均坡

度I z 决定 β——洪峰传播的流量折减系数,由汇水面积重心至桥涵 的距离(L 0=0.3Km<1Km )及汇水区的类型(丘陵汇 水区)综合查表3.2-10得 γ——汇水区降雨不均匀的折减系数 δ——考虑湖泊或小水库调节作用对洪峰流量影响的折 减系数 根据已知条件查《公路桥涵设计手册·涵洞》表4-8、表4-11、表4-12、表4-13、表4-14、表4-15,分别得地貌系数0?取0.09,常用迳流厚度h 取53mm ,植物坑洼滞留的迳流厚度z 取10mm ,洪峰传播的流量折减系数β取1、降水不均匀折减系数γ取1.0、小水库(湖泊)调节折减系数δ取1。 ()βγδ?5 42 30m z -h F Q = =0.09×(53-10)23×0.0315 4×1×1×1 =1.58s /m 3 1、确定涵洞孔径d 查《公路排水设计手册》(人民交通出版社 姚祖康编著)公式 (3.3-18)得管径与流量关系式52 5352gk Q d k d b A gd Q k k ===或,式中系数 k=k 13/k 2,为充满度h/d 的函数。 初选临界水深h k 时的充满度为8 .0=d h k 。表3.3-3得k=0.382。 则管径d 为: 5 2 382 .081.958.1?= d =0.92m 取管径为1.0m 。

清水池计算

清水池 经过处理后的水进入清水池,清水池可以调节用水量的变化,并储存消防用水。此外,在清水池内有利于消毒剂与水充分接触反应,提高消毒效果。 (1)清水池的有效容积: 根据《室外给水设计规范》(GB 50013-2006)可知,清水池的有效容积应根据产水曲线、送水曲线、自用水量及消防储备水量等确定,并满足消毒接触时间的要求。当管网无调节构筑物时,在缺乏资料情况下,可按水厂最高日设计水量的10%~20%确定。 1234W W W W W =+++ 式中,W ――清水池的有效容积 W 1――清水池的调节容积,本设计中调节系数取10%; W 2――清水池的消防贮水量; W 3――水厂的自用水量,本设计中取设计水量的5%; W 4――清水池的安全储量,按设计水量的0.5%计。 ①3441101.110%1011m W ?=??= ②本设计中,总设计流量为11万m 3/d ,查《城市给水工程规划规范》(GB50282-98),得小城市单位人口综合用水量指标为0.4~0.8万m 3/(万人·d),取0.5万m 3/(万人·d),计划该城市服务人口为22万,查规范可知其同一时间内的火灾次数为2,一次灭火用水量为55L/s 。则: 327921000 36005522m W =???= ③343550010%511m W =??= ④取34200m W = 则3432117492200550079211000m W W W W W =+++=+++= (2)清水池尺寸确定 滤后水经过消毒后进入清水池。两组滤池的滤后水分别进入2个清水池。则每个清水池的有效容积为8746m 3。取清水池有效水深为 5.0m ,则其面积为1749.2m 2,平面尺寸为B ×L=40m×44.1m 。清水池采用地下式钢筋混凝土立方体水池,水池顶部高出地面0.5m ,则清水池顶部高程为6.0m 。清水池超高0.5m ,则清水池最高液面高程为5.5m 。清水池总高度H=0.5+5.0=5.5m 。则清水池几何尺寸为25m ×35.4m ×5.5m 。 (3)管道系统设计计算 1)清水池的进水管

矩形水池结构计算方案

矩形水池结构计算方案 The latest revision on November 22, 2020

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规范及参考书目: 《水工混凝土结构设计规范》(SL191-2008),以下简称《砼规》 《建筑地基基础设计规范》(GB50007-2002),以下简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型:无顶盖,半地下水池 水池长度L=11940mm,宽度B=5990mm,高度H=4180mm 地面标高=0.000m,池底标高=-4.180m 池壁厚度t 3=400mm,池壁贴角c 1 =0mm 底板中间厚度t 2=400mm,底板两侧厚度t 4 =400mm 底板贴角长度c 2 =0mm,底板外挑长度a=400mm 池壁顶端约束形式:自由 底板约束形式:固定 3.地基土、地下水和池内水信息: 地基土天然容重γ=18.00kN/m3,天然容重γ m =20.00kN/m3地基土内摩擦角φ=30.00度,地下水位标高=-2.000m 池内水深H W =0.00mm,池内水重度γ s =10.00kN/m3 地基承载力特征值f ak =120.00kPa 宽度修正系数η b =0.00,埋深修正系数η d =1.00 修正后地基承载力特征值f a =170.89kPa 浮托力折减系数=1.00,抗浮安全系数K f =1.05 4.荷载信息: 地面活荷载q=10.00kN/m2,活荷载组合值系数=0.90 恒荷载分项系数:池身的自重γ G1=1.20,其它γ G =1.27 活荷载分项系数:地下水压力γ Q1=1.27,其它γ Q =1.27 地面活荷载准永久值系数ψ q =0.40 温(湿)度变化作用的准永久值系数ψ t =1.00 池内外温差或湿度当量温差△t=10.0度 温差作用弯矩折减系数η s =0.65 混凝土线膨胀系数αc=1.00×10-5/℃ 5.材料信息: 混凝土强度等级:C25 轴心抗压强度标准值f=16.70N/mm2;轴心抗拉强度标准值f=1.78N/mm2

混凝土圆管涵计算书

钢筋混凝土圆管涵(φ100cm)计算 一. 设计资料 设计荷载:公路Ⅰ级 填土高度:H=1.5m:土容重:γ1=18KN/m3;土的内摩擦角φ=35°,管节内径D内=1.0m,外径D外=1.2m,管壁厚度为0.1m,每节1m长,采用30号混凝土,γ2=25KN/m3,混凝土强度为C15,管节下设10号混凝土0.2m。二.外力计算 1.恒载计算 填土垂直压力q上=Hγ1=1.5×18=27KN/m2 管节自重垂直压力q管=γ2t=25×0.1=2.5 KN/m2 2.活载计算 采用车辆荷载,公路Ⅰ级荷载标准,填料厚 度等于或者大于0.5m不计汽车冲击力。 一个后轮单边荷载横向分布宽度=0.6/2+1.5×tan30°=1.166m

故后轮垂直荷载横向分布宽度互相重叠,荷载横向分布宽度a 应两辆车后轮外边至外边计算。即 a=(0.6/2+1.5×tan30°)×2+(1.3+2×1.8)=7.23m 同理, 纵向后轮垂直荷载长度分布互相重叠,荷载纵向分布宽度b 应按照两辆车轮(后轴)外边至外边计算,即 b=(0.2/2+1.5×tan30°)×2+1.4=3.33m q 汽=33 .323.7140)(22???=23.26KN/m 2 三.弯矩计算和内力组合

忽略管壁环向压力及径向剪力N和V,仅考虑管壁上的弯矩见上图。 1.恒载弯矩 填土产生的弯矩为 M1=M2=0.137q上R2(1-λ) =0.137×27×(1+1.2)/2×(1-λ)(其中λ=tan2(45°-φ/2)=0.271) =0.137×27×1.1×(1-0.271) =2.97KN·m 管壁自重产生的弯矩为 M管=0.369γtR2 =0.369×25×0.1×1.12 =1.12KN·m 2.活载弯矩 车辆荷载产生的弯矩为 M汽=0.137q汽R2(1-λ) =0.137×23.26×1.12×0.729

清水池设计

试析清水池设计问题 【摘要】本文从结构专业的角度谈谈对清水池设计中所涉及的地下水位的确定、伸缩缝的设置、后浇带的作法等问题。 【关键词】清水池;地下水位;伸缩缝;后浇带 随着我国综合国力的增强,城市的不断发展扩大,人们生活、工业生产和环境保护的需要,清水池类构筑物工程的建设逐年增多。下面从结构专业的角度对清水池设计所涉及的一些问题,谈谈本人的看法。 1 设计地下水位的合理确定 清水池的设计与地下水位的标高密切相关。由于地下水位未掌握好而引起结构选型错误及抗浮不够等工程事故时有发生。根据现行国家设计规范,地下水位应根据地方水文资料,考虑可能出现的最高地下水位。一般设计均取用水文资料的最高地下水位。在50年设计基准期内,一般水工构筑物地下水可变荷载作用的取值按“工程结构可靠度设计统一标准”原则确定,不考虑罕遇洪水的偶然荷载作用。值得注意的是,有些工程地质勘察报告所提供的地下水位未能从地方水文资料分析得出,而仅仅反映勘测期间的地下水分布情况。如果详勘是在当地枯水期进行,所提供的地下水位标高一旦被设计人员取用,将会导致结构计算出现较大的误差。所以设计人员应对未满足设计要求的地质勘察报告,要求予以补充。并应考虑当地有无暴雨、台风的影响,是否会出现由于地表水不能及时排除

而引起地下水位提高。结构设计人员应结合对地下水位和地质情况的了解,与工艺设计人员共同研究确定清水池的基底标高。综合考虑工艺流程的要求、土建造价、运营成本、投产年限等诸多因素,制定出切实可行的设计方案。例如当地下水位较高或地质剖面有流沙层时,设计人员应考虑是否可适当抬高基底标高,减少水浮力对结构的影响及避开流沙层等。 2 伸缩缝和后浇带的设置 2.1 伸缩缝的设置 根据设计规范,混凝土构筑物伸缩缝的最大间距一般为20~30m。近年来,一方面工艺所要求的清水池长度已远远超过了规范间距;另一方面随着建筑材料、施工方法的改进,又为超长清水池不设缝、少设缝提供了可能。设计人员在具体设计时应根据地基、气温等实际情况,经计算确定是否设缝并提供相应的施工措施方案。 在清水池设计中,通常对结构构件强度、裂缝宽度、结构整体抗浮等进行计算,一般均能按规范要求考虑得较好,但是由于温度、变形以及不均匀沉降所引起的开裂,在工程中却常常遇到。大多数出现裂缝的工程实例表明,设计对温度、混凝土收缩变形等影响因素的考虑欠缺是问题的主要原因。 笔者认为以下两点需重视: 2.1.1 清水池类构筑物并非必须保证不开裂,对设计人员来讲重要的是做好裂缝的控制。一方面设计人员要事先对可能的不利因素

矩形水池设计与池壁计算

矩形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2002), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002), 本文简称《水池结构规程》 ----------------------------------------------------------------------- 1 基本资料 1.1 几何信息 水池类型: 无顶盖半地上 长度L=3.500m, 宽度B=3.500m, 高度H=3.900m, 底板底标高=-3.400m 池底厚h3=400mm, 池壁厚t1=250mm,底板外挑长度t2=400mm 注:地面标高为±0.000。

(平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土内摩擦角30度 地基承载力特征值fak=120.0kPa, 宽度修正系数ηb=0.00, 埋深修正系数ηd=1.00 地下水位标高-3.100m,池内水深3.000m, 池内水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 地面10.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.27 活荷载分项系数: 地下水压1.27, 其它1.27 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 考虑温湿度作用: 池内外温差10.0度, 弯矩折减系数0.65, 砼线膨胀系数1.00(10-5/°C) 1.4 钢筋砼信息 混凝土: 等级C25, 重度25.00kN/m3, 泊松比0.20 保护层厚度(mm): 池壁(内35,外35), 底板(上40,下40) 钢筋级别: HRB335, 裂缝宽度限值: 0.20mm, 配筋调整系数: 1.00 按裂缝控制配筋计算 2 计算内容 (1) 地基承载力验算 (2) 抗浮验算 (3) 荷载计算

钢筋混凝土圆管涵结构设计

钢筋混凝土圆管涵结构设计 (一)设计资料 某双车道三级公路的钢筋混凝土圆管涵,该涵洞设计荷载公路—Ⅰ级,要求内径≥1m ,填土高H=1.2m ,土容重31/18m kN =γ,管节下砂垫层1m 厚,内摩擦角 35=?,容许承载力[0σ]kPa 150=,试对构件进行强度、裂缝宽度和基地应力验算。 (二)设计计算 设管壁厚0.1m ,外径1.25m ,每节1m 长,混凝土采用C15,钢筋采用R235。 1.恒载计算 填土垂直压力: 21/k 6.21182.1m N H q =?=?=γ土 管节垂直压力: 22/k 5.21.025t m N q =?=?=γ自 2.活载计算 按《公路桥含设计通用规范》(JTG D60—2004)第4.3.1条和第4.3.2条规定,本题计算采用车辆荷载,公路—Ⅰ级和公路—Ⅱ级荷载采用相同的车辆荷载标准,填料厚度等于或大于0.5m 的涵洞不记冲击力。 按《公路桥含设计通用规范》(JTG D60—2004)第4.3.5条规定计算荷载分布宽度: 一个后轮单边荷载横向分布宽度=)14(28.123.199.030tan 2.126.0->> =?+见图m m m 故各轮垂直荷载分布宽度互相重叠,如图4-1a )所示。荷载横向分布宽度a 应按两辆车后轮外边至外边计算,即 m a 88.6)8.123.1(2)30tan 2.12 6.0( =?++??+= 一个车轮的纵向分布宽度=24.179.030tan 2.122.0m m >=?+ 故纵向后轮垂直荷载分布长度相互重叠,如图4-1b )所示。荷载纵向分布宽度b 按二轮(后轴)外边至外边计算,即

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

水池结构设计指南

工业建筑结构设计混凝土结构设计指南及规定 第六册水池结构设计指南 (共八册) 中冶京诚工程技术有限公司

工业建筑院 二○○五年七月 目录 一.材料 (2) 二.水、土压力计算 (3) 三.侧壁内力计算 (4) 四.底板内力计算 (6) 五.配筋计算 (9) 六.裂缝宽度验算 (9) 七.侧壁、底板厚度拟定 (10) 八.抗浮验算 (11) 九.工况组合 (11) 十.构造要求 (11)

十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14) 十二.例题 (26) 编制:李绪华 审核:孙衍法 编程:覃嘉仕 钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。因没有统一的设计方法,导致设计方法较为离散。结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。 一.材料 1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。 2.抗渗等级,根据最大作用水头与砼厚度的比值确定

一般情况下采用S6即可满足要求。 3.抗冻等级 最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:

砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。 最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。如:北京-4.5℃天津-4.0℃ 通化-16.1℃石家庄-2.9℃ 承德-9.4℃西安-0.9℃ 太原-6.5℃本溪-12.2℃ 兰州-6.7℃银川-8.9℃ 基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。 二.水、土压力计算 1.水压力

浅谈清水池的抗浮处理及计算

浅谈清水池的抗浮处理及计算 浅谈清水池的抗浮处理及计算 摘要:在清水池的结构设计中,抗浮设计往往成为制约结构设计的重要影响因素之一。本文简要介绍了清水池几种不同的抗浮设计方法,并结合工程实例予以详细计算。 关键词:清水池;抗浮设计;抗浮锚杆 Abstract: In the structural design of the clear water tank, anti-floating design often becomes one of the most important factors influencing structure design. This paper briefly introduces the anti-floating design method of water pool is different, and in combination with the project example to be calculated in detail. Key words: clear water pool; anti-floating design; anti-floating anchor 中图分类号:TU991.34+3文献标识码:A文章编号: 1、概述 清水池为储存水厂中净化后的清水,以调节水厂制水量与供水量之间的差额,并为满足加氯接触时间而设置的水池。同时,清水池还具有高峰供水低峰储水的功能。 因为清水池的储水作用,所以一般清水池的容积和面积较大,因此清水池抗浮设计往往成为制约结构设计的重要影响因素之一。 GB50069-2002《给水排水工程构筑物结构设计规范》中5.2.3条指出:抗浮验算属于承载能力极限状态计算的强制性条文。因此本文简要阐述清水池的抗浮方法及其相关的抗浮计算。 2、清水池的抗浮方法 清水池的抗浮设计主要有抗和放两个方向。所谓抗,就是利用配重,锚固等方法进行硬抗;所谓放,就是用降水等方法,降低水位从而减少水的浮力。常用的抗浮方法有配重抗浮、锚固抗浮、降水抗浮

矩形水池设计及池壁计算

矩形水池设计及池壁计算

矩形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2002), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》 《给水排水工程构筑物结构设计规范》 (GB50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002), 本文简称《水池结构规程》----------------------------------------------------------------------- 1 基本资料 1.1 几何信息 水池类型: 无顶盖半地上 长度L=3.500m, 宽度B=3.500m, 高度 H=3.900m, 底板底标高=-3.400m 池底厚h3=400mm, 池壁厚t1=250mm,底板外挑

活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 考虑温湿度作用: 池内外温差10.0度, 弯矩 折减系数0.65, 砼线膨胀系数1.00(10-5/°C) 1.4 钢筋砼信息 混凝土: 等级C25, 重度25.00kN/m3, 泊松 比0.20 保护层厚度(mm): 池壁(内35,外35), 底板(上40,下40) 钢筋级别: HRB335, 裂缝宽度限值: 0.20mm, 配筋调整系数: 1.00 按裂缝控制配筋计算 2 计算内容 (1) 地基承载力验算 (2) 抗浮验算 (3) 荷载计算 (4) 内力(考虑温度作用)计算 (5) 配筋计算 (6) 裂缝验算 (7) 混凝土工程量计算

水池结构设计指南

工业建筑结构设计 混凝土结构设计指南及规定 第六册水池结构设计指南 (共八册) 中冶京诚工程技术有限公司 工业建筑院 二○○五年七月

目录 一.材料 (2) 二.水、土压力计算 (3) 三.侧壁内力计算 (4) 四.底板内力计算 (6) 五.配筋计算 (9) 六.裂缝宽度验算 (9) 七.侧壁、底板厚度拟定 (10) 八.抗浮验算 (11) 九.工况组合 (11) 十.构造要求 (11) 十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14) 十二.例题 (26) 编制:李绪华 审核:孙衍法 编程:覃嘉仕

钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。因没有统一的设计方法,导致设计方法较为离散。结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。 一.材料 1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。 2.抗渗等级,根据最大作用水头与砼厚度的比值确定 一般情况下采用S6即可满足要求。 3.抗冻等级 最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用: 砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。

最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。如: 北京-℃天津-℃ 通化-℃石家庄-℃ 承德-℃西安-℃ 太原-℃本溪-℃ 兰州-℃银川-℃ 基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。 二.水、土压力计算 1.水压力 按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为。 2.土压力 主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3,地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为。 3.地面堆积荷载(作用于水池侧面) 无特殊情况时,地面堆积荷载取10 kN/m2,准永久值系数为。 4.汽车荷载(作用于水池侧面) 等代均布荷载见下表,准永久值系数为0。

水池计算书

矩形水池设计 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋: E - HRB400 1 基本资料 1.1 几何信息 水池类型: 有顶盖半地上 长度L=7.750m, 宽度B=14.300m, 高度H=6.350m, 底板底标高=-1.850m 池底厚h3=350mm, 池壁厚t1=300mm, 池顶板厚h1=150mm,底板外挑长度t2=350mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土内摩擦角30度 修正后的地基承载力特征值fa=210.00kPa 地下水位标高-2.000m,池内水深5.000m, 池内水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 池顶板1.50kN/m2, 地面10.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.27 活荷载分项系数: 地下水压1.27, 其它1.27 活载调整系数: 其它1.00 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 不考虑温湿度作用. 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20

相关文档
最新文档