利奈唑胺合成工艺的优化

利奈唑胺合成工艺的优化
利奈唑胺合成工艺的优化

合成工艺的优化

合成工艺的优化 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 转化率是消耗的原料的摩尔数除于原料的初始摩尔数。 选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。 收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。 转化率×选择性= 收率 反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,少量原料依然存在于反应体系中。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。 化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。 只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。 提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓

利奈唑胺的药理分析综述

龙源期刊网 https://www.360docs.net/doc/fb15579886.html, 利奈唑胺的药理分析综述 作者:曲小艺 来源:《中国科技博览》2016年第01期 中图分类号:R9 文献标识码:A 文章编号:1009-914X(2016)01-0346-01 利奈唑胺(linezolid)是一种人工合成的噁唑烷酮类抗菌药,对大多数革兰阳性致病菌都有良好的抗菌活性,与其他抗菌药多无交叉耐药现象,加之组织、体液分布广泛以及给药方法便捷,使得其治疗多重耐药革兰阳性菌感染的有效性和安全性均很好,在临床上受到广泛的关注。 1 作用机制和抗菌活性 作为一种新型抗菌药,利奈唑胺作用于细菌的50S核糖体亚单位。但与其他抗菌药不同,利奈唑胺不影响肽基转移酶活性而只是作用于翻译系统的起始阶段,通过抑制mRNA与核糖体连接、阻止70S起始复合物的形成,最终产生抑制细菌蛋白质合成的作用。由于作用部位及方式独特,利奈唑胺与其他抗菌药多无交叉耐药现象。在耐药菌日益流行的今天,利奈唑胺的这一特性具有重要临床意义。体外药敏试验结果显示,利奈唑胺对几乎所有的致病性革兰阳性菌、非典型病原体、各种分枝杆菌、诺卡菌以及革兰阳性的厌氧菌都有较好的抗菌活性,但对革兰阴性杆菌不敏感,可能与革兰阴性杆菌的外排机制有关。体外药敏试验还显示,包括耐甲氧西林的金黄色葡萄球菌、耐甲氧西林的凝固酶阴性的葡萄球菌在内的葡萄球菌和耐万古霉素的肠球菌在内的肠球菌对利奈唑胺都100%敏感。10多年的临床应用经验表明,利奈唑胺对多种革兰阳性致病菌、包括耐药菌所致感染均有很好的疗效。此外,利奈唑胺对日益常见的耐多药结核杆菌和泛耐药结核杆菌也有明显的抗菌活性和治疗疗效,但因利奈唑胺不是常规抗结核药,故目前尚无相应的体外药敏试验数据。 2 药动学特点 利奈唑胺为时间依赖性抗菌药,口服后吸收完全、生物利用度近100%,可以经静脉给药-口服方法进行序贯治疗。利奈唑胺的血浆蛋白结合率为31%,分布容积为40~50 L,每12小时口服给药600 mg后0.5~2 h达到血药峰浓度(15~27 mg/L),血药消除半衰期(3.4~7.4 h)较长,且对敏感菌有一定的抗生素后效应,可一日2次给药。利奈唑胺在体内被代谢为两种无活性的代谢产物氨基乙氧乙酸和羟乙基乙酸,给药量的65%经非肾途径清除(可能会有部分药物在肾小管被重吸收),30%以原药形式随尿液排出体外。利奈唑胺的组织、体液穿透性好,在肺、皮肤、肌肉和脂肪组织以及脑脊液中均有较高的药物浓度,故适应证也较广,临床地位重要。 3 临床应用

草甘膦母液处理技术

草甘膦母液本质上属于高浓有机废水,可以通过传统的焚烧、催化氧化、催化氧化+生化的方法进行减量化、无害化的处理。然而由于草甘膦母液复杂的水质特征,如可生化性差、盐分高和水质波动大等,在处理的同时往往会付出高昂的处置成本。 利用焚烧、催化氧化、生化处理等处理工艺虽然可以有效地处理草甘膦母液废水,但却很大程度地浪费草甘膦母液废水所含的大量可回收利用资源(废水中含无机盐15 %—20 %、草甘膦0.5 %—1.5 %),而且还会不可避免的生成一些二次污染物,更增加了草甘膦母液废水处理负担。为了实现草甘膦母液废水中无机盐、草甘膦等有效成分的回收,不少研究学者及草甘膦生产企业开发了很多新型处理方法:压力驱动膜分离法、沉淀法、吸附法等方法,其中吸附和膜分离法以其高效的分离效果而成为目前草甘膦母液废水应用较广的处理方法: 1.膜浓缩法 膜浓缩分离利用渗透性将不同分子大小的物质进行分离,可以有效起到浓缩和提纯的目的。其中对于甘氨酸法草甘膦母液,通过膜法可将无机氯化钠和大部分水从母液中分离出来,浓液中氯化钠含量降低至1 %,并有效提高浓缩倍率。分离出的淡液需经过蒸发浓缩和除盐等处理;对于IDA法草甘膦母液,因原水副产物较少,可将淡液循环用于合成工艺,且膜处理后浓液盐含量较低,可增大用于配置30 %水剂的母液利用率。

DMP法:由于合成工艺过程加入的液碱导致DMP法草甘膦母液废水呈现强碱性,这是不利于膜及膜组件的长期稳定运行的,因此需要在母液废水进入膜组件之前加入一定量的浓HCl将其pH调节至中性。在经纳滤膜组件分离后,母液废水中的无机盐和醇类等小分子物质与草甘膦、增甘膦、双甘膦等大分子物质分离,前者进入淡液1,后者进入浓液1。母液废水中的所有无机盐几乎全部存在于淡液中,其浓度高达15 %-20 %,且主要为NaCI,因此在经蒸发结晶之后可以获得工业盐。由于增甘膦、双甘膦等杂质的存在会严重影响30%草甘膦水剂的配置过程,因此需要利用纳滤膜组件分离增甘膦、双甘膦与草甘膦(双甘膦分子量:227.00,增甘膦分子量:263.09,草甘膦分子量:169.00),使前者进入浓液2,后者进入淡液2后再经纳滤膜组件3浓缩得到浓液3,并用于配制有效成分30 %的草甘膦水剂或用于草甘膦原粉的提取,所得淡液III主要为水及部分小分子有机物,经常规生化处理后可达到排放标准。 IDA法:IDA法母液废水在经预处理膜组件处理后进入纳滤膜组件,分离母液中的甲醛等小分子物质,使其进入淡液1,而草甘膦、双甘膦等较大分子则进入浓液l进行下一道浓缩工艺。经纳滤膜组件处理后,得到浓液2通过冷却结晶的方法提取部分草甘膦原粉,滤液则用以配置30 %草甘膦水剂或部分回流至纳滤膜组件进口继续浓缩,淡液2则回流至纳滤膜组件进口处继续回流处理10-20次,以充分回收其中可利用资源。淡液1在经氨气反应后进入纳滤膜组件分离出含乌洛品托的浓液用以甘氨酸合成的催化剂,而氨水溶液则经H2SO4溶液反应后得到(NH4)2SO4溶液,(NH4)2SO4溶液经浓缩后就可作为助剂配制有效成分30 %的草甘膦水剂。 2.树脂吸附法 对于甘氨酸法草甘膦母液,草甘膦与增甘膦含量相对较高,且性质相近,可采用树脂吸附方法同时回收。吸附法是指利用吸附材料的特种吸附功能,对废水中的特定污染物进行吸

利奈唑胺抗结核作用的研究及其最新进展

?综述?利奈唑胺抗结核作用的研究及其最新进展 唐神结 肖和平 近年来,耐药结核病尤其是耐多药结核病(multi唱drugresistanttuberculosis,MDR唱TB)和广泛耐药结核病(extensivelydrugresistanttuberculosis,XDR唱TB)的流行与传播引起了全球学者的极大关注[1]。然而,由于缺乏有效的药物,耐药结核病的治疗问题一直困扰着广大结核病防治工作者[2]。利奈唑胺(linezolid)为恶唑烷酮类抗菌药物,是继磺胺类和喹诺酮类后上市的又一类全新合成抗菌药物,该药以其独特的作用机制、良好的抗菌活性而备受关注。该药主要用于控制耐万古霉素革兰阳性球菌所引起的感染,最近研究显示,利奈唑胺具有良好的抗结核分枝杆菌(mycobacteriumtuberculosis,MTB)作用,对耐药菌株也显示了强大的抗菌活性,不少医师采用利奈唑胺治疗MDR唱TB和XDR唱TB取得了一定的临床效果,现总结介绍如下。 一、作用机制 利奈唑胺抗MTB的作用机制为与核糖体50S亚基结合,抑制mRNA与核糖体连接,阻止70S起始复合物的形成,从而在翻译的早期阶段抑制细菌蛋白质合成。利奈唑胺作用的靶位点为23SrRNA、核糖体L4和 L22、Erm唱37甲基转移酶以及whiB7调节蛋白等。由于该药独特的作用特点,故与其他的蛋白合成抑制剂间无交叉耐药发生。在体外也不易诱导细菌耐药性的产生[2唱5]。 二、体外抗菌作用 最新的研究结果表明,利奈唑胺具有较强的抗分枝杆菌作用,其抗MTB的最低抑菌浓度(MIC)值为0畅125~1mg/L,对敏感菌株和耐药菌株具有同等的抗菌活性,对快速增殖期和静止期菌群均有抗菌作用[6唱8]。Alcalá等[6]采用比例法和E唱test法测定了117株敏感和耐药MTB菌株对利奈唑胺的敏感性,结果发现,其抗敏感和耐药MTB菌株的MIC值为0畅125~1mg/L,MIC50为0畅5mg/L,MIC90为0畅5~1mg/L,显示了强大的杀菌活性。一些学者研究发现,利奈唑胺抗MDR菌株的MIC值为0畅125~8mg/L,MIC50为4mg/L,MIC90为8mg/L,推荐以MIC值≤8mg/L作为其敏感性的分界点,286株MDR唱TB菌株和9株XDR唱TB菌株中仅2株(0畅7%)显示对利奈唑胺耐药[7,9]。Huang等[10]最近研究结果显示,利奈唑胺抗敏感菌株和MDR菌株的MIC值为0畅125~4mg/L,MIC50和MIC90均为0畅5mg/L,MDR菌株中有些耐喹诺酮类和利福布汀。Tato等[11]也证实其利奈唑胺抗耐药(包括MDR唱TB)菌株的MIC值很低(0畅12~0畅5mg/L)。以上研究表明利奈唑胺在体外具有极强的杀灭MTB作用。防突变浓度(mutantpreventionconcentration,MPC)是一种新的微生物学评价参数,是指在抗菌药物治疗过程中严格限制选择出耐药突变菌株的能力,MIC检测的是优势菌群对药物的敏感性,而MPC则检测的是突变菌群对药物的敏感性,在选择药物时其血清和组织内的药物浓度应尽可能长时间地高于MTB的MPC。有研究显示,该药对MTB菌株的MPC50、MPC90分别为0畅6、1畅2mg/L,而其药时曲线下面积(AUC)很大,为140畅3mg?h-1?L-1,表明该药选择出耐药突变菌株的可能性很小,即产生耐药的机会也很少[12]。 三、体内抗菌作用 早期杀菌活性(EBA)是指抗结核治疗最初几天患者痰液中MTB浓度的下降速度以每天痰液中log10菌落形成单位(cfu)/ml的下降表示。Dietze等[13]研究结果显示,利奈唑胺的EBA(即治疗0~2d)(0畅18~0畅26log10cfu?ml-1?d-1)低于异烟肼(0畅67log10cfu?ml-1?d-1),延迟EBA(治疗第2~7天)也较弱(0畅04~0畅09log10cfu?ml-1?d-1)。目前缺乏系统性利奈唑胺体内抗菌作用的研究资料。 基金项目:上海市传染病公共卫生重点学科建设(08GWZX0104) 作者单位:200433 同济大学附属上海市肺科医院上海市结核(肺)重点实验室 通讯作者:肖和平,Email:xiaoheping_sars@163.com

头孢西丁杂质及其合成路线方法,药品研究及其合成路线方法,药品研究

产品 名 称: 头孢西丁杂质E 产品 编 号: C017001 CAS NO.: 分子 式: C 17 H 19 N 3 O 8 S 2 分子 量: 457.48 Syno nyms : 头孢西汀杂质 E;6R,7S)-3-((carbamoyloxy)methyl)-7-methoxy-7-((R)-2-methoxy-2-(thiophen-2-yl)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2 -ene-2-carboxylic acid 库存价格 产品 名 称: 头孢西丁杂质F 产品 编 号: C017002 CAS NO.: 分子 式: C 17 H 19 N 3 O 8 S 2 分子457.48

量: Syno nyms : 头孢西汀杂质 F;(6R,7S)-3-((carbamoyloxy)methyl)-7-methoxy-7-((S)-2-methoxy-2 -(thiophen-2-yl)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct- 2-ene-2-carboxylic acid 联系 我 3001039764 库存价格 产品 名 称: 头孢西丁杂质EF 产品 编 号: C017008 CAS NO.: 分子 式: C 17 H 19 N 3 O 8 S 2 分子 量: 457.48 Syno nyms : (7S)-3-((carbamoyloxy)methyl)-7-methoxy-7-(2-methoxy-2-(thiophe n-2-yl)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-c arboxylic acid 潘立酮杂质,索拉非尼杂质,西咪替丁杂质,恩曲他滨杂质,恩替卡韦杂质、奥氮平内酰胺、硫代内酰胺杂质、卡格列净二聚体杂质、福莫特罗杂质、阿维巴坦杂质、酞普兰杂质、甲氨蝶呤杂质,多佐胺杂质、普瑞巴林杂质、索拉菲尼杂质、多西他赛杂质、阿比特龙杂质、

有机合成工艺优化

有机合成工艺优化 1.合成工艺的优化主要就是反应选择性研究有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有 机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。 平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温 度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度, 可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低 浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主 反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再 确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性, 搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组 分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对 大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应 采取不同的抑制方法。 (1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因 为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究

有机合成工艺优化.doc

有机合成工艺优化方法学---心得 1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位

关于工艺流程优化的分析

关于化工工艺流程优化的分析 摘要:工艺流程的优化属于化工系统工程学研究的范围,它主要是研究在一定的条件下,如何用最合适的生产路线和生产设备,以及最节省的投资和操作费用,合成最佳的工艺流程。工艺流程也是实现产品生产的技术路线,通过对工艺流程的研究及优化,能够尽可能的挖掘出设备的潜能,找到生产瓶颈,寻求解决的途径,以达到产量高、功耗低和效益高的生产目标。 关键字:工艺流程,优化 一、化学工艺、化工工艺流程基本概念 化学工艺,即化工技术或化学生产技术,指将原料物主要经过化学反应转变为产品的方法和过程,包括实现这一转变的全部措施。化学工艺在高等学校的课程设置中,有工业化学和化学工艺学,两种课程仅在名称上不同,其内容均与上述化学生产技术的一般内容大体相似。化学生产过程一般地可概括为三个主要步骤:①原料处理。为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过进化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。②化学反应。这是生产的关键步骤。经过预处理的原料,在一定的温度、压力等条件下进行反应,以达到所要求的反应转化率和收率。反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。通过化学反应,获得目的产物或其混合物。③产品精制。将由化学反应得到的混合物进行分离,除去副产物或杂质,以获得符合组成规格的产品。以上每一步都需在特定的设备中,在一定的操作条件下完成所要求的化学的和物理的转变。 化工工艺流程是由若干个具有独立的化工过程的工序所组成的,其结构一般都比较复杂,如果对整个工艺流程寻优,则涉及的影响因素及变量的数目太多,而不容易做出优化结论,如果把流程分解成一若干化工过程表示的工序,先对每个单一的化工过程寻优,则可运用有关的化学工程理论进行优化分析。在生产过程控制中,工艺优化是以原有生产工艺为基础,通过对生产流程、工艺条件、原辅料的深入研究,针对生产关键、工艺薄弱环节,组织技术人员改进工艺,使生产成本降低,生产过程、工艺条件达到最优化。对生产工艺流程的优化,除了技术上的参数优化调整、设备优化改造外,要想获得更大的突破、尤其是解决瓶颈

利奈唑胺合成新进展

第28卷第1期 2019年3月 淮海工学院学报(自然科学版) Journal of Huaihai Institute of Technology(Natural Science Edition) Vol.28 No.1 Mar.2019 DOI:10.3969/j.issn.1672-6685.2019.01.015 利奈唑胺合成新进展*? 吴煜然1a,任抒婷1a,刘书豪1a,王有宪1a,王 蕾1a,刘玮炜1a,b,2 (1.淮海工学院a.药学院;b.江苏省海洋药物活性分子筛选重点实验室,江苏连云港 222005; 2.江苏省海洋资源开发研究院,江苏连云港 222005) 摘 要:利奈唑胺是第一个人工合成的噁唑烷酮类抗生素,主要用于治疗革兰氏阳性球菌引起的感染.利奈唑胺独特的作用部位和作用方式使其不易与其他抗菌药发生交叉耐药,具有良好的治疗效果,在临床上得到广泛应用.综述了近5年利奈唑胺的合成方法,并对各种方法进行了分析比较.关键词:利奈唑胺;合成方法;噁唑烷酮 中图分类号:TQ465 文献标识码:A 文章编号:1672-6685(2019)01-0064-04 New Progress in Synthesis of LinezolidWU Yuran1a,REN Shuting1a,LIU Shuhao1a,WANG Youxian1a,WANG Lei 1a,LIU Weiwei 1a,b,2(1.a.School of Pharmacy;b.Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology,Lianyungang 222005,China; 2.Jiangsu Marine Resources Development Research Institute,Lianyungang 222005,China) Abstract:Linezolid is the first synthetic oxazolidinone antibiotic,which is mainly used to treat in-fection caused by Gram-positive bacteria.Linezolid is not easy to cross-resistance with other anti-biotics because of its unique site and mode of action.It has good therapeutic effect and has beenwidely used in clinic.In this paper,the synthesis methods of linezolid in recent five years werereviewed,and the various methods were analyzed and compared. Key words:linezolid;synthesis methods;oxazolidinone 利奈唑胺(linezolid),化学名为(S)-N-[[3-[3-氟-4-(4-吗啉基)苯基]-2-氧代-5-噁唑烷基]甲基]-乙酰胺,2000年获得美国FDA批准上市,是第一个化学全合成的应用于临床的新型噁唑烷酮类抗菌药,主要用于治疗由耐甲氧西林金黄色葡萄球菌(MRSA)以及耐万古霉素肠球菌(VRE)引起的感染[1-2].与其他药物不同,利奈唑胺具有独特的作用机制,它不影响肽基转移酶活性,只作用于翻译系统的起始阶段,抑制mRNA与核糖体连接,阻止70S起始复合物的形成,从而抑制细菌蛋白质的合成[3-4].因其独特的作用位点和作用方式,利奈唑胺不易与其他抑制蛋白合成的抗菌药发生交叉耐药,同时在体外也不易诱导细菌耐药性的产生,对革兰氏阳性球菌有着很好的抑菌活性,是一种极具临床应用价值的新型抗菌药[5-6].噁唑烷酮母核的构建是利奈唑胺(结构式见图1)合成中的关键步骤,可通过异氰酸酯与环氧乙烷反应,或酰胺与卤代醇的取代成环反应合成,也可直接引入该噁唑酮结构[7-8].本文介绍了近5年利奈唑胺合成的进展,并比较了各种合成方法,以便为利奈唑胺的制备寻找一条更适合工业化生产的合成路线. *收稿日期:2019-02-04;修订日期:2019-02-27 基金项目:江苏省高校优势学科建设工程资助项目;江苏省研究生科研与实践创新计划项目(KYCX18-2580,KYCX18-2588);江苏省海洋生物技术重点实验室开放课题(HS2014007);国家海洋公益性行业科研专项(201505023);连云港市“521工程”资助项目 (LYG52105-2018023) 作者简介:吴煜然(1996-),女,江苏泰州人,淮海工学院药学院硕士研究生,主要从事有机合成方面的研究,(E-mail)2541973560@qq.com.通讯作者:刘玮炜(1965-),女,江苏滨海人,淮海工学院药学院教授,博士,主要从事有机合成方面的研究,(E-mail)liuweiwei255@163.com.

利奈唑胺葡萄糖注射液项目策划方案

利奈唑胺葡萄糖注射液项目 策划方案 规划设计/投资分析/产业运营

摘要 利奈唑胺葡萄糖注射液是一类人工合成的噁唑烷酮类抗菌药,作用于细菌的50S核糖体亚单位。与其他抗菌药不同,利奈唑胺不影响肽基转移酶活性而只是作用于翻译系统的起始阶段,通过抑制mRNA与核糖体连接、阻止70S起始复合物的形成,最终产生抑制细菌蛋白质合成的作用。 该利奈唑胺葡萄糖注射液项目计划总投资3173.93万元,其中:固定资产投资2293.10万元,占项目总投资的72.25%;流动资金880.83万元,占项目总投资的27.75%。 本期项目达产年营业收入7400.00万元,总成本费用5801.49万元,税金及附加62.90万元,利润总额1598.51万元,利税总额1881.89万元,税后净利润1198.88万元,达产年纳税总额683.01万元;达产年投资利润率50.36%,投资利税率59.29%,投资回报率37.77%,全部投资回收期4.15年,提供就业职位129个。

利奈唑胺葡萄糖注射液项目策划方案目录 第一章项目概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设背景 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章项目规划方案 一、产品规划 二、建设规模 第四章项目选址方案 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

草甘膦生产工艺路线比较

草甘膦生产工艺路线比较 中国行业咨询网 https://www.360docs.net/doc/fb15579886.html, 核心提示: 草甘膦(英文通用名称Glyphosate)又称农达、农民乐等,属芽后内吸非选择性高效广谱除草剂,具有广谱、低毒和无残留的特点。草甘膦主要应用于转基因作物领域。20世纪90年代以来,转基因抗草甘膦作物如大豆、玉米等的创制和大面积种植,使全球对草甘膦的需求持续增加。为此,2006年底以来,草甘膦价格疯狂上涨,我国草甘膦及上游原材料公司业绩显著提高。 1.我国草甘膦生产能力 目前,我国草甘膦生产企业约有30余家,见表1。 2.我国草甘膦生产工艺概况 我国草甘膦的生产工艺主要分为甘氨酸法和二乙醇胺一亚氨基二乙酸(IDA)法(表1)。目前甘氨酸法草甘膦占到国内总产量的70%以上,每吨草甘膦需消耗甘氨酸0.96t,国产甘氨酸80%用于草甘膦生产,市场容量20万t/a左右。草甘膦生产工艺路线见图1。

国际的主流路线则是氢氰酸-IDA(路线2)。该方法生产简单、环境友好、操作方便,成本低廉。世界最大的草甘膦生产企业孟山都在全球的6套生产装置全部采用IDA路线,年

产量20万t以上。 我国草甘膦生产工艺,氯乙酸—甘氨酸法(路线4)和二乙醇胺-IDA法(路线1),这两种路线之所以成为国内主流,主要由国内特殊的行业环境以及技术壁垒造成。例如,国内缺乏稳定低廉的HCN来源,限制了下游IDA的发展,HCN制甘氨酸技术困难尚没有克服。二乙醇胺-IDA路线也受制于国内二乙醇胺短缺、进口二乙醇胺价格昂贵。在这种特殊国情之下,已在国外完全淘汰的落后的氯乙酸法才占据了国内主流地位。 氯乙酸-甘氨酸路线经过国内企业的多年摸索,通过优化生产工艺条件、采用先进的大型设备和DCS自控,产品收率、原材料消耗等方面不断提升,生产成本得以降低,副产物的综合利用(如新安股份的氯循环)也有明显进步。但该路线的弱点也非常明显,如工艺路线长(收率不高)、产品含杂质高(提纯步骤多)、副产物和三废多(环保压力大)等。 目前,制约国内HCN路线草甘膦的两个主要瓶颈(高质量的HCN原料和甘氨酸技术壁垒)均已经明显改善,拓展草甘膦市场优势得天独厚。我国天然气资源丰富,天然气制HCN 技术已经相对成熟。重庆紫光化工的亚氨基二乙腈纯度达到95%以上,销售价格13500-14000元/t,相比二乙醇胺有一定的价格优势,发展IDA路线草甘膦具备明显的经济价值。正在重庆筹建5万t/a亚氨基二乙腈,类似路线在其他企业实施也有传闻。由HCN合成IDA 收率较高(文献收率85%-90%),工艺过程适合连续化、大规模生产,三废低、副产物少,也是国际主流的草甘膦生产工艺。而三峡英力则是甘氨酸路线进步的代表。该路线的技术先进性非常明显:流程短,如无需氧化步骤;副产物少;产品质量好。一旦困扰该路线的甘氨酸生产技术得到突破,竞争力也非常突出。这两种天然气HCN路线也存在一定的竞争关系,从行业的角度,这种路线之争对于提高我国草甘膦行业技术水平、降低生产成本和环保压力大有好处。不同草甘膦路线的比较见表2。

草甘膦工艺介绍

草甘膦项目工艺介绍 一、亚磷酸二甲酯 1、反应原理及流程简图 (1) 主反应 3CH 3OH +PCl 3 (CH 3O )2POH +2HCl +CH 3Cl (2)副反应 PCl 3+3CH 3OH H 3 P O 3+3CH 3Cl (3)生产工艺流程简图 盐酸 配碱釜 亚磷酸二甲酯去草甘膦合成 氯甲烷去回收 2、生产工艺流程简述 (1)酯化岗位 三氯化磷和甲醇以一定的投料比经预冷器后投入酯化釜在55℃、负压下进行酯化反应,反应生成的氯甲烷,氯化氢气体(夹带少量甲醇等)经两级冷凝后,过量甲醇等组分重新回流到酯化釜继续反应,氯甲烷和氯化氢经气液分离器到吸收岗位。酯化反应产物在75℃下经过两级脱酸后,得到亚磷酸二甲酯的粗品(含亚磷酸)。脱酸釜出来的气体经冷凝后,一部分重新回流到酯化釜参加反应,其余气体经气液分离器到吸收岗位。 (2)吸收岗位 酯化反应产生的氯化氢、氯甲烷气体经高浓盐酸吸收器、浓盐酸吸收器、稀盐酸吸收塔和碱洗塔后,经除雾器、尾气缓冲罐和罗茨风机到氯甲烷回收工段。

(3)蒸馏岗位 在高真空条件下,酯化反应合成的亚磷酸二甲酯粗品经预热后进入蒸馏塔在140℃、-740mmHg下进行真空蒸馏,塔顶产物经两级冷凝后,一部分回流至蒸馏塔,其余进入酯受槽,供草甘膦生产;高沸物(亚磷酸)由再生器排入残液受槽,冷却到室温,亚磷酸包装出售。 (4)氯甲烷回收岗位 来自草甘膦、亚磷酸二甲酯的副产物氯甲烷,通过水洗、碱洗、干燥(酸洗)、压缩、冷却获得氯甲烷产品。 工艺流程简图 氯甲烷 工艺流程简述 来自草甘膦、亚磷酸二甲酯的氯甲烷尾气(氯甲烷含量为60%)经预洗塔水洗后(预洗)进入碱洗塔与从塔顶加入经碱冷凝器预冷至约-5℃的5-15%的碱液喷淋逆流吸收温度为35℃,以除去混合气中的残余的氯化氢,同时因气体被冷却,进一步脱水,15%的氢氧化钠水溶液,通过碱循环泵循环使用,当碱液浓度<5%时更换新碱,浓度小于5%的碱液送至配碱釜。 经过碱洗塔洗涤的混合气,从水洗塔下部进入,与从塔顶喷沸的水接触40℃下进行洗涤,除去气体中的氯化氢和甲醇,从塔底出来的洗涤液经过水冷凝器冷却后,水从塔顶喷淋洗涤,循环使用,水由循环水泵打循环。 出水洗塔的气体经除雾器除雾后进入第一干燥塔下部,与从塔顶喷淋的75%-93%的硫酸逆流接触温度为50℃,75%-93%的硫酸来自第二干燥塔塔底,并

62%草甘膦异丙胺盐合成工艺优化小试研究

62%草甘膦异丙胺盐合成工艺优化小试研究 李延博,方建明,沈 洁,刘凤羽 (广州创特技术有限公司,广东广州 510055) 摘 要:通过强化反应过程中异丙胺的分散,对工艺过程进行优化,提高了反应速率,降低了反应过程中冷却水和蒸汽的使用量,提高了装置利用率。 关键词:异丙胺;草甘膦异丙胺盐;优化 中图分类号:T E357 文献标识码:A 文章编号:1006—7981(2012)14—0039—01 草甘膦是目前广泛使用的一种光谱灭生性除草剂,随着抗草甘膦转基因作物品种的不断丰富和种植面积的不断扩大,对草甘膦的需求量将继续扩大[1] 。草甘膦异丙胺盐除有一般草甘膦具备的内吸传导型、光谱、灭生性等特性外,还具有除草药效好,水溶性更高的特点。草甘膦异丙胺盐水剂是目前市 场上的主导品种,全球销售超过几十万吨[2] 。 当前国内的62%草甘膦异丙胺盐水剂生产厂家普遍存在的主要问题是:装置利用率低、单釜产能小、能耗高、劳动条件差等一系列问题。通过对国内62%草甘膦异丙胺盐水剂厂家的生产过程分析,发现配置过程效率低、能耗高的主要原因在于装置的异丙胺分散较差,从而影响异丙胺的加入速度,在异丙胺加入速度加快后来不及反应的异丙胺挥发,造成操作环境差,现场有异丙胺的刺鼻气味,同时造成异丙胺消耗量过高。为了克服异丙胺挥发的问题,在异丙胺加入过程中需要通冷却水,而在草甘膦和异丙胺反应结束后为了保证62%草甘膦异丙胺盐水剂的稳定性,还要用蒸汽把物料升温到90℃,这种先冷却再加热的方式造成能耗较高,且反应速率较慢。 为了克服上述问题,采取强化传质的方式,加快异丙胺的加入速度,同时利用反应过程放出的热量对物料进行加热,加快了反应速率,提高了装置利用率、降低了能耗、改善了操作环境,为反应装置的放大奠定了基础。1 实验部分1.1 实验装置 实验用的反应器为玻璃材质的四口烧瓶,四个口分别为搅拌器入口,冷凝管接口、进料口和温度计接口,烧瓶外部采用棉花保温。1.2 反应物质量计算 草甘膦与异丙胺的化学反应方程式 : 假设反应后6%草甘膦异丙胺盐水剂的质量为 100g,则草甘膦异丙胺盐的质量为62g 。反应过程中为了保证草甘膦完全反应,异丙胺要适当过量,异丙胺与草甘膦的摩尔比为:1。 草甘膦的质量=62g 228g/mol ×169g/mol ÷0.95 =48.4g 异丙胺的质量= 62g 228g/mol ×1.2×59g/mol ÷ 0.99=19.8g 水的质量=100-48.4-19.8=31.8g 由上面的计算结果可知:得到100g62%草甘膦异丙胺盐所需的草甘膦、异丙胺和水的质量分别为48.4g 、19.8g 、31.8g 。1.3 实验过程 先搭建上图所示的实验装置,电机、搅拌器、四口烧瓶和冷凝管由铁架台固定,冷凝管的目的是冷凝挥发的异丙胺,从加料口加入一定量的水,调节温度计的高度,直至温度计的液泡完全浸在液面下,然后固定。打开搅拌器,草甘膦由加料口加入,调节搅拌器的转速至草甘膦与水能够充分混合,然后将异丙胺由加料口用滴液漏斗加入,可以通过滴液漏斗下面的旋塞控制异丙胺的加入速度。 39  2012年第14期 内蒙古石油化工 收稿日期55 作者简介李延博(—),男,工学硕士。 2:2012-0-2:1982

草甘膦简介

草甘膦 一、产品概述 中文名:草甘膦,英文名:glyphosate ,别名:农达、镇草宁、罗达普、时拔克。 分子式C 3H 8NO 5P ,分子量169.08,结构式:P O HO HO CH 2 NH CH 2COOH ,化学名称:N- (磷酰基甲基)甘氨酸,CAS 号:1071-83-6。低毒,大白鼠急性经口LD50=4320mg/kg, 对鱼,蜜蜂较安全。纯品(95%)为白色结晶固体,熔点230℃(分解)。在25℃水中溶解度为12g/L 。它不溶于一般有机溶剂,微溶于乙醇、乙醚,其异丙胺盐/铵盐完全溶解于水。不可燃,不爆炸,常温下稳定,挥发性低。 草甘膦系内吸传导灭生性光谱除草剂,凡有光合作用的植物绿色部分都能较好地吸收草甘膦而被杀死。药物通过植物绿色部分吸收而传导至全株,在植物体内干扰苯丙氨酸和酪氨酸的生物合成,并使细胞核内染色体失常,对多年生杂草地下组织破坏很强。植物中毒先是地上叶片逐渐枯黄,继而地下部分腐烂,最后枯死。草甘膦进入土壤后逐渐失去活性,对未出生的杂草无效,对土壤中的作物种子无杀伤力。主要用于茶园、桑园、果园、休耕田等免耕田播种前除草。 草甘膦喷药注意事项:1.喷雾时切勿将药液喷到农物上,2.选择晴天施药。3.草甘膦残留期1个月以上,但毒性较慢。一般在施药后7-10天见效。4.配制草甘膦药液,按总水量0.1%~0.2%洗衣粉或柴油一起冲配可增加药效。 草甘膦于1970年由美国MonsantoR&D 公司发现,2005年成为全球最畅销十大农化产品之一,国内较大的生产企业有新安股份(产能居全球第二)、南通江山、湖北沙隆达、江苏扬农……,据了解,截止2010年上半年我国草甘膦产能在80万吨/年,2010年全球草甘膦产品消费量为70万吨左右。从2006年至今,草甘膦可谓是给我们来了一个过山车似的表演——2006年,草甘膦均价2.8万元/吨,到2007年年8月份价格涨至3.5万元/吨,12月份价格4万元/吨,进入08年草甘膦价格飙涨,到2月份价格涨到8.8万元/吨,4月份达12万/吨的顶峰,2008年5月份后,全球产能迅速膨胀,疯狂行情随之宣告终结,此后价格一路下跌。从2008年10月份价格跌至5.5万元/吨,12月跌至2.5万元/吨,2009年价格基本在2万元/吨左右徘徊,进入2010年以后,情况依旧没有好转,低迷的情况一直延续至今。

工艺优化方法

1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技 术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大 小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主

相关文档
最新文档