2015届高考数学二轮专题训练:专题八 第2讲 数形结合思想
2015高考数学(新课标)大二轮复习配套课件:专题2 再谈数形结合的应用 第5练

第十七页,编辑于星期五:十五点 十二分。
精题狂练
1 2 3 4 5 6 7 8 9 10 11 12
2.若函数 f(x)=x+x-1 2 (x>2)在 x=a 处取最小值,则 a 等于( C )
A.1+ 2
B.1+ 3
C.3
D.4
解析 ∵x>2,∴f(x)=x+x-1 2=x-2+x-1 2+2 ≥2 x-2×x-1 2+2=4, 当且仅当 x-2=x-1 2,即 x=3 时等号成立,即 a=3,f(x)min=4.
例 1 (1)设正实数 x,y,z 满足 x2-3xy 破题切入点
+4y2-z=0,则当xzy取得最小值时,x
+2y-z 的最大值为( )
9
9
A.0
B.8
C.2
D.4
利用基本不等式确 定 z 取得最小值时x,
xy y,z之间的关系,进
而 可 求 得 x+ 2y -z 的
最大值.
第四页,编辑于星期五:十五点 十二分。
破题切入点
依条件,构 建关于p,t的方
程.
第九页,编辑于星期五:十五点 十二分。
题型二 与函数定义域、值域综合考查
解 y2=2px(p>0)的准线 x=-p2, ∴1-(-p2)=54,p=12, ∴抛物线C的方程为y2=x. 又点M(t,1)在曲线C上,∴t=1.
第十页,编辑于星期五:十五点 十二分。
目中,一般很少直接考查基本不等式的应用,而是需要将式子进行变形,
寻求其中的内在关系,然后利用基本不等式求出最值. (2)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“ 三相等”,所谓“一正”是指正数,“二定”是指应用基本不等式求 最值时,和或积为定值,“三相等”是指满足等号成立的条件.若连续
高三数学第二轮数形结合思想

1.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},那么集合A ∩(∁U B )等于( D )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3} 2. f (x )=ln x -1x的零点个数为(B )A .0 B .1 C .2 D .33.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是(D )4.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图6所示,则函数g (x )=a x +b 的图象是( A )图65.设二元一次不等式组⎩⎪⎨⎪⎧2x +y -19≥0x -y -8≤0x +2y -14≥0所表示的平面区域为M ,使函数y =log a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( C )A .[1,3]B .[2,10]C .[2,9]D .[10,9]6.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1)1-|x -3|,x ∈[1,+∞),则关于x 的函数F (x )=f (x )-a (0<a <1)的所有零点之和为( B )A . 2a -1B .2-a -1 C .1-2-a D .1-2a7.如果关于x 的方程213ax x+=正实数解有且仅有一个,那么实数a 的取值范围为(B )A .{|0}a a ≤B .{|02}a a a ≤=或C .{|0}a a ≥D .{|02}a a a ≥=-或8 已知函数)0()0()1(12)(>≤⎩⎨⎧--=-x x x f x f x ,若方程a x x f +=)(有且只有两个不相等的实数根,则实数a 的取值范围是AA.(-∞,1)B.(0,1)C.(-∞,1]D.[0,+∞) 9.设定义域为R 的函数⎩⎨⎧-=12lg )(x x f )2()2(=≠x x ,若关于x 的方程0)()(2=++c x bf x f 恰有5个不同的实数解54321,,,,x x x x x ,则)(54321x x x x x f ++++的值等于( C )A. 0B. 2lg 2C. 2lg 3D. 110.下列命题中的真命题是 ( B )A .x ∃∈R ,使得 sin cos 1.5x x += B. (0,),1xx e x ∀∈+∞>+ C .(,0),23x x x ∃∈-∞< D .(0,),sin cos x x x π∀∈> 12、定义在R 上的偶函数f(x)在[0,+∞)上是增函数,且0)31(=f ,则不等式0)(log 81>x f 的解集是( D )A 、)0,21(B 、),2(+∞C 、),2()21,0(+∞ D 、),2()1,21(+∞13、已知2221x y +=,则2x y +的最大值是CA 、2B 、2C 、3D 、314.若点O 和点F 分别为椭圆x 2/4 +y 2/3 =1的中心和左焦点,点P 为椭圆上点的任意一点,则的最大值为C A.2 B.3 C.6 D.815.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是A A.[122-,122+] B.[12-,3] C.[-1,122+]D.[122-,3]16.已知椭圆22:12x c y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值范围为__)2,22⎡⎣_____,直线0012x xy y +=与椭圆C 的公共点个数_0____。
【志鸿优化设计】2015高考数学+二轮总复习【专项能力训练课件】专题2+不等式

解析 答案
第一部分
专题2 不等式
能力突破点一 能力突破点二 能力突破点三
-6-
能力突破方略 能力突破模型 能力迁移训练
能力突破点一 基本不等式的应用
思考 1:x>0,y>0. (1)如果 xy 是定值 P,如何求 x+y 的最小值? (2)如果 x+y 是定值 S,如何求 xy 的最大值?
提示:(1)如果 xy 是定值 P,当且仅当 x=y 时,x+y 有最小值 2 ������(积定和
∴f(x)的最大值为 1.
第一部分
专题2 不等式
能力突破点一 能力突破点二 能力突破点三
-9-
能力突破方略 能力突破模型 能力迁移训练
分析推理基本不等式的功能在于“和与积”的相互转化,使
用基本不等式求最值时,给定的形式不一定能直接应用基本不等式,这时往
往需要拆添项或配凑因式,构造出基本不等式的形式再进行求解.
第一部分
专题2 不等式
能力突破点一 能力突破点二 能力突破点三
-8-
能力突破方略 能力突破模型 能力迁移训练
我的解答:
解:(1)y=������2+������7+x1+10
∴y=������2+������7+x1+10(x≠-1)的值域为(-∞,1]∪[9,+∞). (2)∵x<54,∴5-4x>0,
∴f(x)=4x-2+4���1���-5=-
5-4������
+
1 5-4������
+3≤-2
(5-4������)·5-14������+3=-2+3=1,
【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题八数学思想方法(含答案解析)

高考数学以能力立意,一是考查数学的基础知识,基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类与整合思想、转化与化归思想.一、函数与方程思想例1 (1)把一段长16的铁丝截成两段,分别围成两个正方形,则这两个正方形面积之和的最小值为________.(2)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为________. 答案 (1)8 (2)3-1解析 (1)设截成的铁丝其中一段长为x (0<x <16),则围成的两个正方形面积之和y =(x4)2+(16-x 4)2 (0<x <16), ∴y =18[(x -8)2+64],故当x =8时,y min =8.即围成的两个正方形面积之和的最小值为8. (2)设F (-c,0),A (m ,n ),则 ⎩⎪⎨⎪⎧nm +c×(-3)=-1,3×m -c2+n2=0, 解得A (c 2,32c ),代入椭圆方程中,有c 24a 2+3c 24b 2=1,所以b 2c 2+3a 2c 2=4a 2b 2,所以(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2), 所以c 4-8a 2c 2+4a 4=0,所以e 4-8e 2+4=0,所以e 2=4±23, 所以e =3-1或e =3+1(舍去). 即椭圆C 的离心率为3-1.思维升华 函数与方程思想在解题中的应用(1)函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.跟踪演练1 (1)若函数f (x )在R 上可导,且满足f (x )<xf ′(x ),则2f (1)________f (2).(填“>”“<”“=”)(2)如图是函数y =A sin(ωx +φ)(其中A >0,ω>0,-π<φ<π)在一个周期内的图象,则此函数的解析式是__________________.答案 (1)< (2)y =2sin(2x +2π3) 解析 (1)由于f (x )<xf ′(x ), 则(f (x )x )′=f ′(x )x -f (x )x 2>0恒成立,因此f (x )x 在R 上是单调递增函数,∴f (2)2>f (1)1,即f (2)>2f (1). (2)依函数图象,知y 的最大值为2,所以A =2. 又T 2=5π12-(-π12)=π2, 所以T =π,又2πω=π,所以ω=2,所以y =2sin(2x +φ). 将(-π12,2)代入可得sin(-π6+φ)=1,故φ-π6=π2+2k π,k ∈Z ,又-π<φ<π,所以φ=2π3.所以函数的解析式为y =2sin(2x +2π3).二、数形结合思想例2 (1)(2015·湖南)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. (2)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是__________. 答案 (1)(0,2) (2)[7-1,7+1]解析 (1)由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点.(2)设D (x ,y ),则由|CD →|=1,C (3,0), 得(x -3)2+y 2=1.又∵OA →+OB →+OD →=(x -1,y +3), ∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义是点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1. 思维升华 数形结合思想在解题中的应用(1)构建函数模型并结合其图象求参数的取值范围或解不等式. (2)构建函数模型并结合其图象研究方程根或函数的零点的范围. (3)构建解析几何模型求最值或范围.(4)构建函数模型并结合其图象研究量与量之间的大小关系.跟踪演练2 (1)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________.(2)已知P 是直线l :3x +4y +8=0上的动点,P A 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形P ACB 面积的最小值为________. 答案 (1)(-1,0)∪(0,1) (2)2 2解析 (1)作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1).(2)如图, S Rt △P AC =12P A ·AC=12P A , 当CP ⊥l 时,PC =|3×1+4×1+8|32+42=3,∴此时(P A )min =PC 2-AC 2=2 2.∴(S 四边形P ACB )min =2(S △P AC )min =2 2.三、分类与整合思想分类与整合思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度;分类研究后还要对讨论结果进行整合.例3 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=________.(2)设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,则PF 1PF 2的值为________.答案 (1)-74 (2)2或72解析 (1)由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解; ②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.(2)若∠PF 2F 1=90°,则PF 21=PF 22+F 1F 22,∵PF 1+PF 2=6,F 1F 2=25, 解得PF 1=143,PF 2=43,∴PF 1PF 2=72.若∠F 2PF 1=90°,则F 1F 22=PF 21+PF 22=PF 21+(6-PF 1)2,解得PF 1=4,PF 2=2,∴PF 1PF 2=2.综上所述,PF 1PF 2=2或72.思维升华 分类与整合思想在解题中的应用(1)由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.(3)由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.跟踪演练3 (1)若m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的离心率是____________.(2)设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…),则q 的取值范围是________________. 答案 (1)32或5 (2)(-1,0)∪(0,+∞) 解析 (1)因为m 是2和8的等比中项, 所以m 2=2×8=16,所以m =±4. 当m =4时,圆锥曲线y 24+x 2=1是椭圆,其离心率e =c a =32;当m =-4时,圆锥曲线x 2-y 24=1是双曲线,其离心率e =c a =51= 5.(2)因为{a n }是等比数列, S n >0,可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0; 当q ≠1时,S n =a 1(1-q n )1-q>0,即1-q n 1-q >0(n =1,2,3,…),则有⎩⎪⎨⎪⎧1-q >0,1-q n >0,①或⎩⎪⎨⎪⎧1-q <0,1-q n<0.②由①得-1<q <1,由②得q >1.故q 的取值范围是(-1,0)∪(0,+∞).四、转化与化归思想转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题. 例4 (1)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是__________.(2)定义运算:(ab )⊗x =ax 2+bx +2,若关于x 的不等式(ab )⊗x <0的解集为{x |1<x <2},则关于x 的不等式(ba )⊗x <0的解集为__________.答案 (1)[518,+∞) (2)⎝⎛⎭⎫-∞,-23∪(1,+∞) 解析 (1)f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32(x +1x )在[1,4]上恒成立,因为y =32(x +1x )在[1,4]上单调递增,所以t ≥32(4+14)=518.(2)1,2是方程ax 2+bx +2=0的两实根,1+2=-b a ,1×2=2a,解得⎩⎪⎨⎪⎧a =1,b =-3,由(-31)⊗x =-3x 2+x +2<0,得3x 2-x -2>0,解得x <-23或x >1.思维升华 转化与化归思想在解题中的应用(1)在三角函数中,涉及到三角式的变形,一般通过转化与化归将复杂的三角问题转化为已知或易解的三角问题,以起到化暗为明的作用,主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、函数的转化等.(2)换元法:是将一个复杂的或陌生的函数、方程、不等式转化为简单的或熟悉的函数、方程、不等式的一种重要的方法.(3)在解决平面向量与三角函数、平面几何、解析几何等知识的交汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言进行转化.(4)在解决数列问题时,常将一般数列转化为等差数列或等比数列求解.(5)在利用导数研究函数问题时,常将函数的单调性、极值(最值)、切线问题,转化为其导函数f ′(x )构成的方程、不等式问题求解.(6)在解决解析几何、立体几何问题时,常常在数与形之间进行转化.跟踪演练4 (1)若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________.(2)已知a 为正常数,若不等式1+x ≥1+x 2-x 22a 对一切非负实数x 恒成立,则a 的最大值为________.答案 (1)(-373,-5) (2)4解析 (1)g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数, 则①g ′(x )≥0在(t,3)上恒成立, 或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0, 即m +4≥2x -3x 在x ∈(t,3)时恒成立,所以m +4≥2t -3t (t ∈[1,2])恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)时恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为(-373,-5).(2)原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t=t 2-2t +12=(t -1)22对t ≥1恒成立,所以(t +1)2a ≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4.A 组 专题通关1.在区间(-∞,t ]上存在x ,使得不等式x 2-4x +t ≤0成立,则实数t 的取值范围是________. 答案 [0,4]解析 由二次函数图象知:当t ≤2时,t 2-4t +t ≤0⇒0≤t ≤3,即0≤t ≤2;当t >2时,22-4×2+t ≤0⇒t ≤4,即2<t ≤4.综上实数t 的取值范围是[0,4].2.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >3,2x -3+1, x ≤3满足f (a )=3,则f (a -5)的值为________.答案 32解析 分两种情况分析,⎩⎪⎨⎪⎧a ≤3,2a -3+1=3①或者⎩⎪⎨⎪⎧a >3,log 2(a +1)=3.②①无解,由②得,a =7, 所以f (a -5)=22-3+1=32.3.(2015·课标全国Ⅱ改编)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=________. 答案 42解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.4.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,定点G (0,c ).若双曲线上存在一点P满足PF =PG ,则双曲线的离心率的取值范围是__________. 答案 (2,+∞)解析 由题意知线段FG 的中垂线y =-x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共点,联立方程,由Δ≥0化简可得b ≥a ,所以e ≥2,但是当e =2时,双曲线是等轴双曲线,此时线段FG 的中垂线与双曲线的渐近线y =-x 重合,显然不合题意.5.在平面直角坐标系中,O 为坐标原点,直线l :x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →.若点M 在圆C 上,则实数k =________. 答案 0解析 设A (x 1,y 1),B (x 2,y 2),将直线方程代入C :x 2+y 2=4,整理得(k 2+1)y 2-2ky -3=0,所以,y 1+y 2=2kk 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,OM →=OA →+OB →=(-2k 2+1,2k k 2+1).由于M 点在圆C 上,所以(-2k 2+1)2+(2kk 2+1)2=4,解得k =0.6.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x的解的个数为________. 答案 3解析 由f (-4)=f (0),f (-2)=-2,解得b =4,c =2,∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2, x >0.作出函数y =f (x )及y =x 的函数图象如图所示, 由图可得交点有3个.7.已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =________. 答案 -12或0解析不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示,由图可知若不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有直线y =kx +1与直线y =0垂直(如图①)或直线y =kx +1与直线y =2x 垂直(如图②)时,平面区域才是直角三角形.由图形可知斜率k 的值为0或-12.8.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是________. 答案 1或-12解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q=21,解得q =-12或q =1(舍去).综上可知,q =1或-12.9.(2015·课标全国Ⅱ改编)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是__________. 答案 (-∞,-1)∪(0,1)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝⎛⎭⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x <0⇔f (x )>0.综上,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).10.将函数y =sin(4x -π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为________. 答案5π24解析 把y =sin(4x -π3)的图象上所有的点向左平移m 个单位长度后,得到y =sin[4(x +m )-π3]=sin(4x +4m -π3)的图象,而此图象关于y 轴对称,则4m -π3=k π+π2(k ∈Z ),解得m =14k π+5π24(k ∈Z ),又m >0,所以m 的最小值为5π24.11.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |, 0<x ≤10,-12x +6, x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是__________. 答案 (10,12)解析 作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c , 则-lg a =lg b =-12c +6.∴lg a +lg b =0,∴ab =1,∴abc =c . 由图知10<c <12,∴abc ∈(10,12).12.对任意x ,y ∈R ,不等式x 2+y 2+xy ≥3(x +y -a )恒成立,则实数a 的取值范围为__________. 答案 [1,+∞)解析 不等式x 2+y 2+xy ≥3(x +y -a )恒成立⇔不等式x 2+(y -3)x +y 2-3y +3a ≥0恒成立⇔Δ=(y -3)2-4(y 2-3y +3a )=-3y 2+6y +9-12a =-3(y -1)2+12(1-a )≤0,要使得上式恒成立,则有1-a ≤0成立,故a ≥1.13.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 答案 160解析 设该长方体容器的长为x m ,则宽为4x m .又设该容器的造价为y 元,则y =20×4+2(x +4x )×10,即y =80+20(x +4x )(x >0).因为x +4x≥2x ·4x =4(当且仅当x =4x,即x =2时取“=”),所以y min =80+20×4=160(元).B 组 能力提高14.已知函数f (x )的导函数为f ′(x ),e 为自然对数的底数,若函数f (x )满足xf ′(x )+f (x )=ln xx ,且f (e)=1e ,则不等式f (x )-x >1e -e 的解集是__________.答案 (0,e)解析 设g (x )=xf (x ),则g ′(x )=xf ′(x )+f (x )=ln xx ,g (x )=(ln x )22+a ,f (x )=(ln x )22x +a x ,f (e)=12e +a e =1e ⇒a =12,f (x )=(ln x )22x +12x,令h (x )=f (x )-x =(ln x )2-2x 2+12x ,h ′(x )=-2(ln x )2+4ln x -4x 2-24x 2<0,h (x )递减,原不等式转化为,h (x )>h (e),0<x <e.15.(2015·福建改编)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q =________. 答案 9解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2,解得⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9.16.已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12n a n.(1)证明:数列{a nn }是等比数列;(2)求通项a n 与前n 项的和S n . (1)证明 因为a 1=12,a n +1=n +12n a n ,当n ∈N *时,a nn≠0.又a 11=12,a n +1n +1∶a n n =12(n ∈N *)为常数, 所以{a n n }是以12为首项,12为公比的等比数列.(2)解 由(1)得a n n =12·(12)n -1,所以a n =n ·(12)n .∴S n =1·12+2·(12)2+3·(12)3+…+n ·(12)n ,12S n =1·(12)2+2·(12)3+…+(n -1)(12)n +n ·(12)n +1, ∴12S n =12+(12)2+(12)3+…+(12)n -n ·(12)n +1 =12-(12)n +11-12-n ·(12)n +1,∴S n =2-(12)n -1-n ·(12)n=2-(n +2)·(12)n .综上,a n =n ·(12)n ,S n =2-(n +2)·(12)n .17.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值. 解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.。
最新高考数学专题复习精品课件 数学解题思想方法

专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
二、数形结合思想 1.数形结合思想的含义 ( 1 ) 所谓数形结合,就是根据数与形之间的对应关系,通 过数与形的相互转化来解决数学问题的一种重要思想方 法.数形结合思想通过“以形助数,以数辅形”,使复杂问 题简单化,抽象问题具体化,能够变抽象思维为形象思维, 有助于把握数学问题的本质,它是数学的规律性与灵活性的 有机结合.
专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
( 4 ) 参数法:引进参数,使原问题的变换具有灵活性,易 于转化. ( 5 ) 构造法:“构造”一个合适的数学模型,把问题变为 易于解决的问题. ( 6 ) 坐标法:以坐标系为工具,用计算方法解决几何问 题,是转化方法的一个重要途径. ( 7 ) 类比法:运用类比推理,猜测问题的结论,易于确定 转化途径.
专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
( 1 1 ) 补集法:如果正面解决原问题有困难,可把原问题结 果看作集合A,而把包含该问题的整体问题的结果类比为全集 U,通过解决全集U及补集∁UA获得原问题的解决. 以上所列的一些方法有些是互相交叉的,不能截然分 割,只能说在哪一方面有所侧重.
专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
2.化归的原则 ( 1 ) 目标简单化原则,即复杂的问题向简单的问题转化; ( 2 ) 和谐统一性原则,即化归应朝着待解决的问题在表现形式 上趋于和谐,在量、形、关系上趋于统一的方向进行,使问 题的条件和结论更均匀和恰当;( 3 ) 具体化原则,即化归方向 应由抽象到具体;( 4 ) 低层次原则,即将高维空间问题化归成 低维空间问题.基于上述原则,化归就有一定的策略.我们 在应用化归方法时,应“有章可循,有法可依”通常可以从 以下几个方面去考虑:
【创新设计】2015高考数学二轮专题整合:1-7-2计数原理、数学归纳法、随机变量及其分布列(必做部分)

第2讲 计数原理、数学归纳法、随机变量及其分布列1.(2010·江苏卷)已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数.证明 (1)设三边长分别为a ,b ,c ,cos A =b 2+c 2-a 22bc,∵a ,b ,c 是有理数,b 2+c 2-a 2是有理数,分母2bc 为正有理数,又有理数集对于除法具有封闭性, ∴b 2+c 2-a 22bc 必为有理数,∴cos A 是有理数. (2)①当n =1时,显然cos A 是有理数;当n =2时,∵cos 2A =2cos 2A -1,因为cos A 是有理数,∴cos 2A 也是有理数;②假设当n ≤k (k ≥2)时,结论成立,即cos kA 、cos(k -1)A 均是有理数. 当n =k +1时,cos(k +1)A =cos kA cos A -sin kA sin A =cos kA cos A -12[cos(kA -A )-cos(kA +A )] =cos kA cos A -12cos(k -1)A +12cos(k +1)A解得:cos(k +1)A =2cos kA cos A -cos(k -1)A∵cos A ,cos kA ,cos(k -1)A 均是有理数, ∴2cos kA cos A -cos(k -1)A 是有理数, ∴cos(k +1)A 是有理数. 即当n =k +1时,结论成立.综上所述,对于任意正整数n ,cos nA 是有理数.2.记⎝ ⎛⎭⎪⎫1+x 2⎝ ⎛⎭⎪⎫1+x 22…⎝ ⎛⎭⎪⎫1+x 2n 的展开式中,x 的系数为a n ,x 2的系数为b n ,其中n∈N *.(1)求a n ;(2)是否存在常数p ,q (p <q ),使b n =13⎝ ⎛⎭⎪⎫1+p 2n ⎝ ⎛⎭⎪⎫1+q 2n ,对n ∈N *,n ≥2恒成立?证明你的结论.解 (1)根据多项式乘法运算法则,得 a n =12+122+…+12n =1-12n . (2)计算得b 2=18,b 3=732.代入b n =13⎝ ⎛⎭⎪⎫1+p 2n ⎝ ⎛⎭⎪⎫1+q 2n ,解得p =-2,q =-1.下面用数学归纳法证明b n =13⎝ ⎛⎭⎪⎫1-12n -1⎝⎛⎭⎪⎫1-12n =13-12n +23×14n (n ≥2且n ∈N *)①当n =2时,b 2=18,结论成立. ②设n =k 时成立,即b k =13-12k +23×14k , 则当n =k +1时, b k +1=b k +a k 2k +1=13-12k +23×14k +12k +1-122k +1=13-12k +1+23×14k +1.由①②可得存在常数p =-2,q =-1使结论对n ∈N *,n ≥2成立.3.(2014·泰州中学调研)已知多项式f (n )=15n 5+12n 4+13n 3-130n . (1)求f (-1)及f (2)的值;(2)试探求对一切整数n ,f (n )是否一定是整数?并证明你的结论. 解 (1)f (-1)=0,f (2)=17.(2)先用数学归纳法证明,对一切正整数n ,f (n )是整数.①当n =1时,f (1)=1,结论成立.②假设当n =k (k ≥1,k ∈N )时,结论成立,即f (k )=15k 5+12k 4+13k 3-130k 是整数,则当n =k +1时,f (k +1)=15(k +1)5+12(k +1)4+13(k +1)3-130(k +1)=C 05k 5+C 15k 4+C 25k 3+C 35k 2+C 45k +C 555+C 04k 4+C 14k 3+C 24k 2+C 14k +C 442+C 03k 3+C 13k 2+C 23k +C 333-130(k +1)=f (k )+k 4+4k 3+6k 2+4k +1.根据假设f (k )是整数,而k 4+4k 3+6k 2+4k +1显然是整数.∴f (k +1)是整数,从而当n =k +1时,结论也成立. 由①、②可知对一切正整数n ,f (n )是整数. (i)当n =0时,f (0)=0是整数(ii)当n 为负整数时,令n =-m ,则m 是正整数,由(i)知f (m )是整数,所以f (n )=f (-m )=15(-m )5+12(-m )4+13(-m )3-130(-m )=-15m 5+12m 4-13m 3+130m =-f (m )+m 4是整数.综上,对一切整数n ,f (n )一定是整数.4.(2012·江苏卷)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 212=111, 于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,所以随机变量ξ的分布列是因此E(ξ)=1×611+2×111=6+211.5.(2014·无锡五校联考)无锡学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=7 10.(1)求文娱队的队员人数;(2)写出ξ的概率分布列并计算E(ξ).解设既会唱歌又会跳舞的有x人,则文娱队中共有(7-x)人,只会一项的人数是(7-2x)人.(1)∵P(ξ>0)=P(ξ≥1)=1-P(ξ=0)=710,∴P(ξ=0)=310,即C27-2xC27-x=310.∴(7-2x)(6-2x)(7-x)(6-x)=310,解得x=2.故文娱队共有5人.(2)P(ξ=1)=C12·C13C25=35,P(ξ=2)=C22C25=110,ξ的概率分布列为∴E(ξ)=0×310+1×35+2×110=45.6.(2014·徐州质检)一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分ξ的数学期望Eξ.解(1)“飞碟投入红袋”,“飞碟投入蓝袋”,“飞碟不入袋”分别记为事件A,B,C.则P(A)=50100=12,P(B)=P(C)=25100=14.因每次投掷飞碟为相互独立事件,故4次投掷中恰有三次投入红袋的概率为P 4(3)=C 34⎝ ⎛⎭⎪⎫123⎝⎛⎭⎪⎫1-12=14.(2)两次投掷得分ξ的得分可取值为0,1,2,3,4则: P (ξ=0)=P (C )P (C )=116;P (ξ=1)=C 12P (B )P (C )=2×14×14=18; P (ξ=2)=C 12P (A )P (C )+P (B )P (B )=516; P (ξ=3)=C 12P (A )P (B )=14;P (ξ=4)=P (A )P (A )=14.∴E (ξ)=0×116+1×18+2×516+3×14+4×14=52.。
2015届高考数学二轮复习专题讲解 课件 第二讲 排列、组合与二项式定理(选择、填空题型)
高考专题辅点 三分。
创新方案系列丛书
1.两个计数原理 (1)分类加法计数原理 完成一件事有两类不同方案,在第 1 类方案中有 m 种 不同的方法,在第 2 类方案中有 n 种不同的方法,那么完成 这件事共有 N=m+n 种不同的方法. (2)分步乘法计数原理 完成一件事需要两个步骤,做第 1 步有 m 种不同的方 法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N =m×n 种不同的方法.
2.若甲单独去一所学校,则有 C23C12A22=12 种;若甲 不单独去一所学校,则有 C13C12A22=12 种,所以不同的保送 方案有 24 种.
3.分情况:一种情况将有奖的奖券按 2 张、1 张分给 4 个人中的 2 个人,种数为 C23C11A24=36;另一种将 3 张有奖 的奖券分给 4 个人中的 3 个人,种数为 A34=24,则获奖情 况总共有 36+24=60(种).
选修方案共有( )
A.15 种
B.60 种
C.75 种 D.100
种
4.(2014·潍坊模拟)现将如图所示的 5 个小正方形涂上
红、黄两种颜色,其中 3 个涂红色,2 个涂黄色,若恰有 2
个 相 邻 的 小 正 方 形 涂 红 色 , 则 不 同 的 涂 法 共 有 ________ 种.(用数字作答)
2.依题意,对这 3 个盒子中所放的小球的个数情况进 行分类计数:第一类,这 3 个盒子中所放的小球的个数是 1,2,6,此类放法有 A33=6(种);第二类,这 3 个盒子中所放 的小球的个数是 1,3,5,此类放法有 A33=6(种);第三类,这 3 个盒子中所放的小球的个数是 2,3,4,此类放法有 A33= 6(种).因此满足题意的放法共有 6+6+6=18(种),选 B.
高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)
数形结合的思想方法(1)---讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
[优选]高考数学二轮专题复习优质PPT数形结合思想精品PPT
B.k=± 2
C.[-1,1]
D.k= 2或 k∈[-1,1)
【 (名校 师课 整堂 理】课获本奖专P题PT)-高考数学二轮 专题复 习课优件质P:P数T数形形结结合合思思想想(精共品P PTPT)pp推t 荐优(质最说 新课版稿本( )精推选荐)
(名师整理课本专题)高考数学二轮 专题复 习优质P PT数形 结合思 想精品 PPTppt 优质说 课稿( 精选)
(名师整理课本专题)高考数学二轮 专题复 习优质P PT数形 结合思 想精品 PPTppt 优质说 课稿( 精选)
应用一 数形结合思想在函数零0·张家口二模)已知方程2-x-|log2x|=0的
第三部分
思想篇•素养升华
第3讲 数形结合思想
1 思想方法 • 解读 2 思想方法 • 应用
(名师整理课本专题)高考数学二轮 专题复 习优质P PT数形 结合思 想精品 PPTppt 优质说 课稿( 精选)
• 借助形的生动性和直观性来阐述数之间的关系,把数转化为形, 即以形作为手段,数作为目的解决数学问题的数学思想. • 借助于数的精确性和规范性及严密性来阐明形的某些属性,即 以数作为手段,形作为目的解决问题的数学思想. • 数形结合思想通过“以形助数,以数辅形”,使复杂问题简单 化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数 学问题的本质,它是数学的规律性与灵活性的有机结合.
高考数学:专题八 第二讲 填空题的解答技巧课件
第二讲
且关于 x 的方程 f(x)+x-a=0
(1,+∞) 有且只有一个实根,则实数 a 的范围是_________.
本 讲 栏 目 开 关
解析 方程 f(x)+x-a=0 的实根也就是函数 y=f(x)与 y=a-x 的图 象交点的横坐标,如图所示,作出两个函数图象,显然当 a≤1 时, 两个函数图象有
本 讲 栏 目 开 关
填空题的主要作用是考查考生的基础知识、基本技能以及分析推理 能力,考查学生基本的数学方法.填空题要求直接填写结果,不必写出计 算或推理过程,其结果必须是数值准确、形式规范、表达最简. 填空题的主要特征是题目小、跨度大,知识覆盖面广,形式灵活, 突出考查考生准确、严谨、全面、灵活运用知识的能力.近年来填空题作 为命题组改革实验的一个窗口,出现了一些创新题型,如阅读理解型、 发散开放型、多项选择型、实际应用型等,这些题型的出现,要求学生 对每一个命题都进行认真分析推理,只有全部命题判定准确才能得分, 这种题目要求更高,难度更大.
本 讲 栏 目 开 关
解析 本题所求的七个函数值最明显的特征是有 3 组自变量互为 倒数,
由此不难得出本题应该研究
1 +f x=1, 1 f(x)+f x的特征,代入解析式得
f(x)
7 故原式=3+f(1)=2.
方法技巧
第二讲
方法提炼
对于求函数值的和的问题, 经常用到函数的值的特殊规律, 1 如本题中 f(x)+fx为常数;另外,还有函数的周期性、对称性等.
对于一些含有几何背景的填空题,若能根据题目条件的特点,
本 讲 栏 目 开 关
作出符合题意的图形,进行数形结合,通过对图形的直观分析、判 断,则往往可以简捷地得出正确的结果.常见的形式有直线的斜率和 截距、两个向量的和差及夹角、两点间的距离、一些函数的图象等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 数形结合思想 1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线. 3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围. (2)构建函数模型并结合其图象研究方程根的范围. (3)构建函数模型并结合其图象研究量与量之间的大小关系. (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式. (5)构建立体几何模型研究代数问题. (6)构建解析几何中的斜率、截距、距离等模型研究最值问题. (7)构建方程模型,求根的个数. (8)研究图形的形状、位置关系、性质等. 4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: (1)准确画出函数图象,注意函数的定义域. (2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解. 热点一 利用数形结合思想讨论方程的根 例1 (2014·山东)已知函数f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是( )
A.(0,12) B.(12,1) C.(1,2) D.(2,+∞) 答案 B 解析 先作出函数f(x)=|x-2|+1的图象,如图所示,当直线g(x)=kx与直线AB平行时斜率为1,当直线g(x)=kx过A点时斜率为12,故f(x)=g(x)有两个不相等的实根时,k的范围为(12,1).
思维升华 用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.
设函数f(x)= x2+bx+c,x≤0,2, x>0,若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为( ) A.1 B.2 C.3 D.4 答案 C 解析 由f(-4)=f(0),f(-2)=-2,
解得b=4,c=2,∴f(x)= x2+4x+2,x≤0,2, x>0. 作出函数y=f(x)及y=x的函数图象如图所示,
由图可得交点有3个. 热点二 利用数形结合思想解不等式、求参数范围 例2 (1)已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)上单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是________.
(2)若不等式|x-2a|≥12x+a-1对x∈R恒成立,则a的取值范围是________. 答案 (1)(-1,0)∪(0,1) (2)-∞,12 解析 (1)作出符合条件的一个函数图象草图即可,由图可知x·f(x)<0的x的取值范围是(-1,0)∪(0,1).
(2)作出y=|x-2a|和y=12x+a-1的简图,依题意知应有2a≤2-2a,
故a≤12. 思维升华 求参数范围或解不等式问题时经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答. (1)设A={(x,y)|x2+(y-1)2=1},B={(x,y)|x+y+m≥0},则使A⊆B成立的实数m的取值范围是__________. (2)若不等式9-x2≤k(x+2)-2的解集为区间[a,b],且b-a=2,则k=________. 答案 (1)[2-1,+∞) (2)2 解析 (1)集合A是一个圆x2+(y-1)2=1上的点的集合,集合B是一个不等式x+y+m≥0表示的平面区域内的点的集合, 要使A⊆B,则应使圆被平面区域所包含(如图),即直线x+y+m=0应与
圆相切或相离(在圆的下方),而当直线与圆相切时有|m+1|2=1,又m>0, 所以m=2-1, 故m的取值范围是m≥2-1. (2)令y1=9-x2, y2=k(x+2)-2,在同一个坐标系中作出其图象,因9-x2≤k(x+2)-2的解集为[a,b]且b-a=2. 结合图象知b=3,a=1,即直线与圆的交点坐标为(1,22). 又因为点(-2,-2)在直线上,
所以k=22+21+2=2. 热点三 利用数形结合思想解最值问题 例3 (1)已知P是直线l:3x+4y+8=0上的动点,PA、PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为________.
(2)已知点P(x,y)的坐标x,y满足 x-2y+1≥0,|x|-y-1≤0,则x2+y2-6x+9的取值范围是( ) A.[2,4] B.[2,16] C.[4,10] D.[4,16] 答案 (1)22 (2)B 解析 (1)从运动的观点看问题,当动点P沿直线3x+4y+8=0向左上
方或右下方无穷远处运动时,直角三角形PAC的面积SRt△PAC=12|PA|·|AC|
=12|PA|越来越大,从而S四边形PACB也越来越大;当点P从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P到达一个最特殊的位置,即CP垂直直线l时,S四边形PACB应有唯一的最小值,
此时|PC|=|3×1+4×1+8|32+42=3, 从而|PA|=|PC|2-|AC|2=22. 所以(S四边形PACB)min =2×12×|PA|×|AC|=22. (2)画出可行域如图,所求的x2+y2-6x+9=(x-3)2+y2是点Q(3,0)到可行域上的点的距离的平方,由图形知最小值为Q到射线x-y-1=0(x≥0)的距离d的平方,最大值为|QA|2=16.
∵d2=(|3-0-1|12+-12)2=(2)2=2. ∴取值范围是[2,16]. 思维升华 (1)在几何的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值. (2)如果(不)等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解. (1)(2013·重庆)设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( ) A.6 B.4 C.3 D.2
(2)若实数x、y满足 x-y+1≤0,x>0,y≤2,则yx的最小值是____. 答案 (1)B (2)2 解析 (1)由题意,知圆的圆心坐标为(3,-1),圆的半径长为2,|PQ|的最小值为圆心到直线x=-3的距离减去圆的半径长,所以|PQ|min=3-(-3)-2=4.故选B. (2)可行域如图所示.
又yx的几何意义是可行域内的点与坐标原点连线的斜率k. 由图知,过点A的直线OA的斜率最小.
联立 x-y+1=0,y=2,得A(1,2),
所以kOA=2-01-0=2.所以yx的最小值为2.
1.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的. 2.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的. 3.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象. 4.数形结合思想常用模型:一次、二次函数图象;斜率公式;两点间的距离公式(或向量的模、复数的模);点到直线的距离公式等.
真题感悟 1.(2013·重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ) A.52-4 B.17-1 C.6-22 D.17 答案 A 解析 设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=2-32+-3-42=52. 而|PM|+|PN|=|PC1|+|PC2|-4≥52-4. 2.(2014·江西)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为( )