实习t检验方差分析

合集下载

t检验与方差分析

t检验与方差分析

t 检验与方差分析一、选择题1.当样本含量增大时,以下说法正确的是( ) A. 标准差会变小 B. 样均数标准误会变小 C. 均数标准误会变大 D .标准差会变大2.通常可采用以下那种方法来减小抽样误差: A .减小样本标准差 B .减小样本含量 C .扩大样本含量 D .以上都不对3.配对设计的目的:A .提高测量精度B .操作方便C .为了可以使用t 检验D .提高组间可比性 4.关于假设检验,下列那一项说法是正确的 A .单侧检验优于双侧检验B .采用配对t 检验还是成组t 检验是由实验设计方法决定的C .检验结果若P 值大于0.05,则接受H 0犯错误的可能性很小D .用u 检验进行两样本总体均数比较时,要求方差齐性5.两样本比较时,分别取以下检验水准,下列何者所取第二类错误最小 A .α=0.05 B .α=0.01 C .α=0.10 D .α=0.206.统计推断的内容是A .用样本指标推断总体指标B .检验统计上的“假设”C .A 、B 均不是D .A 、B 均是7.当两总体方差不齐时,以下哪种方法不适用于两样本总体均数比较 A .t 检验 B .t ’检验 C .u 检验(假设是大样本时) D .F 检验8.甲、乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得1X ,21S ,2X ,22S ,则理论上 A .1X =2X ,21S =22SB .作两样本t 检验,必然得出无差别的结论C .作两方差齐性的F 检验,必然方差齐D .分别由甲、乙两样本求出的总体均数的95%可信区间,很可能有重叠9.完全随机设计资料的方差分析中,必然有( )A .SS 组内<SS 组间B .MS 组间<MS 组内C .MS 总=MS 组间+MS 组内D .SS 总=SS 组间+SS 组内 10.单因素方差分析中,当P <0.05时,可认为( )。

A .各样本均数都不相等 B .各总体均数不等或不全相等 C .各总体均数都不相等 D .各总体均数相等11.以下说法中不正确的是()A.方差除以其自由度就是均方B.方差分析时要求各样本来自相互独立的正态总体C.方差分析时要求各样本所在总体的方差相等D.完全随机设计的方差分析时,组内均方就是误差均方12.当组数等于2时,对于同一资料,方差分析结果与t检验结果()。

方差分析实践报告总结(2篇)

方差分析实践报告总结(2篇)

第1篇一、引言方差分析(Analysis of Variance,ANOVA)是一种统计方法,用于比较多个样本均值是否存在显著差异。

它广泛应用于生物学、医学、心理学、经济学等众多领域。

本报告旨在总结本次方差分析实践的过程、结果和结论,以及对方差分析方法的深入理解。

二、实践背景本次实践选择了一项关于不同教育方法对学生学习成绩影响的研究。

研究者随机选取了三个年级的学生,每个年级分为三个班级,分别采用传统教育方法、现代教育方法和混合教育方法进行教学。

研究旨在比较三种教育方法对学生学习成绩的影响是否存在显著差异。

三、实践过程1. 数据收集研究者通过问卷调查和考试的方式,收集了三个年级、每个班级的学生学习成绩数据。

共得到270份有效数据。

2. 数据整理将收集到的数据录入Excel表格,并进行初步的检查,确保数据的准确性和完整性。

3. 描述性统计计算每个班级的平均成绩、标准差和样本量,以便对数据有一个初步的了解。

4. 方差分析使用SPSS软件进行方差分析,设置因变量为“学习成绩”,自变量为“教育方法”。

5. 结果解读根据方差分析的结果,判断不同教育方法对学生学习成绩的影响是否存在显著差异。

四、实践结果1. 描述性统计结果传统教育方法班级的平均成绩为70.5分,标准差为8.2分,样本量为90;现代教育方法班级的平均成绩为76.2分,标准差为6.5分,样本量为90;混合教育方法班级的平均成绩为78.9分,标准差为5.1分,样本量为90。

2. 方差分析结果根据方差分析结果,F值为3.45,显著性水平为0.036。

根据α=0.05的显著性水平,拒绝原假设,即认为不同教育方法对学生学习成绩的影响存在显著差异。

五、结论1. 不同教育方法对学生学习成绩的影响存在显著差异。

2. 混合教育方法班级的平均成绩最高,其次是现代教育方法班级,传统教育方法班级的平均成绩最低。

3. 研究结果表明,混合教育方法可能是一种更有效的教育方式,值得进一步研究和推广。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中时常会用到百般考验,怎么样知讲何时用什么考验呢,根据分离自己的处事去道一道:之阳早格格创做t考验有单样本t考验,配对于t考验战二样本t考验.单样本t考验:是用样本均数代表的已知总体均数战已知总体均数举止比较,去瞅察此组样本与总体的好别性.配对于t考验:是采与配对于安排要领瞅察以下几种情形,1,二个共量受试对于象分别交受二种分歧的处理;2,共一受试对于象交受二种分歧的处理;3,共一受试对于象处理前后.u考验:t考验战便是统计量为t,u的假设考验,二者均是罕睹的假设考验要领.当样本含量n较大时,样本均数切合正态分散,故可用u考验举止分解.当样本含量n小时,若瞅察值x切合正态分散,则用t考验(果此时样本均数切合t 分散),当x为已知分散时应采与秩战考验.F考验又喊圆好齐性考验.正在二样本t考验中要用到F考验.从二钻研总体中随机抽与样本,要对于那二个样本举止比较的时间,最先要估计二总体圆好是可相共,即圆好齐性.若二总体圆好相等,则曲交用t考验,若没有等,可采与t'考验或者变量变更或者秩战考验等要领.其中要估计二总体圆好是可相等,便不妨用F考验.简朴的道便是考验二个样本的圆好是可有隐著性好别那是采用何种T考验(等圆好单样本考验,同圆好单样本考验)的前提条件.正在t考验中,如果是比较大于小于之类的便用单侧考验,等于之类的问题便用单侧考验.卡圆考验是对于二个或者二个以上率(形成比)举止比较的统计要领,正在临床战医教真验中应用格外广大,特天是临床科研中许多资料是记数资料,便需要用到卡圆考验.圆好分解用圆好分解比较多个样本均数,可灵验天统造第一类过失.圆好分解(analysis of variance,ANOVA)由英国统计教家R.A.Fisher最先提出,以F命名其统计量,故圆好分解又称F考验.其手段是估计二组或者多组资料的总体均数是可相共,考验二个或者多个样本均数的好别是可有统计教意思.咱们要教习的主要真量包罗单果素圆好分解即真足随机安排或者成组安排的圆好分解(oneway ANOVA):用途:用于真足随机安排的多个样本均数间的比较,其统计估计是估计百般本所代表的各总体均数是可相等.真足随机安排(completely random design)没有思量个体好别的做用,仅波及一个处理果素,但是不妨有二个或者多个火仄,所以亦称单果素真验安排.正在真验钻研中按随机化准则将受试对于象随机调配到一个处理果素的多个火仄中去,而后瞅察各组的考查效力;正在瞅察钻研(考察)中按某个钻研果素的分歧火仄分组,比较该果素的效力.二果素圆好分解即配伍组安排的圆好分解(twoway ANOVA):用途:用于随机区组安排的多个样本均数比较,其统计估计是估计百般本所代表的各总体均数是可相等.随机区组安排思量了个体好别的做用,可分解处理果素战个体好别对于真验效力的做用,所以又称二果素真验安排,比真足随机安排的考验效用下.该安排是将受试对于象先按配比条件配成配伍组(如动物真验时,可按共窝别、共性别、体沉相近举止配伍),每个配伍组有三个或者三个以上受试对于象,再按随机化准则分别将各配伍组中的受试对于象调配到各个处理组.值得注意的是,共一受试对于象分歧时间(或者部位)沉复多次丈量所得到的资料称为沉复丈量数据(repeated measurement data),对于该类资料没有克没有及应用随机区组安排的二果素圆好分解举止处理,需用沉复丈量数据的圆好分解.圆好分解的条件之一为圆好齐,即各总体圆好相等.果此正在圆好分解之前,应最先考验百般本的圆好是可具备齐性.时常使用圆好齐性考验(test for homogeneity of variance)估计各总体圆好是可相等.本节将介绍多个样本的圆好齐性考验,本法由Bartlett于1937年提出,称Bartlett法.该考验要领所估计的统计量遵循分散.通过圆好分解若中断了考验假设,只可证明多个样本总体均数没有相等或者没有齐相等.若要得到各组均数间更仔细的疑息,应正在圆好分解的前提上举止多个样本均数的二二比较.。

什么是T检验

什么是T检验

T检验什么是T检验T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。

它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

T检验是戈斯特为了观测酿酒质量而发明的。

戈斯特在位于都柏林的健力士酿酒厂担任统计学家。

戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。

T检验的适用条件:正态分布资料[编辑]单个样本的t检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。

计算公式:t统计量:自由度:v=n-1适用条件:(1)已知一个总体均数;(2)可得到一个样本均数及该样本标准误;(3)样本来自正态或近似正态总体。

单个样本的t检验实例分析[1]例1难产儿出生体重一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ=μ0(无效假设,null hypothesis)(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1:t0.05/2.34=2.032,t=1.77,t<t0.05/2.34,P>0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义[编辑]配对样本t检验配对设计:将受试对象的某些重要特征按相近的原则配成对子,目的是消除混杂因素的影响,一对观察对象之间除了处理因素/研究因素之外,其它因素基本齐同,每对中的两个个体随机给予两种处理。

•两种同质对象分别接受两种不同的处理,如性别、年龄、体重、病情程度相同配成对。

•同一受试对象或同一样本的两个部分,分别接受两种不同的处理•自身对比。

即同一受试对象处理前后的结果进行比较。

t检验和方差

t检验和方差

炼的中学生心脏功能是否与一般的中学生相同,现收集了某地区中学常年
参加体育锻炼的16名男生的心率资料,问能否认为常年参加体育锻炼的男 生心率次数低于一般男生?(xinlv.sav)
29
综合练习
4.18名黑热病兼贫血患者被随机分成两组各9名,分别用葡萄糖锑钠(A) 和复方葡萄糖锑钠(B)治疗,观察治疗前后血色素(%)的变化,测定 结果如下。试评价①这两种药是否都有效。②A,B两药的疗效是否有差
分变量
分组变量
19
三、两独立样本t检验 Independent-Samples T Test 过程
结果解释
结果分为两部分,第一部分为Levene’s方差齐性检验结果,用于判断两总体方差是否 齐。本例, F=0.440 , P=0.514 ,方差齐;第二部分则分别给出两组所在总体方差齐和不齐
时的t检验结果:第一行代表方差齐的结果,第二行代表方差不齐时的t’检验结果。
病人
健康人
2.90 5.41 5.48 4.60 4.03 5.10 4.97 4.24 4.36 2.72 2.37 2.09 7.10 5.92
5.18
8.79
3.14
6.46
3.72
6.64
5.60
4.57
7.71
4.99
4.01
18
三、两独立样本t检验 Independent-Samples T Test 过程
36
一、单因素方差分析 One-Way ANOVA
1、Statistics复选框: Descriptive:输出常用统计描述指标
Homogeneity of variance test:方差齐性检验
2、Means plot:用各组均数作均数图

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

医学论文中常见的统计方法误用一、等级资料用卡方检验代替秩和检验卡方检验主要用于计数资料的显著性检验。

医学统计学方差分析 (2)

试验指标:要考察的指标称为试验指标----例1为全肺
湿重,例2为抑菌圈的直径;
因素:影响试验指标的条件称为因素----例1为组别,
例2为药物(及剂量)、菌株来源;
水平:因素所处的状态称为该因素的水平----例1组别
这个因素有3个不同的水平;例2药物(及剂量) 因素有4个水平,菌株来源有7个水平。
在一项试验中,如果影响试验指标的因素只有 一个,则称该试验为单因素试验(例1);如果影响试 验指标的因素有多个,则称该试验为多因素试验(例 2)。

μg

22
假定处理组各水平Aj均为正态总体N(μj,σ2),区组 各水平Bk均为正态总体N(βk,σ2),方差分析的任务是:
对假设:
进行检验。
H0:μ1= μ2= …=μg H0:β1= β2 =…= βn
与完全随机设计的情形类似,我们将总平方和
分解为:
S S 总 S S 处 理 组 S S 区 组 + S S 误 差
方差分析----
多个样本均数比较的假设检验
1. 基本概念 t检验解决了推断两个总体均数是否相等的问题,
但实际工作中还会遇到需要推断多个总体均数是否相 等的问题。如:
Ex1 为研究煤矿粉尘作业环境对尘肺的影响,将18只
大鼠随机分到甲、乙、丙三个组,每组6只,分别在
地面办公楼、煤碳仓库和矿井下染尘,12周后测量大
s nj
SS总 (xij x)26.5628 j1 i1
s
SS组 间 nj(x•j x)22.5278 j1
S S 组 内 S S 总 S S 组 间 6 . 5 6 2 8 2 . 5 2 7 8 4 . 0 3 5 0
16
M S组 间 SsS 组 1 间2.3 5 27 181.264 M S组 内 S nS 组 内 s4 1.8 03 5 3 00.269

SPSS:数据分析3、T检验(TTest)方差分析(ANOVA)(Chi-squareTe。。。

SPSS:数据分析3、T检验(TTest)⽅差分析(ANOVA)(Chi-squareTe。

⽬录1、数据采集2、数据是否服从正态分布3、T检验(T Test)4、⽅差分析(ANOVA)5、卡⽅检验(Chi-square Test)6、灰⾊关联度分析(Grey Relation Analysis,GRA)7、弗⾥德曼检验(Friedman Test)8、箱图(Box)1、数据采集1、数据分类定性观察、访谈、调查定量⼿动测量、⾃动测量、问卷打分主观等级、排序、感觉、有⽤性客观时间、数量、错误率、分数⾃变量不同的实验条件因素,研究的因素因变量不同的实验条件所影响的、要观测的因素连续数量值(preference)时间、数量、错误率------离散数量值(usability问卷打分等级数量值(usability)等级、排序变量类型Norminal Data 定类变量 | 变量的不同取值仅仅代表了不同类的事物,这样的变量叫定类变量。

问卷的⼈⼝特征中最常使⽤的问题,⽽调查被访对象的“性别”,就是定类变量。

对于定类变量,加减乘除等运算是没有实际意义的。

Ordinal Data 定序变量 | 变量的值不仅能够代表事物的分类,还能代表事物按某种特性的排序,这样的变量叫定序变量。

问卷的⼈⼝特征中最常使⽤的问题“教育程度“,以及态度量表题⽬等都是定序变量,定序变量的值之间可以⽐较⼤⼩,或者有强弱顺序,但两个值的差⼀般没有什么实际意义。

Interval Data 定距变量 | 变量的值之间可以⽐较⼤⼩,两个值的差有实际意义,这样的变量叫定距变量。

有时问卷在调查被访者的“年龄”和“每⽉平均收⼊”,都是定距变量。

Ratio Data 定⽐变量 | 有绝对0点,如质量,⾼度。

定⽐变量与定距变量在市场调查中⼀般不加以区分,它们的差别在于,定距变量取值为“0”时,不表⽰“没有”,仅仅是取值为0。

定⽐变量取值为“0”时,则表⽰“没有”。

STATA第四章t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。

原假设:H0:各组总体均数相同。

在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。

例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。

方差和T检验

T检验在正态或近似正态分布的计量资料中,经常在使用前一章统计描述过程分析后,还要进行组与组之间平均水平的比较。

本章介绍的T 检验方法,主要应用在两个样本间比较。

如果需要比较两组以上样本均数的差别,这时就不能使用上述的T检验方法作两两间的比较。

对于两组以上的均数比较,可以使用方差分析方法。

用户可以指定一个或多个变量作为分组变量。

如果分组变量为多个,还应指定这些分组变量之间的层次关系。

层次关系可以是同层次的或多层次的。

同层次意味着将按照各分组变量的不同取值分别对个案进行分组;多层次表示将首先按第一分组变量分组,然后对各个分组下的个案按照第二组分组变量进行分组。

计算公式SPSS单样本T检验:检验某个变量的总体均值和某指定值之间是否存在显著差异。

统计的前提样本总体服从正态分布。

也就是说单样本本身无法比较,进行的是其均数与已知总体均数间的比较。

计算公式如下。

单样本T检验的零假设为H0总体均值和指定检验值之间不存在显著差异。

采用T检验方法,按照下面公式计算T统计量:如果相伴概率值P小于或等于用户设想的显性水平a,则拒绝H,可以认为总体均值和检验值之间存在显著性差异独立样本是指两个样本之间彼此独立没有任何关联,两个独立样本各自接受相同的测量,研究者的主要目的是了解两个样本之间是否有显著差异存在。

这个检验的前提如下。

1、两个样本应是互相独立的,即从一总体中抽取一批样本对从另一总体中抽取一批样本没有任何影响,两组样本个案数目可以不同,个案顺序可以随意调整。

1、两个总体应该服从正态分布。

2、T验的零假设H0为两总体均值之间不存在显著差异。

具体的计算中需要通过两步来完成:第一,利用F检验判断两总体的方差是否相同;第二,根据第一步的结果,决定T统计量和自由度计算公式,进而对T检验的结论作出判断SPSS采用Levene F方法检验两总体方差是否相同。

(1)两总体方差未知且相同情况下,T统计量计算公式为(2)两总体方差未知且不同情况下,T统计量计算公式为T统计仍然服从T分布,但自由度采用修正的自由度,公式为从两种情况下的T统计量计算公式可以看出,如果待检验的两样本均值差异较小,t值较小,则说明两个样本的均值不存在显著差异;相反,t值越大,说明两样本的均值存在显著差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档