专题13-直线与圆—三年高考(2015-2017)数学(文)真题汇编

合集下载

专题17 直线与圆小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题17 直线与圆小题综合(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题17直线与圆小题综合考点十年考情(2015-2024)命题趋势考点1直线方程与圆的方程(10年5考)2024·北京卷、2022·全国甲卷、2022·全国乙卷2018·天津卷、2016·上海卷、2016·浙江卷2016·天津卷、2016·全国卷、2015·全国卷2016·北京卷、2015·北京卷1.理解、掌握直线的倾斜角与斜率及其关系,熟练掌握直线方程的5种形式及其应用,熟练掌握距离计算及其参数求解,该内容是新高考卷的常考内容,通常和圆结合在一起考查,需重点练习2.理解、掌握圆的标准方程和一般方程,并会基本量的相关计算,能正确处理点与圆、直线与圆及圆与圆的位置关系求解,能利用圆中关系进行相关参数求解,会解决圆中的最值问题,该内容是新高考卷的必考内容,一般考查直线与圆和圆与圆的几何综合,需强化练习3.熟练掌握圆中切线问题的快速求解,该内容是新高考卷的常考内容,需要大家掌握二级结论来快速解题,需强化练习4.强化解析几何联动问题考点2直线与圆的位置关系及其应用(10年6考)2023·全国新Ⅱ卷、2022·北京卷、2022·天津卷2020·天津卷、2018·全国卷、2016·全国卷2016·全国卷、2016·全国卷、2016·山东卷2015·湖北卷、2015·湖北卷、2015·全国卷考点3圆中的切线问题(10年7考)2024·全国新Ⅱ卷、2023·全国新Ⅰ卷、2023·天津卷2022·全国甲卷、2021·全国新Ⅱ卷、2020·全国卷2020·全国卷、2020·浙江卷、2019·浙江卷2015·山东卷、2015·山东卷、2015·湖北卷考点4直线、圆与其他知识点综合(10年7考)2024·天津卷、2023·全国甲卷、2023·全国乙卷2022·全国新Ⅱ卷、2022·全国甲卷、2021·全国新Ⅱ卷2021·全国乙卷、2021·全国甲卷、2020·山东卷2020·北京卷、、2018·全国卷、2015·全国卷考点5直线与圆中的最值及范围问题(10年9考)2024·全国甲卷、2024·全国甲卷、2023·全国乙卷2022·全国新Ⅱ卷、2021·北京卷、2021·全国新Ⅰ卷2020·全国卷、2020·北京卷、2020·全国卷2020·全国卷、2019·江苏卷、2018·北京卷2018·全国卷、2017·江苏卷、2016·四川卷2016·四川卷、2016·北京卷考点01直线方程与圆的方程1.(2024·北京·高考真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32【答案】D【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=()()221323211--+=+-故选:D.2.(2022·全国甲卷·高考真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.【答案】22(1)(1)5x y -++=【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,2222(3)(12)(2)-+-+-=a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=[方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线y=3x-4与直线210x y +-=的交点(1,-1).5R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=3.(2022·全国乙卷·高考真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒=22(2)(3)13x y -+-=;(2)若圆过A B D 、、三点,设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==的方程为22(2)(1)5x y -+-=;(3)若圆过A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程为25y x =-+,联立得47,33x y r ==⇒=,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =,线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=.故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-=⎪⎝⎭.【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.4.(2018·天津·高考真题)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.【答案】2220x y x +-=【详解】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则:01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得:200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.5.(2016·上海·高考真题)已知平行直线,则12l l 与的距离是.【详解】试题分析:利用两平行线间的距离公式得5d ==.【考点】两平行线间距离公式【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数必须相同,本题较为容易,主要考查考生的基本运算能力.6.(2016·浙江·高考真题)已知a R ∈,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是,半径是.【答案】(2,4)--;5.【详解】试题分析:由题意,知22a a =+,12a =-或,当1a =-时,方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,当2a =时,方程为224448100x y x y ++++=,2215()(1)24x y +++=-不表示圆.圆的标准方程.由方程222(2)4850a x a y x y a +++++=表示圆可得a 的方程,解得a 的值,一定要注意检验a 的值是否符合题意,否则很容易出现错误.7.(2016·天津·高考真题)已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=的距离为5,则圆C 的方程为.【答案】22(2)9.x y -+=【详解】试题分析:设(,0)(0)C a a >2,3a r ===,故圆C 的方程为22(2)9.x y -+=【考点】直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质、直线和圆的位置关系等求出圆心、半径,进而写出圆的标准方程.8.(2016·全国·高考真题)圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则=a A .43-B .34-C D .2【答案】A【详解】试题分析:由2228130x y x y +--+=配方得22(1)(4)4x y -+-=,所以圆心为(1,4),因为圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为11=,解得43a =-,故选A.【考点】圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.9.(2015·全国·高考真题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则MN =A .2B .8C .4D .10【答案】C【详解】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为AC 中点(1,2)-,半径为长为AC52=,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =C .考点:圆的方程.10.(2016·北京·高考真题)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为()A .1B .2CD .【答案】C【详解】试题分析:圆心坐标为(1,0)-,由点到直线的距离公式可知d = C.【考点】直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.11.(2015·北京·高考真题)圆心为()1,1且过原点的圆的方程是A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=【答案】D【详解】试题分析:设圆的方程为()()2211(0)x y m m -+-=>,且圆过原点,即()()220101(0)m m -+-=>,得2m =,所以圆的方程为()()22112x y -+-=.故选D.考点:圆的一般方程.考点02直线与圆的位置关系及其应用1.(2023·全国新Ⅱ卷·高考真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.【答案】2(112,2,,22--中任意一个皆可以)【分析】根据直线与圆的位置关系,求出弦长AB ,以及点C 到直线AB 的距离,结合面积公式即可解出.【详解】设点C 到直线AB 的距离为d ,由弦长公式得AB =,所以1825ABC S d =⨯⨯=△,解得:5d =或5d =,由d ==5=5=,解得:2m =±或12m =±.故答案为:2(112,2,,22--中任意一个皆可以).2.(2022·北京·高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-【答案】A【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.【详解】由题可知圆心为(),0a ,因为直线是圆的对称轴,所以圆心在直线上,即2010a +-=,解得12a =.故选:A .3.(2022·天津·高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.【答案】2【分析】计算出圆心到直线的距离,利用勾股定理可得出关于m 的等式,即可解得m 的值.【详解】圆()()22113x y -+-=的圆心坐标为()1,1圆心到直线()00x y m m -+=>由勾股定理可得2232m ⎛⎫+= ⎪⎝⎭,因为0m >,解得2m =.故答案为:2.4.(2020·天津·高考真题)已知直线80x +=和圆222(0)x y r r +=>相交于,A B两点.若||6AB =,则r 的值为.【答案】5【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =,即可求得r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =可得6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.5.(2018·全国·高考真题)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =.【答案】【分析】方法一:先将圆的方程化成标准方程,求出圆心,半径,再根据点到直线的距离公式以及弦长公式即可求出.【详解】[方法一]:【通性通法】【最优解】弦长公式的应用根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,弦心距d =AB ==.故答案为:[方法二]:距离公式的应用由221230y x x y y =+⎧⎨++-=⎩解得:01x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,不妨设(0,1),(2,1)A B --,所以AB =.故答案为:[方法三]:参数方程的应用直线1y x =+的参数方程为0212x y ⎧=+⎪⎪⎨⎪=+⎪⎩,将其代入22230x y y ++-=,可得22112130222t t ⎛⎫⎛⎫++++-= ⎪ ⎪⎝⎭⎝⎭,化简得20t +=,从而120,t t ==-12AB t t =-=.故答案为:【整体点评】方法一:利用圆的弦长公式直接求解,是本题的通性通法,也是最优解;方法二:直接求出弦的端点坐标,再根据两点间的距离公式求出,是求解一般弦长的通性通法,有时计算偏麻烦;方法三:直线参数方程中弦长公式的应用.6.(2016·全国·高考真题)已知直线l:60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点.则CD =.【答案】4【详解】试题分析:由60x -+=,得6x =-,代入圆的方程,整理得260y -+=,解得12y y ==120,3x x ==-,所以AB ==l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,4cos30ABCD ==︒.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.7.(2016·全国·高考真题)已知直线l:30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D两点,若||AB =,则||CD =.【答案】4【分析】由题,根据垂径定理求得圆心到直线的距离,可得m 的值,既而求得CD 的长可得答案.【详解】因为AB =r =()0,0到直线30mx y m ++=的距离为33=,解得m =l的方程,得3y x =+l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,4AB CD ==︒.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.8.(2016·全国·高考真题)设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B两点,若AB =C 的面积为【答案】4π【详解】因为圆心坐标与半径分别为(0,),=C a rd =2232a +=+,解之得22a =,所以圆的面积2(22)4πππ==+=S r ,应填答案4π.9.(2016·山东·高考真题)已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是则圆M与圆()()22:111N x y -+-=的位置关系是A .内切B .相交C .外切D .相离【答案】B【详解】化简圆()()2221:0,,M x y a a M a r a M +-=⇒=⇒到直线0x y +=的距离d =⇒()221220,2,2a a M r+=⇒=⇒=,又()2121,1,1N r MN r r MN=⇒⇒-<<12r r+⇒两圆相交.选B10.(2015·湖北·高考真题)如图,已知圆C与x 轴相切于点,与y轴正半轴交于两点A,B(B在A 的上方),且2AB=.(Ⅰ)圆C的标准方程为_________;(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22(1)(2x y-+-=;(Ⅱ)1-.【详解】设点C的坐标为00(,)x y,则由圆C与x 轴相切于点知,点C的横坐标为1,即1x=,半径0r y=.又因为2AB=,所以22211y+=,即0y r=,所以圆C的标准方程为22(1)(2x y-+=,令0x=得:1)B+.设圆C在点B处的切线方程为1)y kx-=,则圆心C到其距离为:d==1k=.即圆C在点B处的切线方程为1)y x=+,于是令0y=可得1x=,即圆C在点B处的切线在x轴上的截距为1-22(1)(2x y-+=和1--考点:本题考查圆的标准方程和圆的切线问题,属中高档题.11.(2015·湖北·高考真题)如图,圆C与x轴相切于点()1,0T,与y轴正半轴交于两点,A B (在的上方),且2AB=.(Ⅰ)圆C的标准方程为;(Ⅱ)过点A任作一条直线与圆22:1O x y+=相交于,M N两点,下列三个结论:①NA MANB MB=;②2NB MANA MB-=;③NB MANA MB+=其中正确结论的序号是.(写出所有正确结论的序号)【答案】22(1)(2)2x y -+-=;①②③【详解】(Ⅰ)依题意,设(1,)C r (r 为圆的半径),因为||2AB =,所以22112r =+,所以圆心(2,C ,故圆的标准方程为()(22122x y -+=.(Ⅱ)因为,M N 在圆22:1O x y +=上,所以可设(cos ,sin ),(cos ,sin )M N ααββ,所以22(cos 0)[sin (21)]NA ββ=-+--2(21)(2sin )β=--22(cos 0)[sin (21)]NB ββ=-+-+2(21)(2sin )β+-所以21NA NB =,同理可得21M AM B,所以NA MA NBMB=,1(21)221NB MA NAMB--=-,22NA MA NB MB +=,故①②③都正确.12.(2015·全国·高考真题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则MN =A .2B .8C .4D .10【答案】C【详解】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为AC 中点(1,2)-,半径为长为AC52=,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得262y =±,所以46MN =C .考点:圆的方程.考点03圆中的切线问题1.(2024·全国新Ⅱ卷·高考真题)(多选)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个【答案】ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD2.(2023·全国新Ⅰ卷·高考真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1BCD 【答案】B【分析】方法一:根据切线的性质求切线长,结合倍角公式运算求解;方法二:根据切线的性质求切线长,结合余弦定理运算求解;方法三:根据切线结合点到直线的距离公式可得2810k k ++=,利用韦达定理结合夹角公式运算求解.【详解】方法一:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC =PA =可得sin APC APC ∠=∠=,则sin sin 22sin cos 2APB APC APC APC ∠=∠=∠∠=⨯22221cos cos 2cos sin 04APB APC APC APC ⎫∠=∠=∠-∠=-=-<⎪⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()sin sin πsin 4APB APB =-∠=∠=α;法二:圆22410x y x +--=的圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,连接AB ,可得PC =PA PB ===,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB +-⋅∠=+-⋅∠且πACB APB ∠=-∠,则()336cos 5510cos πAPB APB +-∠=+--∠,即3cos 55cos APB APB -∠=+∠,解得1cos 04APB ∠=-<,即APB ∠为钝角,则()1cos cos πcos 4APB APB =-∠=-∠=α,且α为锐角,所以sin α==;方法三:圆22410x y x +--=的圆心()2,0C ,半径r 若切线斜率不存在,则切线方程为0x =,则圆心到切点的距离2d r =>,不合题意;若切线斜率存在,设切线方程为2y kx =-,即20kx y --=,=2810k k ++=,且644600∆=-=>设两切线斜率分别为12,k k ,则12128,1k k k k +=-=,可得12k k -=所以1212tan 1k k k k -==+αsin cos αα=,可得cos =α则2222sin sin cos sin 115+=+=αααα,且()0,πα∈,则sin 0α>,解得sin α=故选:B.3.(2023·天津·高考真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.【答案】6【分析】根据圆()2223x y ++=和曲线22y px =关于x 轴对称,不妨设切线方程为y kx =,0k >,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.【详解】易知圆()2223x y ++=和曲线22y px =关于x 轴对称,不妨设切线方程为y kx =,0k >,=k =22y y px ⎧=⎪⎨=⎪⎩解得:00x y =⎧⎨=⎩或23p x y ⎧=⎪⎪⎨⎪=⎪⎩,所以483p OP ==,解得:6p =.当k =故答案为:6.4.(2022·全国甲卷·高考真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =.故答案为:3.5.(2021·全国新Ⅱ卷·高考真题)(多选)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r =,直线l 与圆C 相切,故D 正确.故选:ABD.6.(2020·全国·高考真题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.7.(2020·全国·高考真题)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A B C D 【答案】B【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为1d =;圆心到直线的距离均为25d =圆心到直线230x y --=的距离均为5d ==;所以,圆心到直线230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.8.(2020·浙江·高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =;b =.【答案】33-【分析】由直线与两圆相切建立关于k ,b 的方程组,解方程组即可.【详解】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C 1=,1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.9.(2019·浙江·高考真题)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =,r =.【答案】2m =-r =【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.10.(2015·山东·高考真题)一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为()A .53-或53B .35-或32C .23-或23D .43-或34-【答案】D【详解】由光的反射原理知,反射光线的反向延长线必过点()2,3-,设反射光线所在直线的斜率为k ,则反射光线所在直线方程为:()32y k x +=-,即:230kx y k ---=.又因为光线与圆相切,()()22321x y ++-=1=,整理:21225120k k ++=,解得:43k =-,或34k =-,故选D .考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.11.(2015·山东·高考真题)过点P (作圆221x y +=的两条切线,切点分别为,A B ,则PA PB ⋅=.【答案】32【详解】如图,连接PO ,在直角三角形PAO中,1,OA PA ==所以,tan APO ∠=,22211tan 1cos 1tan 2APO APB APO --∠∠==+∠,故1322PA PB PA PB cos APB ⋅=⋅∠== .考点:1.直线与圆的位置关系;2.平面向量的数量积.12.(2015·湖北·高考真题)如图,已知圆C 与x 轴相切于点,与y 轴正半轴交于两点A ,B (B 在A的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)12-.【详解】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点知,点C 的横坐标为1,即01x =,半径0r y =.又因为2AB =,所以222011y +=,即02y r =,所以圆C 的标准方程为22(1)(2)2x y -+=,令0x =得:21)B +.设圆C 在点B 处的切线方程为(21)y kx -=,则圆心C 到其距离为:222121k d k -++==+1k =.即圆C 在点B 处的切线方程为(21)y x =+,于是令0y =可得21x =-,即圆C 在点B 处的切线在x 轴上的截距为12-22(1)(2)2x y -+=和12--考点:本题考查圆的标准方程和圆的切线问题,属中高档题.考点04直线、圆与其他知识点综合1.(2024·天津·高考真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x ⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:452.(2023·全国甲卷·高考真题)已知双曲线2222:1(0,0)x y C a b a b-=>>C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A B C D 【答案】D【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =222222215c a b b a a a+==+=,解得2ba=,所以双曲线的一条渐近线为2y x =,则圆心(2,3)到渐近线的距离5d =,所以弦长||5AB ===.故选:D3.(2023·全国乙卷·高考真题)设O 为平面坐标系的坐标原点,在区域(){}22,14x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A .18B .16C .14D .12【答案】C【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y x y ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率13π143π4P ⨯==.故选:C.4.(2022·全国新Ⅱ卷·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.9【答案】D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===,依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D5.(2022·全国甲卷·高考真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =.6.(2021·全国新Ⅱ卷·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+p =()A .1B .2C.D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值.【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d ==解得:2p =(6p =-舍去).故选:B.7.(2021·全国乙卷·高考真题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ==,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-==.8.(2021·全国甲卷·高考真题)点()3,0到双曲线221169x y -=的一条渐近线的距离为()A .95B .85C .65D .45【答案】A【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.【详解】由题意可知,双曲线的渐近线方程为:220169x y -=,即340x y ±=,结合对称性,不妨考虑点()3,0到直线340x y +=的距离:95d ==.故选:A.9.(2020·山东·高考真题)(多选)已知曲线22:1C mx ny +=.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C 表示圆心在原点,半径为n的圆,故B 不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线,。

高考数学试题分类汇编 -专题十五直线和圆

高考数学试题分类汇编 -专题十五直线和圆

2015年高考数学试题分类汇编-----专题十五(直线与圆)答案解析1.(15年安徽文科)直线3x+4y=b 与圆相切,则b=( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 【答案】D 【解析】试题分析:∵直线与圆心为(1,1),半径为1的圆相切,∴=1或12,故选D.考点:1.直线与圆的位置关系;2.点到直线的距离公式. 1.(15北京文科)圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++=D .()()22112x y -+-= 【答案】D 【解析】试题分析:由题意可得圆的半径为r =()()22112x y -+-=.考点:圆的标准方程.2.(15年广东理科)平行于直线且与圆相切的直线的方程是A .或 B.或 C.或 D. 或 【答案】.【考点定位】本题考查直线与圆的位置关系,属于容易题.222210x y x y +--+=b y x =+43224343+-+b ⇒2=b 012=++y x 522=+y x 052=+-y x 052=--y x 052=++y x 052=-+y x 052=+-y x 052=--y x 052=++y x 052=-+y x D3.(15年新课标2文科)已知三点,则△外接圆的圆心到原点的距离为()【答案】B考点:直线与圆的方程.4.(15年新课标2文科)已知椭圆的离心率为,点在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )(II )见试题解析(1,0),A B C ABC 5A.3B.3 C.34D.3()2222:10x y C a b a b+=>>2(2222184x y +=考点:直线与椭圆5.(15年陕西理科)设曲线在点(0,1)处的切线与曲线上点p 处的切线垂直,则p 的坐标 为.【答案】 【解析】试题分析:因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,xy e =1(0)y x x=>()1,1xy e =xy e '=xy e =()0,10101x k y e ='===P ()00,x y 00x >001y x =1y x =21y x'=-1y x =P 02201x x k y x ='==-121k k ⋅=-所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.考点:1、导数的几何意义;2、两条直线的位置关系.6.(15年天津理科)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN ===,则线段NE 的长为(A )83(B )3 (C )103(D )52【答案】A 【解析】试题分析:由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.考点:相交弦定理.7.(15年天津文科)如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM =2,MD =4,CN =3,则线段NE 的长为() (A)83 (B) 3 (C) 103(D) 52【答案】A【解析】试题分析:由相交弦定理可18,33CM MD CM MD CN NE AB AB NE CN ⨯⨯=⨯=⨯⇒==故选A. 考点:相交弦定理2011x -=-21x =01x =±00x >01x =01y =P ()1,1()1,1E8.(15年天津文科)已知椭圆22221(a b 0)x y a b 的上顶点为B,左焦点为F ,离心率为5, (I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BF 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与x 轴交于点M ,||=||PM MQ . (i )求的值;(ii )若7||sin =9PM BQP ,求椭圆的方程. 【答案】(I )2;(II )(i )78;(ii )22 1.54x y += 【解析】试题分析:(I )先由5c a =及222,a b c =+得,2a b c ==,直线BF 的斜率()020b bk c c-===--;(II )先把直线BF ,BQ 的方程与椭圆方程联立,求出点P ,Q 横坐标,可得PM MQ λ=7.8M P P Q M Q x x x x x x -===-(ii )先由7||sin =9PM BQP 得=||sin BP PQ BQP =1555||sin 7PM BQP ,由此求出c =1,故椭圆方程为22 1.54x y += 试题解析:(I )(),0F c- ,由已知c a =及222,ab c =+可得,2a b c == ,又因为()0,B b ,故直线BF 的斜率()020b bk c c-===-- .(II )设点()()(),,,,,P P Q Q M M P x y Q x y M x y ,(i )由(I )可得椭圆方程为22221,54x y c c+=直线BF 的方程为22y x c =+ ,两方程联立消去y 得2350,x cx +=解得53P cx =-.因为BQ BP ⊥,所以直线BQ 方程为122y x c =-+ ,与椭圆方程联立消去y 得221400x cx -= ,解得4021Q cx =.又因为PM MQ λ= ,及0M x =得7.8M P P Q M Q x x x x x x λ-===- (ii )由(i )得78PM MQ =,所以777815PM PM MQ ==++,即157PQ PM = ,又因为7||sin =PM BQP ,所以=||sin BP PQ BQP =1555||sin 7PM BQP . 又因为4223P P y x c c =+=-, 所以3BP ==,因此1,33c ==所以椭圆方程为22 1.54x y += 考点:直线与椭圆. 9.(15年湖南理科)10.(15年山东理科)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为 (A)53-或35- (B)32-或32- (C)54-或45- (D)43-或34- 解析:(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则1,|55|d k ==+=解得43k =-或34-,答案选(D)11.(15年江苏)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】考点:直线与圆位置关系22(1) 2.x y -+=。

专题25 选修部分—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

专题25 选修部分—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

1.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到la .【答案】(1)(3,0),2124(,)2525-;(2)8a =或16a =-.试题解析:(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a ≥-时,d=8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.【考点】参数方程【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表达椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数a 的值.2【2017课标1,文23】已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g .(1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.【答案】(1){|1x x -<≤;(2)[1,1]-.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤所以()()f x g x ≥的解集为{|1x x -<≤.(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.【考点】不等式选讲【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞(此处设a b <)三个部分,在每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.3.【2017课标II ,文22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

高考数学统考第二轮专题复习 第13讲 直线与圆课件 理

高考数学统考第二轮专题复习 第13讲 直线与圆课件 理
C
图M5-13-2
考点考法探究
图M5-13-2
考点考法探究
A
考点考法探究
3.在平面直角坐标系xOy中,已知直线l:y=kx+2与圆C:(x-1)2+y2=9相交于A,B两
点,过点A,B分别作圆C的切线l1,l2,直线l1与l2交于点P,则线段PC长度的最小值

.
考点考法探究
教师备用例题
[备选理由] 例1考查点与圆的位置关系,意在培养学生的计算能力和转化能力. 例2考查动点的轨迹方程的求法,考查坐标法的应用,解题的关键就是利用数 形结合思想,将代数式转化为距离求解,考查数形结合思想的应用以及运算求 解能力.例3考查圆的一般方程与标准方程的转化、圆的几何性质、正弦定 理的简单应用,具有一定的综合性.例4考查直线与圆相交所得的弦.例5考查 直线与圆的综合应用,考查数形结合思想与转化化归思想,意在培养学生的运 算能力.例6主要考查直线与直线、直线与圆的位置关系.
考点考法探究
【规律提炼】 直线与圆的位置关系既可以从几何的角度来探索,又可以从方程的角度
来解决一些度量问题,体现数形结合的思想.对这类问题的考查,一般会涉及 弦长、距离的计算、圆的切线、圆与圆的位置关系、圆的几何性质等,解答 此类问题,“圆的特征直角三角形”“垂径定理”“切线三角形”等是关键.
考点考法探究
点到直线的距离等问题,一般比较简单,属容易题.
考点考法探究
D
考点考法探究
考点考法探究
考点考法探究
2.将直线l:y=2x+1绕点A(1,3)按逆 时针方向旋转45°得到直线l',则 直线l'的方程为( D ) A.2x-y+1=0 B.x-y+2=0 C.3x-2y+3=0 D.3x+y-6=0

专题25 选修部分—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

专题25 选修部分—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师 大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

专题25 选修部分1.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l ,求a .2【2017课标1,文23】已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.3.【2017课标II ,文22】 在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值。

4.【2017课标II ,文23】已知330,0,2a b a b >>+=。

证明: (1)55()()4a b a b ++≥;(2)2a b +≤。

5.【2017课标3,文22】在直角坐标系xOy 中,直线1l 的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)=0,M 为l 3与C 的交点,求M 的极径.6.【2017课标3,文23】已知函数()f x =│x +1│–│x –2│.(1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.7【2017江苏,21】A. [选修4—1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1);PAC CAB ∠=∠ (2)2AC AP AB =⋅.B. [选修4—2:矩阵与变换](本小题满分10分)已知矩阵0110,.1002B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A=[0110] ,B=[1002].(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程.C. [选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.D.[选修4-5:不等式选讲](本小题满分10分)已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明8.ac bd +≤【2016,2015,2014高考】1. 【 2014湖南文12】在平面直角坐标系中,曲线2:1x C y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为___________.2. 【2016高考天津文数】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,BE =2AE =2,BD =ED ,则线段CE 的长为__________.3.【2015高考湖南,文12】在直角坐标系xOy 中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.4.【2014高考陕西版文第15题】(不等式选做题)设R n m b a ∈,,,,且5,522=+=+nb ma b a ,则22n m +的最小值为______.5. 【2014高考陕西版文第15题】(几何证明选做题)如图,ABC ∆中,6=BC ,以BC 为直径的半圆分别交AC AB ,于点F E ,,若AE AC 2=,则EF =_______.6. 【2014高考陕西版文第15题】(坐标系与参数方程选做题)在极坐标系中,点)6,2(π到直线1)6sin(=-πθρ的距离是_______.7. 【2014高考广东卷.文.14】(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分 别为22cossin ρθθ=和cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________.8. 【2014高考广东卷.文.15】(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长.9.【2015高考广东,文14】(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .10. 【2015高考广东,文15】(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .三、解答题1. 【2015高考陕西,文22】选修4-1:几何证明选讲如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C .(I)证明:CBD DBA ∠=∠ (II)若3,AD DC BC ==,求O 的直径.2. 【2015高考陕西,文23】选修4-4:坐标系与参数方程在直角坐标版权法xOy 吕,直线l的参数方程为132(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.3. 【2015高考陕西,文24】选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{|24}x x << (I)求实数,a b 的值;(II)+的最大值.4. 【2016高考新课标1文数】(本小题满分10分)选修4-1:几何证明选讲 如图,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与O 相切;(II)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .5. 【2016高考新课标1文数】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xy 中,曲线C 1的参数方程为(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (II )直线C 3的极坐标方程为,其中满足tan=2,若曲线C 1与C 2的公共点都在C 3上,求a .6.【2014全国2,文22】(本小题满分10分)选修4-1:几何证明选讲 如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BEEC =;(Ⅱ)22AD DEPB ⋅=7. 【2014全国2,文23】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(Ⅰ)求C 得参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.8. 【2014全国2,文24】(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.9. 【2016高考新课标1文数】(本小题满分10分),选修4—5:不等式选讲 已知函数.(I )在答题卡第(24)题图中画出的图像;(II )求不等式的解集.10.【2014全国1,文22】如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC的延长线交于点E ,且CB CE =.(I )证明:D E ∠=∠; (II )设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE ∆为等边三角形.11. 【2014全国1,文23】已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.12. 【2014全国1,文24】若,0,0>>b a 且ab ba =+11 (I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a ?并说明理由.13. 【2015高考新课标1,文22】选修4-1:几何证明选讲 如图AB 是O 直径,AC 是O 切线,BC 交O 与点E .(I )若D 为AC 中点,求证:DE 是O 切线;(II )若OA = ,求ACB ∠的大小.14. 【2016高考新课标2文数】如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为.(Ⅰ) 证明:四点共圆; (Ⅱ)若,为的中点,求四边形的面积.15. 【2016高考新课标2文数】在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||AB =,求l 的斜率.16. 【2016高考新课标2文数】已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.17. 【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.18. 【2015高考新课标1,文24】(本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围.19.【2014年.浙江。

2015-2017高考真题分类汇编立体几何(文数)

2015-2017高考真题分类汇编立体几何(文数)

2015高考试题分类汇编--立体几何【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂〔 〕A .假设l β⊥,则αβ⊥B .假设αβ⊥,则l m ⊥C .假设//l β,则//αβD .假设//αβ,则//l m【2015高考广东,文6】假设直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则以下命题正确的选项是〔 〕A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【2015高考湖北,文5】12,l l 表示空间中的两条直线,假设p :12,l l 是异面直线;q :12,l l 不相交,则〔 〕A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米〔如图,米堆为一个圆锥的四分之一〕,米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米有〔 〕A .14斛 B.22斛 C.36斛 D.66斛【2015高考浙江,文2】某几何体的三视图如下图〔单位:cm 〕,则该几何体的体积是〔 〕A .83cmB .123cm C .3233cm D .4033cm【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是〔 〕A .直线B .抛物线C .椭圆D .双曲线的一支【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球〔半径为r 〕组成一个几何体,该几何体的三视图中的正视图和俯视图如下图,假设该几何体的外表积为1620π+,则r =( )〔A 〕1 〔B 〕2 〔C 〕4 〔D 〕8【2015高考陕西,文5】一个几何体的三视图如下图,则该 几何体的外表积为〔 〕A .3πB .4πC .24π+D .34π+【2015高考福建,文9】某几何体的三视图如下图,则该几何体的外表积等于〔 〕A .822+B .1122+C .1422+D .15【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为〔材料利用率=新工件的体积/原工件的体积〕〔 〕A 、89πB 、827πC 、224(21)π-D 、28(21)π-【2015高考天津,文10】一个几何体的三视图如下图〔单位:m 〕,则该几何体的体积为3m .1112【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )223π〔B 〕423π〔〕22π〔〕42π【2015高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.〔I 〕求证://BD 平面FGH ;〔II 〕假设CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .2015高考浙江,文18】如图,在三棱锥111ABCA B C 中,11ABC 90AB AC 2,AA 4,A ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.〔1〕证明:11D A BC A ⊥平面; 〔2〕求直线1A B 和平面11B C B C 所成的角的正弦值.【2015高考湖南,文18】〔本小题总分值12分〕如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点。

三年高考两年模拟2017版高考数学专题汇编第十三章坐标系与参数方程理

第十三章 坐标系与参数方程 理A 组 三年高考真题(2016~2014年)1.(2014·安徽,4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B.214 C. 2 D.2 22.(2014·北京,3)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上 3.(2014·江西,11(2))若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π44.(2016·北京,11)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.5.(2016·全国Ⅰ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .6.(2016·全国Ⅱ,23)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l的斜率.7.(2016·全国Ⅲ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.8.(2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________. 9.(2015·北京,11)在极坐标系中,点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.10.(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.11.(2015·重庆,15)已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.12.(2015·江苏,21)已知圆C 的极坐标方程为ρ2+22ρsin ⎝⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.13.(2015·新课标全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.14.(2015·福建,21(2))在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ). ①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值. 15.(2015·湖南,16Ⅱ)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.16.(2014·湖北,16)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________.17.(2014·重庆,15)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.18.(2014·天津,13)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________. 19.(2014·湖南,11)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.20.(2014·广东,14)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.21.(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.22.(2014·江苏,21C)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.B 组 两年模拟精选(2016~2015年)1.(2016·河北石家庄调研)在极坐标系中,过点⎝⎛⎭⎪⎫2,π2且与极轴平行的直线方程是( )A.ρ=2B.θ=π2C.ρcos θ=2D.ρsin θ=22.(2016·郑州调研)在平面直角坐标系下,曲线C 1:⎩⎪⎨⎪⎧x =2t +2a ,y =-t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =2sin θ,y =1+2cos θ(θ为参数),若曲线C 1,C 2有公共点,则实数a 的取值范围是________. 3(2016·高考全国模拟一)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θy =4sin θ(θ为参数)倾斜角α=π6的直线l 经过点P (1,2).(1)写出圆C 的标准方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.4.(2016·南昌模拟)已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的非负半轴重合,且长度单位相同.直线l 的极坐标方程为:2ρsin ⎝⎛⎭⎪⎫θ-π4=10,曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),其中α∈[0,2π). (1)试写出直线l 的直角坐标方程及曲线C 的普通方程; (2)若点P 为曲线C 上的动点,求点P 到直线l 距离的最大值.5.(2016·洛阳模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =-2+22t (其中t 为参数).现以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=2cos θ.(1)写出直线l 和曲线C 的普通方程;(2)已知点P 为曲线C 上的动点,求P 到直线l 的距离的最大值. 6.(2015·湖北孝感模拟)已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t(t 为参数),曲线C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,则l 的极坐标方程为________.答案精析A 组 三年高考真题(2016~2014年)1.D [由⎩⎪⎨⎪⎧x =t +1,y =t -3消去t 得x -y -4=0,C :ρ=4cos θ⇒ρ2=4ρcos θ,∴C :x 2+y 2=4x ,即(x -2)2+y 2=4,∴C (2,0),r =2.∴点C 到直线l 的距离d =|2-0-4|2=2,∴所求弦长=2r 2-d 2=2 2.故选D.] 2.B [曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的普通方程为(x +1)2+(y -2)2=1,该曲线为圆,圆心(-1,2)为曲线的对称中心,其在直线y =-2x 上,故选B.] 3.A [∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.]4.2 [直线的直角坐标方程为x -3y -1=0,圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.圆心坐标为(1,0),半径r =1.点(1,0)在直线x -3y -1=0上,所以|AB |=2r =2.]5.解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.6.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.7.解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 8.522 [依题已知直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2和点A ⎝ ⎛⎭⎪⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522.] 9.1 [在平面直角坐标系下,点⎝⎛⎭⎪⎫2,π3化为(1,3),直线方程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1.]10.6 [由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x -y =0,∴圆心(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最大距离为4+2=6.]11.(2,π) [直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).]12.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.13.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形,所以△C 2MN 的面积为12.14.解 ①消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9. 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0. 所以直线l 的直角坐标方程为x -y +m =0.②依题意,圆心C 到直线l 的距离等于2,即|1-(-2)+m |2=2,解得m =-3±2 2.15.解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t代入②式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.16.(3,1) [曲线C 1为射线y =33x (x ≥0).曲线C 2为圆x 2+y 2=4.设P 为C 1与C 2的交点,如图,作PQ 垂直x 轴于点Q .因为tan ∠POQ =33,所以∠POQ =30°,又∵OP =2,所以C 1与C 2的交点P 的直角坐标为(3,1).]17. 5 [直线l 的普通方程为y =x +1,曲线C 的直角坐标方程为y 2=4x ,故直线l 与曲线C 的交点坐标为(1,2).故该点的极径ρ=x 2+y 2= 5.]18.3 [圆的直角坐标方程为x 2+y 2=4y ,直线的直角坐标方程为y =a ,因为△AOB 为等边三角形,则A (±a3,a ),代入圆的方程得a 23+a 2=4a ,故a =3.]19.2·ρcos ⎝ ⎛⎭⎪⎫θ+π4=1 [曲线C 的普通方程为(x -2)2+(y -1)2=1,由直线l 与曲线C 相交所得的弦长|AB |=2知,AB 为圆的直径,故直线l 过圆心(2,1),注意到直线的倾斜角为π4,即斜率为1,从而直线l 的普通方程为y =x -1,从而其极坐标方程为ρsin θ=ρcos θ-1,即2·ρcos ⎝⎛⎭⎪⎫θ+π4=1.] 20.(1,1) [由ρsin 2θ=cos θ得ρ2sin 2θ=ρcos θ,其直角坐标方程为y 2=x ,ρsin θ=1的直角坐标方程为y =1,由⎩⎪⎨⎪⎧y 2=x ,y =1得C 1和C 2的交点为(1,1).]21.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos ty =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得:⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.22.解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2.所以|AB |=|t 1-t 2|=8 2.B 组 两年模拟精选(2016~2015年)1.D [先将极坐标化成直角坐标表示,⎝⎛⎭⎪⎫2,π2化为(0,2),过(0,2)且平行于x 轴的直线为y =2,再化成极坐标表示,即ρsin θ=2.故选D.]2.[1-5,1+5] [曲线C 1的直角坐标方程为x +2y -2a =0, 曲线C 2的直角坐标方程为x 2+(y -1)2=4,圆心为(0,1),半径为2, 若曲线C 1,C 2有公共点,则有圆心到直线的距离|2-2a 2|12+22≤2, 即|a -1|≤5,∴1-5≤a ≤1+5,即实数a 的取值范围是[1-5,1+5].] 3.解 (1)消去θ得圆的标准方程为x 2+y 2=16.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6.即⎩⎪⎨⎪⎧x =1+32t y =2+12t(t 为参数).(2)把直线l 的方程⎩⎪⎨⎪⎧x =1+32t y =2+12t代入x 2+y 2=16.得⎝ ⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16.即t 2+(2+3)t -11=0.所以t 1·t 2=-11,即|PA |·|PB |=11.4.解 (1)∵2ρsin ⎝⎛⎭⎪⎫θ-π4=10,∴ρsin θ-ρcos θ=10,直线l 的直角坐标方程:x -y +10=0.曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),消去参数可得曲线C 的普通方程:x 2+(y -2)2=4.(2)由(1)可知,x 2+(y -2)2=4的圆心(0,2),半径为2.圆心到直线的距离为:d =|1×0-1×2+10|12+(-1)2=42,点P 到直线l 距离的最大值:42+2. 5.解 (1)由题,直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =-2+22t (其中t 为参数).消去直线l 参数方程中的参数t 得直线l 普通方程为y =x +2. 又由曲线C 的极坐标方程为ρ=2cos θ,得ρ2=2ρcos θ,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得曲线C 的直角坐标方程为x 2+y 2-2x =0. (2)曲线C 的极坐标方程为ρ=2cos θ可化为(x -1)2+y 2=1, 设与直线l 平行的直线为y =x +b ,当直线l 与曲线C 相切时,有|1+b |2=1,即b =-1± 2.于是当b =-1-2时,P 到直线l 的距离达到最大, 最大值为两平行线的距离即|2-(-1-2)|2=322+1.(或先求圆心到直线的距离为322,再加上半径1,即为P 到直线l 距离的最大值322+1). 6. ρcos θ+ρsin θ=2 [⎩⎨⎧x =2cos t ,y =2sin t ,两边平方相加得x 2+y 2=2,∴曲线C 是以(0,0)为圆心,半径等于2的圆.C 在点(1,1)处的切线l 的方程为x +y =2, 令x =ρcos θ,y =ρsin θ,代入x +y =2,并整理得ρcos θ+ρsin θ=2.]。

2015年高考数学真题分类汇编:专题(08)直线与圆(理科)及答案

专题八 直线与圆1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( )A 、2B 、C 、6D 、【答案】C【解析】圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,A --6==.选C .【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l =.2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C .【考点定位】圆的方程.【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ∆是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题.3.【2015高考广东,理5】平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y xC. 052=+-y x 或052=--y xD. 052=++y x 或052=-+y x【答案】D .【解析】依题可设所求切线方程为20x y c ++=5c =±,所以所求切线的直线方程为250x y ++=或250x y +-=,故选D .【考点定位】直线与圆的位置关系,直线的方程.【名师点睛】本题主要考查直线与圆的位置关系,利用点到直线距离求直线的方程及转化与化归思想的应用和运算求解能力,根据题意可设所求直线方程为20x y c ++=,然后可用代数方法即联立直线与圆的方程有且只有一解求得,也可以利用几何法转化为圆心与直线的距离等于半径求得,属于容易题.4.【2015高考山东,理9】一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=错误!未找到引用源。

专题02 函数—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第二章 函数【2017年高考试题】1.【2017课标1,文8】函数sin21cos x y x=-的部分图像大致为 A . B .C .D .2.【2017课标3,文7】函数2sin 1x y x x =++的部分图像大致为( )A BD .C D3.【2017浙江,5】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关4.【2017北京,文5】已知函数1()3()3x x f x =-,则()f x (A )是偶函数,且在R 上是增函数(B )是奇函数,且在R 上是增函数(C )是偶函数,且在R 上是减函数(D )是奇函数,且在R 上是增函数5.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是 (参考数据:lg3≈0.48)(A )1033 (B )1053(C )1073 (D )10936.【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭ A. 2 B. 4 C. 6 D. 87.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为 (A )a b c <<(B )b a c <<(C )c b a <<(D )c a b <<8.【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞9.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 10.【2017山东,文10】若函数()e x f x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2x f x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x = 11.【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 (A )[2,2]-(B)[2]-(C)[2,-(D)[-12.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = ________.13.【2017北京,文11】已知0x ≥,0y ≥,且x +y =1,则22x y +的取值范围是__________.14.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________.15【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .16.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .17.【2017江苏,14】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 . 【2016,2015,2014高考题】1. 【2016高考新课标1文数】若0a b >>,01c <<,则( )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b2. 【2014高考北京文第2题】下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x =3. 【2014高考北京文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟4. 【2014高考北京文第6题】已知函数()26log f x x x =-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞5. 【2015高考北京,文3】下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2x y -=6. 【2014高考广东卷.文.5】下列函数为奇函数的是( )A .122x x - B .3sin x x C .2cos 1x + D .22x x +7. 【2016高考新课标1文数】函数22x y x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )8. 【2015高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =-C .122x xy =+D .sin 2y x x =+9. 【 2014湖南文4】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x= 2.()1B f x x =+ 3.()C f x x = .()2x D f x -= 10. 【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D )y= 11. 【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mii x =∑( ) (A)0 (B)m (C) 2m (D) 4m12. 【2014山东.文3】 函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞13. 【2014山东.文6】已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1a c >>B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<14. [2016高考新课标Ⅲ文数]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c << (C) b c a << (D) c a b << 15. 【2016高考浙江文数】函数y =sin x 2的图象是( )16. 【2015高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c << (B )a cb << (C )b ac << (D )b c a << 17. 【2014山东.文5】 已知实数,x y 满足(01)x y aa a <<<,则下列关系式恒成立的是( )A.33x y >B.sin sin x y >C.22ln(1)ln(1)x y +>+D.221111x y >++ 18. 【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( )A.(1)(1)0a b --<B. (1)()0a a b -->C. (1)()0b b a --<D. (1)()0b b a -->19. 【2015高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1() (D )1,+∞()20. 【2015高考山东,文10】设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)1221. 【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件22. 【2015高考陕西,文4】设10()2,0x x f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .3223. 【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,x f x x ≥∈R .( )A.若()f a b ≤,则a b ≤B.若()2bf a ≤,则a b ≤C.若()f a b ≥,则a b ≥D.若()2b f a ≥,则a b ≥24. 【2014高考陕西版文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) (A )()3f x x = (B )()3x f x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭ 25. 【2015高考陕西,文9】 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数26. 【2015高考陕西,文10】设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =< D .p r q =>27. 【2016高考北京文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.828. 【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 29. 【2014四川,文7】已知,,,,则下列等式一定成立的是( )A 、B 、C 、D 、 0b >5log b a =lg b c =510d =d ac =a cd =c ad =d a c =+30. 【2015高考四川,文5】下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π) (C )y =sin 2x +cos 2x (D )y =sinx +cosx31.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题32. 【2015高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时33. 【2014全国1,文5】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数34.【2015高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74- (B )54- (C )34- (D )14- 35. 【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =36. 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x=-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )437. 【2014年.浙江卷.文7】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC. 96≤<cD.9>c38. 【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1(C )0 (D )239. 【2015高考浙江,文5】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .40. 【2014年.浙江卷.文8】在同一坐标系中,函数)0()(>=x x x f a ,x x g a log )(=的图象可能是( )41. 【2016高考四川文科】某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(A)2018年 (B) 2019年 (C)2020年 (D)2021年42. 【2014高考重庆文第4题】下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22x x C f x -=-.()22x x D f x -=+43. 【2014高考重庆文第10题】已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m 的取值范围是( ) A.91(,2](0,]42-- B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43-- 44. 【2015高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1)(C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞ 45. 【2014,安徽文5】设 1.1 3.13log 7,2,0.8a b c ===则( )A .c a b <<B .b a c <<C .a bc << D .b c a <<46. 【2015高考安徽,文4】下列函数中,既是偶函数又存在零点的是( ) (A )y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx47. 【2015高考安徽,文10】函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A )a >0,b <0,c >0,d >0 (B )a >0,b <0,c <0,d >0 (C )a <0,b <0,c <0,d >0 (D )a >0,b >0,c >0,d <048. 【2014,安徽文9】若函数()12f x x x a =+++的最小值3,则实数a 的值为 ( )A .5或8B .1-或5C . 1-或4-D .4-或849.【2014天津,文4】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 50. 【2015高考天津,文8】已知函数22||,2()(2),2x xf x x x ,函数()3(2)g x f x ,则函数y()()f x g x 的零点的个数为( )(A) 2 (B) 3 (C)4 (D)551. 【2015高考天津,文7】 已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b (log 5),c(2)f f m ,则,,a b c ,的大小关系为( )(A) b c a(B) b c a (C) b a c (D) b c a52.【2014年普通高等学校招生全国统一考试湖北卷9】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{2D.{2-53. 【2015高考湖北,文6】函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-54. 【2015高考湖北,文7】设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则( ) A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =55. 【2014福建,文8】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是 (56. 【2014福建,文9】要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该容器的最低总造价是 ( ).80.120.160.240A B C D 元元元元57. 【2015高考福建,文3】下列函数为奇函数的是( )A.y = B .x y e = C .cos y x = D .x x y e e -=-58. 【2014辽宁文3】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>59. (2014课标全国Ⅰ,文5)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ).A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数60. 【2015新课标2文11】如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .61. 【2015新课标2文12】设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭62. 【2014辽宁文10】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--63. 【2014辽宁文11】 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 二、填空题1. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .2. 【2015高考北京,文10】32-,123,2log 5三个数中最大数的是 . 3. 【2015高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____.4. 【 2014湖南文15】若()()ax ex f x++=1ln 3是偶函数,则=a ____________.5. 【2014高考陕西版文第12题】已知42a=,lg x a =,则x =________. 6. 【2014高考陕西版文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.7. 【2014全国2,文15】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.8. 【2016高考上海文科】已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.9. 【2014四川,文13】设是定义在R 上的周期为2的函数,当时,()f x [1,1)x ∈-,则 . 10. 【2015高考四川,文12】lg 0.01+log 216=_____________.11. 【2015高考四川,文15】已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有___________________(写出所有真命题的序号).12. 【2014年.浙江卷.文15】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a .13. 【2016高考浙江文数】设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.14. 【2015高考浙江,文9】计算:2log 2= ,24log 3log 32+= . 15. 【2015高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .16. 【2014,安徽文11】34331654+log log 8145-⎛⎫+=⎪⎝⎭________. 17. 【2016高考山东文数】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 18. 【2014,安徽文14】若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f .242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩3()2f =19. 【2016高考北京文数】函数()(2)1xf x x x =≥-的最大值为_________. 20. 【2015高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 . 21. 【2015高考安徽,文11】=-+-1)21(2lg 225lg. 22. 【2014天津,文12】函数2()lg f x x =的单调递减区间是________.23. 【2014天津,文14】已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______24. 【2014年普通高等学校招生全国统一考试湖北卷15】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .25. 【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.26. 【2014上海,文3】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .27. 【2014上海,文9】设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .28. 【2014上海,文11】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .29. 【2016高考天津文数】已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R上单调递减,且关于x 的方程|()|23xf x =-恰有两个不相等的实数解,则a 的取值范围是_________.30. 【2014福建,文15】(函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是__________.31. 【2015高考福建,文15】若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.32. 【2015新课标2文13】已知函数()32f x ax x =-的图像过点(-1,4),则a = .33. (2014课标全国Ⅰ,文15)设函数()113e ,1,,1,x x f x x x -⎧<⎪=⎨⎪≥⎩则使得f (x )≤2成立的x 的取值范围是__________.34. 【2014辽宁文16】对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .三、解答题1.【2015高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.2. 【2014上海,文20】(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数aa x f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.3. 【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知a ∈R ,函数()f x =21log ()a x+.(1)当 1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.专题3 导数的几何意义与运算1.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 2.【2014高考陕西版文第10题】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )(A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-3.【2016高考四川文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)4.【2017课标1,文14】曲线21y x x=+在点(1,2)处的切线方程为______________. 5.【2017天津,文10】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为 .6.【2014高考广东卷.文.11】曲线53xy e =-+在点()0,2-处的切线方程为________.7. [2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x ex --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________.9.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .10. 【2014,安徽文15】若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C ,下列命题正确的是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过”曲线C :3yx =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =11. 【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .12. 【2015新课标2文16】已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .13.【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R ., (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.14.【2017北京,文20】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.15.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.16.【2015高考山东,文20】设函数. 已知曲线 在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =({},min p q 表示,,p q 中的较小值),求()m x 的最大值.17.【2014全国2,文21】(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ; (Ⅱ)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.18.【2016高考北京文数】(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.19.【2014高考重庆文第19题】(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切线垂直于x y 21=. (Ⅰ)求a 的值;(Ⅱ)求函数)(x f 的单调区间与极值.20.【2015高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R (I )求()f x 的单调区间;(II )设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()yg x ,求证:对于任意的正实数x ,都有()()f x g x ; (III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x ,求证:1321-43a x x。

专题02 函数—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

【2017年高考试题】1.【2017课标1,文8】函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【考点】函数图象【名师点睛】函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.2.【2017课标3,文7】函数2sin 1xy x x=++的部分图像大致为( )A BD.C D【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f“”,即将函数值的大小转化自变量大小关系3.【2017浙江,5】若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M –mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】试题分析:因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b无关,选B.【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上,且对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.4.【2017北京,文5】已知函数1()3()3x xf x =-,则()f x(A )是偶函数,且在R 上是增函数 (B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数 (D )是奇函数,且在R 上是增函数 【答案】B【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.5.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)(A )1033(B )1053(C )1073 (D )1093 【答案】D 【解析】 试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D. 【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN+=,log log log a a aMM N N-=,log log n a a M n M =.6.【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8 【答案】C【考点】分段函数求值【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 7.【2017天津,文6】已知奇函数()f x 在R上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.8.【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ .故选D.【考点】复合函数单调区间【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.9.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 【答案】C【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.10.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2x f x -= B. ()2f x x = C. ()3x f x -= D. ()cos f x x =【答案】A【解析】由A,令()e2xx g x -=⋅,11'()e (22ln )e 2(1ln )022x x x x x g x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.11.【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )[2,2]-(B)[-(C)[-(D)[-【答案】A零点是20x a =->,零点右边()()2xg x a f x =+<恒成立,零点左边()2xg x a =--,根据图象分析当0x =时,22a a -≤⇒≥-,即20a -≤< ,当0a =时,()()f x g x ≥恒成立,所以22a -≤≤,故选A.【考点】1.分段函数;2.函数图形的应用;3.不等式恒成立.【名师点睛】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.12.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = ________. 【答案】12【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式. (2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值. 13.【2017北京,文11】已知0x ≥,0y ≥,且x +y =1,则22x y +的取值范围是__________.【答案】1,12⎡⎤⎢⎥⎣⎦【解析】 试题分析:22222(1)221,[0,1]xy x x x x x +=+-=-+∈ ,所以当01x =或时,取最大值1;当12x =时,取最小值12;因此取值范围为1[,1]2【考点】二次函数【名师点睛】本题考查了转化与化归的能力,除了象本题的方法,转化为二次函数求取值范围,也可以转化为几何关系求取值范围,当0,0x y ≥≥,1x y +=表示线段,那么22xy +的几何意义就是线段上的点到原点距离的平方,这样会更加简单.14.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________. 【答案】1(,)4-+∞【考点】分段函数解不等式【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.15【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .【答案】6 【解析】试题分析:由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+= (1)6f =-=.【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解. ④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性. 16.【2017江苏,11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ .【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内17.【2017江苏,14】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩ 其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 . 【答案】8【解析】由于()[0,1)f x ∈ ,则需考虑110x ≤< 的情况 在此范围内,x Q ∈ 且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈ ,则由lg (0,1)x ∈ ,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质 因此10n mq p= ,则10()nm q p = ,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉ 因此lg x 不可能与每个周期内x D ∈ 对应的部分相等, 只需考虑lg x 与每个周期x D ∉ 的部分的交点,画出函数图像,图中交点除外(1,0) 其他交点横坐标均为无理数,属于每个周期x D ∉ 的部分,且1x = 处11(lg )1ln10ln10x x '==< ,则在1x =附近仅有一个交点因此方程解的个数为8个.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.【2016,2015高考题】1. 【2016高考新课标1文数】若0a b >>,01c <<,则( ) (A )log a c <log b c (B )log c a <log c b (C )a c<bc(D )c a >c b【答案】B考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.2. 【2014高考北京文第2题】下列函数中,定义域是R且为增函数的是()A.xy e-= B.3y x= C.lny x= D. y x=【答案】B【解析】对于选项A,在R上是减函数;选项C的定义域为(0,)+∞;选项D,在(,0)-∞上是减函数,故选B.考点:本小题主要考查函数的单调性,属基础题,难度不大.3. 【2014高考北京文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系2p at bt c=++(a、b、c是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【答案】B考点:本小题以实际应用为背景,主要考查二次函数的解析式的求解、二次函数的最值等基础知识,考查同学们分析问题与解决问题的能力. 4. 【2014高考北京文第6题】已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞【答案】C【解析】因为(2)410f =->,3(4)202f =-<,所以由根的存在性定理可知:选C. 考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.5. 【2015高考北京,文3】下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x =D .2xy -= 【答案】B【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.6. 【2014高考广东卷.文.5】下列函数为奇函数的是( )A .122x x -B .3sin x x C .2cos 1x + D .22x x +【答案】A【解析】对于A 选项中的函数()12222x x x x f x -=-=-,函数定义域为R ,()()2222x x x x f x -----=-=-()f x =-,故A 选项中的函数为奇函数;对于B 选项中的函数()3sin g x x x =,由于函数31y x =与函数2sin y x =均为奇函数,则函数()3sin g x x x =为偶函数;对于C 选项中的函数()2cos 1hx x =+,定义域为R ,()()()2cos 12cos 1h x x x h x -=-+=+=,故函数()2cos 1h x x =+为偶函数;对于D 选项中的函数()22x x x ϕ=+,()13ϕ=,()312ϕ-=,则()()11ϕϕ-≠±,因此函数()22x x x ϕ=+为非奇非偶函数,故选A .【考点定位】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题. 【名师点晴】本题主要考查的是函数的奇偶性,属于中等题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.7. 【2016高考新课标1文数】函数22xyx e=-在[]2,2-的图像大致为( )(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.8. 【2015高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x=+ B .2cos y x x=- C .122x xy =+D .sin 2y x x =+ 【答案】A 【解析】函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()11sin1f -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函数.故选A .【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.9. 【 2014湖南文4】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -= 【答案】A【考点定位】奇偶性 单调性【名师点睛】有关函数的基本性质的判断题目属于平时考试和练习的常见题型,解决问题的关键是根据所给选项对应的函数性质进行逐一发现验证即可.10. 【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x(D )y=【答案】D 【解析】试题分析:lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .考点: 函数的定义域、值域,对数的计算.【名师点睛】基本初等函数的定义域、值域问题,应熟记图象,运用数形结合思想求解. 11. 【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑( )(A)0 (B)m (C) 2m (D) 4m 【答案】B 【解析】试题分析:因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 考点: 函数的奇偶性,对称性.【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.12. 【2014山东.文3】 函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞ 【答案】C考点:函数的定义域,对数函数的性质.【名师点睛】本题考查函数的概念、函数的定义域.解答本题关键是利用求函数定义域的基本方法,建立不等式组求解.本题属于基础题,注意基本概念的正确理解以及计算的准确性. 13. 【2014山东.文6】已知函数log ()(,a yx c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<【答案】D【解析】由图可知, log ()a y x c =+的图象是由log a y x =的图象向左平移c 个单位而得到的,其中01c <<,再根据单调性易知01a <<,故选D .考点:对数函数的图象和性质.【名师点睛】本题考查对数函数的图象. 由于y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,知0<c <1,根据图象从左向右是下降的,知0<a <1. 本题属于基础题,注意牢记常见初等函数的图象和性质并灵活运用. 14. [2016高考新课标Ⅲ文数]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c <<(C) b c a <<(D) c a b <<【答案】A考点:幂函数的单调性.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 15. 【2016高考浙江文数】函数y =sin x 2的图象是( )【答案】D 【解析】试题分析:因为2sin =y x 为偶函数,所以它的图象关于y 轴对称,排除A 、C 选项;当22x π=,即x =时,1max y =,排除B 选项,故选D.考点:三角函数图象.【方法点睛】给定函数的解析式识别图象,一般从五个方面排除、筛选错误或正确的选项:(1)从函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断函数的循环往复;(5)从特殊点出发,排除不符合要求的选项.16. 【2015高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c << (B ) a c b << (C )b a c << (D )b c a << 【答案】C【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .【考点定位】1.指数函数的性质;2.函数值比较大小.【名师点睛】本题考查指数函数的性质,主要利用函数的单调性求解,题目看上去简单,但对指数函数底数的两种不同取值情况均做了考查.本题属于基础题,是教科书例题的简单改造,关键是要熟练掌握指数函数的性质. 17. 【2014山东.文5】 已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y >C.22ln(1)ln(1)xy +>+ D.221111x y >++ 【答案】A对于C ,取1,2,,x y x y ==->此时ln 2ln 5<,22ln(1)ln(1)x y +>+不成立;对于D ,取2,1,,x y x y ==->此时1152<,221111x y >++不成立; 故选A考点:指数函数的性质,不等式的性质.【名师点睛】本题考查指数函数、对数函数、正弦函数及幂函数的单调性.比较函数值大小问题,往往结合函数的单调性,有时通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用.18. 【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --<D. (1)()0b b a -->【答案】D 【解析】试题分析:log log 1>=a a b a ,当1>a 时,1>>b a ,10,0∴->->a b a ,(1)()0∴-->a b a ;当01<<a 时,01∴<<<b a ,10,0∴-<-<a b a ,(1)()0∴-->a b a .故选D . 考点:对数函数的性质.【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误.19. 【2015高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( ) (A )( ) (B)() (C )0,1() (D )1,+∞()【答案】C【考点定位】1.函数的奇偶性;2.指数运算.【名师点睛】本题考查函数的奇偶性及指数函数的性质,解答本题的关键,是利用函数的奇偶性,确定得到a 的取值,并进一步利用指数函数的单调性,求得x 的取值范围. 本题属于小综合题,在考查函数的奇偶性、指数函数的性质等基础知识的同时,较好地考查了考生的运算能力.20. 【2015高考山东,文10】设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( )(A )1 (B )78 (C )34 (D)12【答案】D【解析】由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D . 【考点定位】1.分段函数;2.函数与方程.【名师点睛】本题考查了分段函数及函数方程思想,解答本题的关键,是理解分段函数的概念,明确函数值计算层次,准确地加以计算.本题属于小综合题,在考查分段函数及函数方程思想的同时,较好地考查了考生的运算能力及分类讨论思想.21. 【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A当0<b 时,(())f f x 的最小值为24-b ,所以“0<b ”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0=b 时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x的最小值与()f x 的最小值相等”不能推出“0<b ”.故选A . 考点:充分必要条件.【方法点睛】解题时一定要注意p q ⇒时,p 是q 的充分条件,q 是p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化.22. 【2015高考陕西,文4】设10()2,0xx f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C【解析】因为21(2)24f --==,所以111((2))()11422f f f -===-=,故答案选C【考点定位】1.分段函数;2.复合函数求值.【名师点睛】1.本题考查分段函数和复合函数求值,此题需要先求(2)f -的值,继而去求((2))f f -的值;2.若求函数[()]f f a 的值,需要先求()f a 的值,再去求[()]f f a 的值;若是解方程[()]f f x a =的根,则需先令()f x t =,即()f t a =,再解方程()f t a =求出t 的值,最后在解方程()f x t =;3.本题属于基础题,注意运算的准确性. 23. 【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .( ) A.若()f a b ≤,则a b ≤ B.若()2bf a ≤,则a b ≤ C.若()f a b ≥,则a b ≥ D.若()2b f a ≥,则a b ≥ 【答案】B考点:函数的奇偶性.【思路点睛】先由已知条件可得()f x 的解析式,再由()f x 的解析式判断()f x 的奇偶性,进而对选项逐个进行排除.24. 【2014高考陕西版文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()3f x x = (B )()3xf x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3x f x =是定义在R 上增函数,所以B 正确;C 选项:由()()23f x y x y +=+,()()f x f y 2233x y =⋅23()xy =,得()()()f x y f x f y +≠,所以C 错误;D 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以D 错误;故选B . 考点:函数求值;函数的单调性.【名师点晴】本题主要考查的是函数求值;函数的单调性等知识,属于容易题;在解本题时可以首先由单调性排除D 选项, 再验证A ,,C 选项是否满足“()()()f x y f x f y +=”即可.在解答时对于正确选项要说明理由,对于错误选项则只要举出反例即可, 25. 【2015高考陕西,文9】 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数【答案】B【考点定位】函数的性质.【名师点睛】1.本题考查函数的性质,判断函数的奇偶性时,应先判断函数定义域是否关于原点对称,然后再判断()f x 和()f x -的关系,函数的单调性可以通过导函数判断.2.本题属于基础题,注意运算的准确性.26. 【2015高考陕西,文10】设()ln ,0f x x a b =<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =< D .p r q => 【答案】C【解析】1ln 2p f ab ===;()ln22a b a bq f ++==;11(()())ln 22r f a f b ab =+=因为2a b +>,由()ln f x x =是个递增函数,()2a b f f +>所以q p r >=,故答案选C 【考点定位】函数单调性的应用.【名师点睛】1.本题考查函数单调性,因为函数()ln f x x =是个递增函数,所以只需判断2a b+ 2.本题属于中档题,注意运算的准确性. 27. 【2016高考北京文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.8 【答案】C考点: 函数最值【名师点睛】求函数值域的常用方法:①单调性法,如(5);②配方法,如(2);③分离常数法,如(1);④数形结合法;⑤换元法(包括代数换元与三角换元),如(2),(3);⑥判别式法,如(4);⑦不等式法,如(4),(5);⑧导数法,主要是针对在某区间内连续可导的函数;⑨图象法,求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(6);对于二元函数的值域问题,如(5),其解法要针对具体题目的条件而定,有些题目可以将二元函数化为一元函数求值域,有些题目也可用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.28. 【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2xx y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 29. 【2014四川,文7】已知,,,,则下列等式一定成立的是( ) A 、B 、C 、D 、【答案】B 【解析】试题分析:5log ,lg b a b c ==相除得55log ,log 10lg b a ab c c==,又5510,log 10d d =∴=,所以ad cd a c=⇒=.选B. 【考点定位】指数运算与对数运算.【名师点睛】解题的关键是求得已知,求的最大值,接下来就线性规划问题了,利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.30. 【2015高考四川,文5】下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 1. 【2014高考北京文第7题】已知圆22:341Cxy和两点,0Am,,00Bmm,若圆C上存在点P,使得90APBo,则m的最大值为( )

A.7 B.6 C.5 D.4 【答案】B

考点:本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力. 2. 【2015高考北京,文2】圆心为1,1且过原点的圆的方程是( )

A.22111xy B.22111xy C.22112xy D.22112xy 【答案】D 【解析】由题意可得圆的半径为2r,则圆的标准方程为22112xy,故选D. 【考点定位】圆的标准方程. 【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心,ab,

半径为r的圆的标准方程是222xaybr. 3.【 2014湖南文6】若圆221:1Cxy与圆222:680Cxyxym相外切,则m( ) .21A .19B .9C .11D 【答案】C 【解析】因为22226803425xyxymxym,所以250m25m且圆2C的圆心为3,4,半径为25m,根据圆与圆外切的判定(圆心距离等于半径和)可得 223040125m9m

,故选C.

【考点定位】圆与圆之间的外切关系与判断 【名师点睛】本题主要考查了圆与圆的位置关系,解决问题的关键是根据条件得到圆的半径及圆心坐标,然后根据两圆满足的几何关系进行列式计算即可. 4. 【2014全国2,文12】设点0,1Mx,若在圆22:+1Oxy上存在点N,使得45OMN,则0x的取值范围是( )

(A)1,1 (B)11,22 (C)2,2 (D)22,22



【答案】A

【考点定位】直线与圆的位置关系 【名师点睛】本题考查直线与圆的位置关系,属于中档题,直线与直线设出角的求法,数形结合是快速解得本题的策略之一. 5. 【2014四川,9文】设,过定点的动直线和过定点的动直线交于点,则的取值范围是( ) A、 B、 C、 D、 【答案】B 【解析】 试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,令||10sin,||10cosPAPB,则

||||10sin10cos25sin()4PAPB.因为||0,||0PAPB,所以

02.所以2sin()124,10||||25PAPB.选B.

法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一. 【考点定位】1、直线与圆;2、三角代换. 【名师点睛】在几何意义上表示P点到与的距离之和,解题的关键是找P

点的轨迹和轨迹方程;也可以使用代数方法,首先表示出,这样就转化为函数求最值问题了. 6. 【2015高考四川,文10】设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB中点,若这样的直线l恰有4条,则r的取值范

围是( ) (A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4) 【答案】D

当t=0时,若r≥5,满足条件的直线只有1条,不合题意, 若0<r<5,则斜率不存在的直线有2条,此时只需对应非零的t的直线恰有2条即可. 当t≠0时,将m=3-2t2代入△=16t2+16m,可得3-t2>0,即0<t2<3 又由圆心到直线的距离等于半径, 可得d=r=2222|5|222111mtttt 由0<t2<3,可得r∈(2,4).选D 【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力. 【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x=ty+m,可以避免忘掉对斜率不存在情况的讨论.在对r的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t=0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r取值范围即可.属于难题. 7.【2014年.浙江卷.文5】已知圆02222ayxyx截直线02yx所得弦的长度为4,则实数a的值为( ) A.2 B. 4 C. 6 D.8 【答案】B

考点:直线与圆相交,点到直线的距离公式的运用,容易题. 【名师点睛】本题主要考查直线与圆相交的弦长问题,解决问题的关键点在讨论有关直线与圆的相交弦问题时,如能充分利用好平面几何中的垂径定理,并在相应的直角三角形中计算,往往能事半功倍.

8. 【2014,安徽文6】过点(3,1)P的直线l与圆122yx有公共点,则直线l的倾斜角的取值范围是( )

A.]60,( B.]30,( C.]60[, D.]30[, 【答案】D. 【解析】 试题分析:如下图,要使过点P的直线l与圆有公共点,则直线l在PA与PB之间,因为1sin2,所以6,则23AOB,所以直线l的倾斜角的取值范围为]30[,.

故选D.

考点:1.直线的倾斜角;2.直线与圆的相交问题. 【名师点睛】研究直线与圆的相交问题,应牢牢记住三长关系,即半弦长2l、弦心距d和半径长r之间形成的数量关系为222()2ldr.但在具体做题过程中,常利用数形结合的方程进行求解,通过图形会很快了解具体的量的关系.另外,直线的倾斜角和斜率之间的关系也是重要考点,告知斜率的范围要能求出倾斜角的范围,反之一样.当90o,斜率不存在. 9. 【2015高考安徽,文8】直线3x+4y=b与圆222210xyxy相切,则b=( ) (A)-2或12 (B)2或-12 (C)-2或-12 (D)2或12 【答案】D

【考点定位】本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用. 【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,得到关于x(或y)的一元二次方程,通过判断0;0;0来确定直线与圆的位置关系;方法二是几何法:主要是利用圆心到直线的距离公式求出圆心到直线的距离d,然后再将d与圆的半径r进行判断,若rd则相离;若rd则相切;若rd则相交;本题考查考生的综合分析能力和运算能力. 12.【2014上海,文18】 已知),(111baP与),(222baP是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组112211axbyaxby的解的情况是( ) (A)无论k,21,PP如何,总是无解 (B)无论k,21,PP如何,总有唯一解 (C)存在k,21,PP,使之恰有两解 (D)存在k,21,PP

,使之有无穷多解

【答案】B 【解析】由题意,直线1ykx一定不过原点O,,PQ是直线1ykx上不同的两点,

则OPuuur与OQuuur不平行,因此12210abab,所以二元一次方程组112211axbyaxby一定有唯一解.选B. 【考点】向量的平行与二元一次方程组的解.

【名师点睛】可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:

axbycdxeyf



,

当a/d≠b/e 时,该方程组有一组解。

当a/d=b/e=c/f 时,该方程组有无数组解。 当a/d=b/e≠c/f 时,该方程组无解。 13. 【2014福建,文6】已知直线l过圆2234xy的圆心,且与直线10xy垂直,则l的方程是 ( ) .20.20.30.30AxyBxyCxyDxy 【答案】D

考点:圆的方程,直线的垂直,直线方程. 【名师点睛】本题主要考查直线方程与圆的方程及运算能力.直线与圆的位置关系在高考中

常以客观题形式出现,本题中用到的垂直结论是:若直线12,ll的斜率分别为12,kk,则12121llkk.

14. 【2015湖南文9】已知点A,B,C在圆221xy上运动,且ABBC,若点P的坐标为(2,0),则PAPBPCuuuruuuruuur 的最大值为( )

A、6 B、7 C、8 D、9 【答案】B 【解析】由题意,AC为直径,所以24437PAPBPCPOPBPBuuuruuuruuuruuuruuuruuur ,

当且仅当点B为(-1,0)时,PAPBPCuuuruuuruuur取得最大值7,故选B. 【考点定位】直线与圆的位置关系、平面向量的运算性质 【名师点睛】与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想. 由平面几何知识知,圆上的一点与圆外一定点距离最值在定点和圆心连线与圆的两个交点处取到.圆周角为直角的弦为圆的半径,平面向量加法几何意义这些小结论是转化问题的关键. 15. 【2015新课标2文7】已知三点(1,0),(0,3),(2,3)ABC,则△ABC外接圆的圆心到原点的距离为( ) 5A.3 21B.3 25C.3 4D.

3

【答案】B

【考点定位】本题主要考查圆的方程的求法,及点到直线距离公式. 【名师点睛】解决本题的关键是求出圆心坐标,本题解法中巧妙利用了圆的一个几何性质:圆的弦的垂直平分线一定过圆心,注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆

的半径r、弦长l、圆心到弦的距离d之间的关系:2222lrd在求圆的方程时常常用到. 二、填空题

相关文档
最新文档