动态规划_多阶段决策问题的求解方法
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
运筹学的基本名词解释汇总

运筹学的基本名词解释汇总运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涵盖了多个子领域,包括线性规划、整数规划、动态规划、网络优化、排队论、决策分析等等。
在本篇文章中,我将深入解释其中一些基本的运筹学名词。
一、线性规划线性规划是运筹学中最常用的方法之一。
它用于解决在给定的约束条件下,如何最大化或最小化一个线性目标函数的问题。
具体来说,线性规划问题可以用如下形式表示:Maximize(或Minimize):C₁X₁ + C₂X₂ + ... + CnXnSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁nXn ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂nXn ≤ b₂...An₁X₁ + An₂X₂ + ... + AnnXn ≤ bnX₁, X₂, ..., Xn ≥ 0其中,C₁,C₂,...,Cn为目标函数的系数,X₁,X₂,...,Xn为决策变量,Aij为约束条件的系数,bi为约束条件的右手边。
线性规划在供应链管理、资源分配、生产计划等各个领域都有广泛的应用。
二、整数规划整数规划是线性规划的一个扩展。
在整数规划中,决策变量被限制为整数值,而不仅仅是非负实数。
这在某些情况下更符合实际问题的特点。
整数规划可以用于解决许多实际问题,例如旅行商问题、资源分配问题等。
整数规划的形式与线性规划相似,只是添加了一个约束条件:X₁, X₂, ..., Xn为整数整数规划是一个NP难问题,在实际应用中通常通过割平面法、分支定界法等方法来求解。
三、动态规划动态规划是一种解决多阶段决策问题的方法。
在动态规划中,问题被分解为一系列阶段,每个阶段都有一组决策变量。
每个阶段的决策都基于之前阶段的决策结果,从而达到最优解。
动态规划可以用于解决诸如背包问题、最短路径问题等在实际问题中普遍存在的多阶段决策问题。
四、网络优化网络优化是研究在网络结构下如何优化资源分配和信息流动的方法。
动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
非线性与动态规划(逆推法例题)

基本原理
逆推法基本原理
引例
基本原理
假设初始状态为1 状态转移方程 +1 = T(, ).逆推解法的计算步骤是,利
模型建立
用已知条件,从 k = n 开始由后向前推算,求得各阶段的最优决策和最优指标函数,
最后算出 1 (1 )时便得到最优指标函数值。然后,再从k=1开始,利用状态转移方
动态规划题目讲解
小组成员:
指导老师:
动态规划的基本介绍
动态规划是把多阶段决策问题作为研究对象。
多阶段决策问题:根据问题本身的特点,将其求解的全过程划分为若干个相互联系的阶段(即将问
题划分为许多个相互联系的子问题),在每一阶段都需要作出决策,并且在一个阶段的决策确定以
后,再转移到下一个阶段。往往前一个阶段的决策要影响到后一个阶段的决策,从而影响整个过程。
称为k子过程策 ( )(略,简称子策略,记作, ( ),
即, ( ) = +1 +1 , … ( )
8
14
18
D1
5
9
C2
由决策组成的序列称为策略。从初始状态1 开始,由
各阶段的决策 ( )(k=1,2,…,n)组成的序列称为全过程
策略,简称为策略,一般记作1, (1 ),即
一般用字母K表示。
5
K=3
K=4
2.状态
在整个过程中,每个阶段开始所处的自然状况或客观
条件称为状态,是不可控因素。每个阶段的状态为该
阶段初始点的集合。描述每个阶段状态的变量称为状
态变量。用s 表示第K阶段的状态变量。 的全体可取
值组成的集合,称为第K阶段允许状态集合,用大写的
k 表示。
动态规划中定义的状态应具有下列性质:某个阶段的
动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。
该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。
他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。
动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。
动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。
由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。
第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。
例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。
(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。
如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。
(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。
描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。
如例l中,第一阶段的状态为A(即出发位置)。
第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。
第8章 动态规划《管理运筹学》PPT课件

8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
建立动态规划数学模型的步骤

建立动态规划数学模型的步骤动态规划是一种解决多阶段决策问题的优化方法,它将问题分为若干阶段,每个阶段采取一个最优决策,通过递推的方式得到问题的最优解。
建立动态规划数学模型的步骤主要包括以下几个方面。
第一步,明确问题:首先要明确要解决的问题是什么,分析问题的特点和要求,明确决策的目标和约束条件。
例如,我们可以考虑求解一个最优化问题,使一些目标函数取得最大(或最小)值。
第二步,定义状态:将问题的解表示为一个或多个状态变量。
状态是问题的一个关键特征,它描述了问题在每个阶段的情况,通常用一个或多个变量表示。
状态可以是离散的,也可以是连续的。
例如,假设我们要解决一个装箱问题,可以将状态定义为装箱剩余空间的大小。
第三步,确定决策变量:决策变量是问题中可以通过决策调整的变量,其取值将影响问题的解。
决策变量通常与状态有关,帮助我们在每个阶段做出最优决策。
继续以装箱问题为例,决策变量可以是选择放入的物品或物品的数量。
第四步,建立状态转移方程:通过分析问题的特点和约束条件,建立各个阶段之间的状态转移方程。
状态转移方程描述了问题中不同状态之间的关系,即通过做出一些决策后,当前状态如何转移到下一个状态。
状态转移方程通常由决策变量和前一阶段的状态变量表示。
在装箱问题中,状态转移方程可以描述为剩余空间等于前一阶段的剩余空间减去当前决策变量所占空间。
第五步,确定边界条件:边界条件是求解动态规划问题的关键,它们表示问题的起始状态和结束状态。
通常,起始状态是已知的,而结束状态需要根据问题的要求进行分析确定。
例如,装箱问题的起始状态可以是剩余空间等于货柜的总容量,结束状态可以是没有物品剩余可以放入货柜。
第六步,确定目标函数:目标函数是求解最优化问题时需要优化的目标。
在动态规划中,目标函数通常与状态有关,它表示在每个阶段的状态下所要最大(或最小)化的目标量。
例如,在装箱问题中,目标函数可以是放入货柜的物品总价值。
第七步,建立递推关系:根据状态转移方程和边界条件,可以利用递推的方法从起始状态逐步计算到结束状态。
运筹学动态规划

特别注意:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算法 (如线性规划是一种算法)。
因而,动态规划没有标准的数学表达式和明 确定义的一组规则,而必须对具体问题进行具体 分析处理.
动态规划
8.1 多阶段决策过程及实例 8.2 动态规划的基本概念和
基本方程 8.3 动态规划的最优性定理 8.4 动态规划与静态规划关系
综述
动态规划是运筹学的一个分支,是解决多 阶段决策过程最优化问题的一种数学方法。
该方法是由美国数学家贝尔曼(R.Bellman)等 人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,把多阶段 决策问题变换为一系列互相联系单阶段问题,然 后逐个加以解决。
1
2
3
始点
5
B1
6 3
A
4 B2 4 6
2
5
B3 6
C1
1 2
2
C2 2
3
C3
3
4 终点
D1 2
D2 3
E
4
D3
2、状态
5
B1
6 3
A 4 B246
25
B3 6
C1
1 2
2
C2 2
C3 3 3
D1 2
D2 3 E 4
D3
各个阶段开始时所处的自然状况和客观条件称为
状态,描述了研究问题过程的状况(称不可控因素).
一些与时间没有关系的静态规划(如线性 规划,非线性规划)问题,只要人为地引进 “时间”因素,也可把它视为多阶段决策问题, 用动态规划方法去处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划_多阶段决策问题的求解方法
1.构造状态网络; :一:解决多阶段决策最优化的过程为动态规划方法在程序设计中,有一类活动的过程,由于它的特殊性,可将过程
2.根据状态转移关系和状态转移方程建立最优值的分成若干个互相联系的阶段,在它的每一阶段都需要做出决策,从而
3.按阶段的先后次序计算每个状态的最优值。
使整个过程达到最好的活动效果。
因此各个阶段决策的选取不能任逆向思维法是指从问题目标状态出发倒推回初始意确定,它依赖于当前面临的状态,又影响以后的发展。
当各个阶段态的思维方法。
动态规划的逆向思维法的要点可归纳为以决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条 1.分析最优值的结构,刻画其结构特征; 活动路线。
这种把一个问题看作是一个前后关联具有链状结构的多 2.递归地定义最优值; 阶段过程就称为多阶段决策过程,这种问题称为多阶段决策问题。
3.按自底向上或自顶向下记忆化的方式计算最优在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关
的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列如果原问题可以分解成几个本质相同、规模较小的就是在变化的状态中产生出来的,故有"动态"的含义,我们称这种就会联想到从逆向思维的角度寻求问题的解决。
一般
解决多阶段决策最优化的过程为动态规划方法。
策问题多采用动态规划逆向思维方法解决。
二、举:二:动态规划最优化原理 pascal 语例说明本文以信息学奥赛用语言——最优化原理是动态规划的基础。
任何一个问题,如果失去了这言为编程个最优化原理的支持,就不可能用动态规划方法计算。
这个“最优化说明,其他编程语言编写方法相同,语句类似。
原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某 :一:问题描述一优化问题,需要依次作出 n 个决策 D1,
D2,,Dn,如若这个决策设有 N 个不相同的整数组成的数列,记为: 序列是最优的,对于任何一个整数 k,1 < k < n,不论前面 k 个决策是
怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即 ()且 ?? a1 a2 an aiajij以后的决策 Dk+1,Dk+2,,Dn 也是最优的。
作为整个过程的最优例如 3,18,7,14,10,12,23,41,16,24 策略具有这样的性质:即无论过去的状态和决策如何,对以前的决策若存在 i1<i2 <ie 且有 ai1<ai2 <aie 则称为长度
序列。
如上例中 3,18,23,24 就是一个长度为 4 的不下
也有 3,7,10,12,16,24 长度为 6 的不下降序列。
程序
(1)若 an-1<an 则存在长度为 2 的不下降序列 an-1,an 。
begin
[] k:=j;l:=aj,2; (2)若 an-1>an 则存在长度为 1 的不下降序列 an-1 或
an 。
end; 3(一般若从 ai 开始,此时最长不下降序列应该按下列方法求出: if
l>0 then 在 ai+1 ,ai+2, an 中,找出一个比 ai 大的且最长的不下降序begin ,作为它的后继。
4(为算法上的需要,定义一个数组: []ai,2:=l+1; []a:array1..n,1..3of integer; []ai,3:=k; [][] ai,1表示 aiend []ai,2表示从 i 位置到达 n 的最长不下降序列长度 end; []ai,3表示从 i 位置开始最长不下降序列的下一个位置 []amax:=a1,2;
初始化:for i:=1 to n do l:=1; ([])[][]begin readai,1;ai,2:=1;ai,3=0 for j:=2 to n-1 do
end; []if ai,2>amax then
下面给出求最长不下降序列的算法:begin
for i:=n-1 downto 1 do []amax:=ai,2;
begin l:=i; end;
l:=1;k:=0; ()writelnamax:3; for j:=i+1 to n do while l<>0 do [][][][] if aj,1>ai,1and aj,2>l then begin k:=j;l:=aj,2end; begin
if l>0 then ([])write al,1:3;
begin []l:=al,3; []ai,2:=l+1; end;
[]ai,3:=k; end.
end :四:运行结果
end; 6 下面找出最长不下降序列,并排序列:3 7 10 12 23 41 多阶段决策问
题典型题目很多,篇幅限制,在[]amax:=a1,2;l:=1; 此不一一举例。
三、动态规划解题的好处及注意事项 :一:动态规划解题的好处 for j:=2 to n-1 do []动态规划的最大优势在于它具有极高的效率,而且动态规划还 if
ai,2>amax then
begin 有其他的优势,例如:动态规划可以得出一系列解,算法清晰简便,程[]amax:=ai,2; 序易编、易调,等等。
动态规划是研究一类最优化问题的方
法,在经 l:=i; 济、工程技术、企业管理、工农业生产及军事等领域中都有广泛
的应
(end; 用。
近年来,在 ACM/ICPC 中,使用动态规划或部分应用动态规划
[])最长不下降序列长度为 amax(al,2) 思维求解的题不仅常见,而且形式也
多种多样。
而在与此相近的各
类信息学竞赛中,应用动态规划解题已经成为一种趋势,这和动态规序列
while l<>0 do
begin 划的优势不无关系。
([]) write al,1:3; :二:动态规划解题的注意事项1(动态规划它只适于解决
一定条件的最优策略问题,利用动态 []l:=al,3; 规划解题,阶段的划分是关键,必须依据题意分析,寻求合理的划分 end; ()阶段子问题方法。
而每个子问题是一
个比原问题简单得多的优化 :三:参考程序问题。
而且每个子问题的求解中,均利用它的一个后部子问题的最 ()program buxiajianginput,output; 优化结果,直到最后一个子问题所得最优解,它就是原问题的最优解。
const n=10; 2(应指出,动态规划是考察求解多阶段决策问题的途径和方法, [] var
a:array1..n,1..3of integer; 但它不像线性规划那样,具有一个标准的数学表达式和明确定义的
一组规划。
因此我们在学习时,除了要对基本概念和方法正确理解
i,k,l,j,amax:integer; 外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创 begin 造性的技巧去求解。
for i:=1 to n do 3.动态规划是运筹学的一个分支。
许多隐式图上的算法,例如求 begin 单源最短路径的 Dijkstra 算法、广度优先搜索算法,都渗透着动态规 ([])readai,1; 划的思想。
还有许多数学问题,表面上看起来与动态规划风马牛不 []ai,2:=1; 相及,但是其求解思想与动态规划是完全一致的。
[]ai,3:=0;
end;
for i:=n-1 downto 1 do
begin
l:=0;k:=0;
for j:=i+1 to n do 参考文献:([][]) ([]) if aj,1>ai,1and aj,2>lthen []1李立新.全国青少年信息学(计算机)竞赛例题解析.人民邮电出版社.1998.
749 当代经理人CONTEMPORARY MANAGER 2006 ? 21。