聚氨酯

合集下载

聚氨酯介绍

聚氨酯介绍
4
LOGO
分类——离子型分类法
分子侧链结构 中一般存在季 铵盐
同时含有两种 不同的基团和 链段
阴离子型 聚氨酯
分子侧链结构 中大多存在磺 酸基和羧酸基
阳离子型 聚氨酯
非离子型 聚氨酯
具有聚醚链段
5
混合型聚 氨酯
LOGO
其他分类方法
固化特性 分类法
热固性聚氨酯 热塑性聚氨酯
组成 分类法
低聚物多元醇 聚酯型聚氨酯& 聚醚型聚氨酯 异氰酸酯的母体 结构 脂肪族聚氨酯& 芳香族聚氨酯
聚氨酯的回收利用
20
LOGO
聚氨酯泡沫塑料
聚氨酯泡沫塑料综合了一般多孔型材料的吸声 机理和柔性材料的阻尼吸声机理,具有较好的 吸声、隔声性能,是一类颇受欢迎的新型声学 材料。
21
LOGO
聚氨酯泡沫塑料吸声材料优势
密度小
吸声系数高
加工方便
优势
无粉尘污染
防水、防潮、防蛀
适应范围广
22
LOGO
聚氨酯泡沫塑料在声学方面的研究及国内外发展概况
24
LOGO
聚氨酯泡沫塑料国内外发展状况
20世纪70~80年代,国内外开始发展以聚氨酯泡 沫塑料为主要吸声材料的现代多功能化复合材料。 国外发展状况 ▪ 如德国Terson公司开发的减震、吸声、隔声复
合材料 ▪ 日本的Takanisawa Cybernetics,公司开发的
一种将一层片状材料与一块聚氨酯泡沫塑料组 合,则构成二层复合材料 ▪ 英国等国的科研人员用阻燃聚氨酯泡沫塑料制 作吸声预制件
2
LOGO
分类——形态分类法
溶剂型聚氨酯
双组分型 单组份型
形态分类法

聚氨酯胶水配方

聚氨酯胶水配方

聚氨酯胶水配方聚氨酯胶水是一种常见的胶黏剂,具有良好的粘附性能和耐久性。

它广泛应用于建筑、汽车、家具等领域。

本文将介绍聚氨酯胶水的配方及其制备方法。

1. 聚氨酯胶水的基本成分聚氨酯胶水主要由以下几个基本成分组成:1.1 聚氨酯树脂聚氨酯树脂是聚合物材料,通过反应混合多元醇和异氰酸盐而制得。

它具有良好的粘附性和强度,可在不同材料之间形成牢固的连接。

1.2 固化剂固化剂是用于促进聚氨酯树脂固化反应的物质。

常见的固化剂包括多元胺类化合物,如乙二胺、三乙烯四胺等。

1.3 溶剂溶剂用于调节聚氨酯胶水的黏度和流动性。

常用溶剂有甲苯、二甲苯等有机溶剂。

1.4 填料填料可以增加聚氨酯胶水的黏度和强度,改善其流变性能。

常用的填料有二氧化硅、氧化铝等。

1.5 助剂助剂用于改善聚氨酯胶水的性能,如增强粘附力、抗老化等。

常见的助剂包括稳定剂、防腐剂等。

2. 聚氨酯胶水的制备方法聚氨酯胶水的制备方法主要包括以下几个步骤:2.1 配方设计根据需要确定聚氨酯胶水中各成分的配比。

根据实际应用要求和使用环境选择合适的配方。

2.2 原料准备将聚氨酯树脂、固化剂、溶剂等原料按照配方比例准备好。

2.3 混合反应将聚氨酯树脂和固化剂按照一定比例混合,并加入适量的溶剂进行搅拌反应。

反应时间和温度会影响胶水的性能,需要根据具体情况进行控制。

2.4 填料添加在混合反应过程中,适量的填料可以根据需要进行添加,提高胶水的黏度和强度。

2.5 助剂添加在混合反应过程中,根据需要可以添加适量的助剂,改善胶水的性能。

2.6 检测和调整制备好的聚氨酯胶水需要进行一系列的检测,如黏度、粘附力、耐久性等。

根据检测结果对配方进行调整,以获得符合要求的胶水产品。

3. 聚氨酯胶水的应用领域聚氨酯胶水广泛应用于以下领域:3.1 建筑领域聚氨酯胶水可用于建筑材料的粘接和密封,如玻璃、金属、石材等材料之间的连接。

3.2 汽车制造聚氨酯胶水可用于汽车零部件的粘接,如车身板材、挡风玻璃等。

聚氨酯 熔点

聚氨酯 熔点

聚氨酯熔点聚氨酯是一种重要的高分子材料,具有广泛的应用领域。

了解聚氨酯的性质和特点对于其应用和加工过程至关重要。

其中一个重要的性质就是其熔点。

1. 什么是聚氨酯?聚氨酯是一类由异氰酸酯(或多元醇)与多元胺反应制得的高分子化合物,它具有非常丰富的结构和性能。

聚氨酯可以根据不同的原料组合和反应条件得到不同类型的产品,如泡沫、弹性体、涂料、粘合剂等。

2. 聚氨酯的熔点聚氨酯是一种热塑性高分子材料,其熔点取决于其化学结构和成分。

在一般情况下,聚氨酯的熔点范围在-30°C到120°C之间。

由于聚氨酯可通过不同原料组合而成,因此存在许多不同类型的聚氨酯,它们具有不同的熔点范围。

例如,硬质聚氨酯的熔点通常较高,可达到100°C以上,而软质聚氨酯的熔点较低,通常在-30°C至70°C之间。

3. 影响聚氨酯熔点的因素聚氨酯的熔点受到多种因素的影响,主要包括以下几个方面:3.1 聚氨酯化学结构不同类型的聚氨酯具有不同的化学结构,其分子链长度、分支度和交联程度等因素会对熔点产生影响。

一般来说,分子链长度较长、分支度和交联程度较高的聚氨酯具有较高的熔点。

3.2 原料组成聚氨酯是由异氰酸酯和多元胺反应得到的,在反应中使用不同类型和比例的原料会对最终产品的性质产生影响。

例如,使用低分子量的异氰酸酯和多元胺可能会导致较低的熔点。

3.3 添加剂在聚氨酯加工过程中,可以添加各种添加剂来改善其性能。

这些添加剂可能会对聚氨酯的熔点产生影响。

例如,添加塑化剂可能会降低聚氨酯的熔点。

3.4 结晶性聚氨酯可以是非晶态或部分结晶态。

非晶态聚氨酯通常具有较低的熔点,而结晶态聚氨酯具有较高的熔点。

结晶性受到原料组成、加工条件和添加剂等因素的影响。

4. 聚氨酯熔点的应用了解聚氨酯的熔点对于其应用和加工过程非常重要。

根据不同类型和熔点范围的聚氨酯,可以选择适合不同应用需求的材料。

高熔点的聚氨酯通常用于需要耐高温性能的应用,如汽车零部件、电子器件封装等。

聚氨酯工艺流程

聚氨酯工艺流程

聚氨酯工艺流程
《聚氨酯工艺流程》
聚氨酯是一种多功能的合成材料,常用于制造泡沫、涂料、胶粘剂和弹性体等产品。

其工艺流程通常包括原料准备、混合、反应、成型和后处理几个步骤。

首先是原料准备。

聚氨酯的主要原料包括异佛尔酮二异氰酸酯(MDI)、聚醚多元醇和聚醇。

这些原料需要按照一定的比例进行准备,以确保最终制品的性能符合要求。

接下来是混合。

在混合过程中,MDI、聚醚多元醇和聚醇等原料被放置在混合机中,并加入一定数量的助剂,如催化剂、稳定剂和泡沫剂。

随后,混合机会将这些原料充分混合,直到形成均匀的混合物。

然后是反应。

混合好的原料会被送往反应室中,在一定的温度和压力条件下进行反应,形成聚氨酯聚合物。

这一步骤的控制对于最终产品的质量至关重要。

成型是聚氨酯制品生产的下一个关键步骤。

根据不同的产品要求,聚氨酯混合物可以被注射成型、压缩成型或浇铸成型等,以得到不同形状和尺寸的制品。

最后是后处理。

在成型完成后,产品可能需要经过一些后处理步骤,如修整、砂光、涂装等,以满足最终客户的需求。

总的来说,聚氨酯工艺流程涉及原料准备、混合、反应、成型和后处理等几个步骤,每一步都需要精确控制,才能保证最终产品的质量和性能。

聚氨酯 工艺流程 (2)

聚氨酯 工艺流程 (2)

聚氨酯工艺流程
聚氨酯的工艺流程一般包括以下几个步骤:
1. 原料准备:聚氨酯的制备需要聚醚或聚醇、异氰酸酯等原料。

在开始制备之前,需要准备好所需的原料,确保其质量和纯度。

2. 配方调整:根据产品的要求和所用原材料的性质,调整配方比例。

通常使用聚醚和异氰酸酯按照一定比例混合。

同时,根据所需要的性能和成型要求,还可以加入其他添加剂,如催化剂、填料、润滑剂等。

3. 反应混合:将聚醚和异氰酸酯按照一定比例混合,加入催化剂和其他添加剂,进行反应混合。

反应混合的时间和温度可以根据具体的配方和用途来确定。

4. 成型:将混合好的聚氨酯液体倒入模具中,进行成型。

这个过程可以采用多种方法,如注塑成型、喷涂成型、涂覆成型等,具体方法取决于产品的形状和要求。

5. 固化和固化:聚氨酯在成型后需要进行固化和固化,以使其达到所需的硬度和强度。

固化的方法可以是自固化或烘干固化,具体根据材料和产品要求来确定。

6. 检验和包装:成品经过固化后,进行各项检验,检查是否符合要求。

合格后进行包装,以便存放和运输。

以上是聚氨酯的一般工艺流程,具体的步骤和方法可能会因产品的不同而有所差异。

什么是聚氨酯材料

什么是聚氨酯材料

什么是聚氨酯材料聚氨酯材料是一种非常常见的工程塑料,它具有优异的性能和广泛的应用领域。

聚氨酯材料是由聚醚、聚酯等多种原料通过特定的化学反应制得的一种高分子材料,其特点是硬度范围宽、强度高、耐磨性好、耐油、耐溶剂、耐热、耐寒、耐老化、耐撕裂、耐压缩、吸水率低、绝缘性能好、吸音性能好、生物相容性好等。

首先,聚氨酯材料的硬度范围广泛,可以根据具体的应用要求制备出不同硬度的产品。

这使得聚氨酯材料在各种领域都有着广泛的应用,比如汽车制造、建筑材料、电子产品、医疗器械等。

在汽车制造领域,聚氨酯材料可以用于制造汽车座椅、汽车缓冲器、汽车轮胎等部件;在建筑材料领域,聚氨酯材料可以用于制造保温材料、密封材料、地板涂料等产品;在电子产品领域,聚氨酯材料可以用于制造手机壳、电脑外壳、耳机材料等;在医疗器械领域,聚氨酯材料可以用于制造人工关节、医用导管、医用胶带等。

其次,聚氨酯材料具有优异的耐磨性和耐化学腐蚀性能。

这使得聚氨酯材料在一些特殊环境下有着重要的应用,比如在煤矿行业,由于煤矿环境的尘土较多,传统的金属材料容易受到磨损,而聚氨酯材料具有良好的耐磨性能,可以用于制造输送带、导向轮等耐磨部件;在化工领域,由于化工介质对材料的腐蚀性较强,传统的塑料材料难以满足要求,而聚氨酯材料具有良好的耐化学腐蚀性能,可以用于制造化工管道、阀门、泵体等。

最后,聚氨酯材料还具有良好的弹性和减震性能,这使得它在运动器材、家具、鞋材等领域有着广泛的应用。

在运动器材领域,聚氨酯材料可以用于制造篮球、足球、排球等球类产品的外壳和填充材料;在家具领域,聚氨酯材料可以用于制造沙发、床垫、靠垫等产品的填充材料;在鞋材领域,聚氨酯材料可以用于制造鞋底、鞋垫等产品的外底材料。

总之,聚氨酯材料具有广泛的应用领域和优异的性能,是一种非常重要的工程塑料。

随着科技的不断进步和人们对产品性能要求的提高,聚氨酯材料的应用前景将会更加广阔。

聚氨酯的应用及特点

聚氨酯的应用及特点

聚氨酯的应用及特点聚氨酯是一种具有多种特性和广泛应用的聚合物材料。

以下是聚氨酯的应用及特点的详细阐述:1. 聚氨酯的应用:聚氨酯被广泛应用于各个领域,包括建筑、汽车、航空航天、电子、医疗和家具等。

它可以制成不同形式的产品,如涂料、粘合剂、绝缘材料、填充材料、弹性体和薄膜等。

- 建筑领域应用:聚氨酯泡沫可以用作隔热保温材料,应用于墙壁、屋顶、地板等,提高建筑物的能效性能。

同时,聚氨酯也用于生产结构材料,如聚氨酯涂层板和玻璃纤维增强聚氨酯板等。

- 汽车领域应用:聚氨酯被用于制造汽车座椅和内饰部件,如方向盘、护板和仪表台等。

它具有良好的弹性和耐磨性,能够提供乘坐的舒适性和安全性。

- 航空航天领域应用:由于聚氨酯具有轻巧、高强度和耐化学腐蚀性等特点,因此在航空航天领域有广泛的应用。

聚氨酯可能被使用于飞机机身、机翼和发动机零件的制造。

- 电子领域应用:在电子产品中,聚氨酯可以作为电路板的粘合剂,提供绝缘性能。

它还可以用于制造电缆护套、电子设备外壳和塑料配件等。

- 医疗领域应用:聚氨酯被广泛应用于医疗器械和人工器官的制造。

它具有生物相容性和耐用性,可以制成人工心脏瓣膜、支架和假肢等。

- 家具领域应用:聚氨酯被用于制造家具的填充材料,如坐垫、床垫和沙发垫等。

它具有良好的弹性和耐久性,可以提供舒适的坐姿。

2. 聚氨酯的特点:聚氨酯具有多种特点,使其在各个领域得到广泛应用。

- 弹性和耐磨性:聚氨酯具有良好的弹性和耐磨性,可以承受较大的压力和拉伸力。

这使得聚氨酯适用于需要耐用和长寿命的应用,如汽车座椅和工业零件等。

- 耐化学腐蚀性:聚氨酯对许多化学品和溶剂具有良好的耐腐蚀性。

这使得聚氨酯在需要抵抗化学腐蚀的环境中得到广泛应用,如化工和石油行业。

- 轻巧:与其他材料相比,聚氨酯具有较低的密度,使其成为一种轻巧的材料。

这使得它在航空航天等领域中可以减轻重量,提高能效。

- 绝缘性能:聚氨酯具有良好的电绝缘性能,可以提供电气设备的保护。

聚氨酯是什么材料

聚氨酯是什么材料

聚氨酯全名为聚氨基甲酸酯。

一种高分子化合物。

1937年由O.拜耳等制出此物。

聚氨酯有聚酯型和聚醚型二大类。

他们可制成聚氨酯塑料(以泡沫塑料为主)、聚氨酯纤维(中国称为氨纶)、聚氨酯橡胶及弹性体。

软质聚氨酯(PU)主要是具有热塑性的线性结构,它比PVC发泡材料有更好的稳定性、耐化学性、回弹性和力学性能,具有更小的压缩变型性。

隔热、隔音、抗震、防毒性能良好。

因此用作包装、隔音、过滤材料。

硬质PU塑料质轻、隔音、绝热性能优越、耐化学药品,电性能好,易加工,吸水率低。

它主要用于建筑、汽车、航空工业、保温隔热的结构材料。

聚氨酯弹性体性能介于塑料和橡胶之间,耐油,耐磨,耐低温,耐老化,硬度高,有弹性。

主要用于制鞋工业和医疗业。

聚氨酯还可以制作粘合剂、涂料、合成革等。

聚氨酯出现于20世纪30年代,经过近八十年的技术发展,该种材料已经广泛应用于家居领域、建筑领域、日用品领域、交通领域、家电领域等。

主要原料市场概况聚氨酯主要原料包括二苯甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)、聚丙二醇(PPG),目前都已成为国际化商品。

这些原料的生产技术和设备都很复杂,产品竞争相当激烈,长期发展的结果使生产相对集中。

异氰酸酯是异氰酸的各种酯类总称。

若以-NCO基团的数量分类,包括单异氰酸酯R-N=C=O和二异氰酸酯O=C=N-R-N=C=O及多异氰酸酯等;也可以分为脂肪族异氰酸酯和芳香族异氰酸酯,目前芳香族异氰酸酯的使用量最大,如MDI、TDI等。

(1)MDIMDI的生产技术和设备要求都比较复杂,生产技术被全球数个巨型企业控制。

全球95%以上的MDI生产企业集中在亚洲和欧洲地区。

2者相比,欧洲市场的增长速度不及亚洲,但是其MDI产业起步早,市场也较为成熟。

2015年6月1日中韩自由贸易协议正式签订,使聚氨酯原料的税率发生了变化,中国聚合MDI出口税率下降的速度较进口税率下降的速度快。

随着国内聚合MDI市场产能、产量的增加,进口依存度降低,出口依存度增加,中韩自贸协议的执行对于中国聚合MDI 出口的影响将明显大于对聚合MDI进口的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚氨酯弹性体的结构和性能特点聚氨酯英文缩写为PU,是由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分子化合物的总称,聚氨酯PU根据应用不同填料,有CPU、TPU、MPU等简称。

聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。

其原材料可分为异氰酸酯类(如MDI和TDI)、多元醇类(如PO和PTMEG)和助剂类(如DMF)。

聚氨酯橡胶(UR)是由聚酯(或聚醚)与二异氰酸脂类化合物聚合而成的。

它的化学结构比一般弹性聚合物复杂,除反复出现的氨基甲酸酯基团外,分子链中往往还含有酯基、醚基、芳香基等基团。

UR分子主链由柔性链段和刚性链段镶嵌组成。

柔性链段又称软链段,由低聚物多元醇(如聚酯、聚醚、聚丁二烯等)构成;刚性链段又称硬链段,由二异氰酸酯(如TDI、MDI等)与小分子扩链剂(如二元胺an-元醇等)的反应产物构成。

软链段所占比例比硬链段多。

软、硬链段的极性强弱不同,硬链段极性较强,容易聚集在一起,形成许多微区分布于软链段相中,称为微相分离结构,它的物理机械性能与微相分离程度有很大关系。

UR分子主链之间由于存在由氢键的作用力,因而具有高强度高弹性。

聚氨酯橡胶具有硬度高、强度好、高弹性、高耐磨性、耐撕裂、耐老化、耐臭氧、耐辐射、耐化学药品性好及良好的导电性等优点,是一般橡胶所不能比的;耐磨性能是所有橡胶中最高的,实验室测定结果表明,UR的耐磨性是天然橡胶的3~5倍,实际应用中往往高达l0倍左右;在邵尔A60至邵尔A70硬度范围内强度高、弹性好;缓冲减震性好,室温下,UR减震元件能吸收10 ~20 振动能量,振动频率越高,能量吸收越大;耐油性和耐药品性良好,UR与非极性矿物油的亲和性较小,在燃料油(如煤油、汽油)和机械油(如液压油、机油、润滑油等)中几乎不受侵蚀,比通用橡胶好得多,可与丁腈橡胶媲美;耐低温、耐臭氧、抗辐射、电绝缘、粘接性能良好。

缺点是在醇、酯、酮类及芳烃中的溶胀性较大;摩擦系数较高,一般在0.5以上。

聚氨酯弹性体的综合性能出众,任何其它橡胶和塑料都无与伦比。

而且聚氨酯弹性体可根据加工成型的要求进行加工,几乎能用高分子材料的任何一种常规工艺加工,如混炼模压、液体浇注、熔融注射、挤出、压延、吹塑、胶液涂覆、纺丝和机械加工等。

聚氨酯弹性体的主要性能参数如下:硬度:普通橡胶的硬度范围为邵尔A2O~邵尔A90,塑料的硬度范围约为邵尔A95~ lg尔D100,而聚氨酯弹性体的硬度范围低至邵尔A10,高至邵尔D80,并且不需要填料的帮助。

尤其可贵的是弹性体在塑料硬度下仍具有良好的橡胶弹性和伸长率,而普通橡胶只有靠添加大量填料,并以大幅度降低弹性和延伸率作为代价才能获得较高的硬度。

机械强度:聚氨酯弹性体的机械强度高,表现在杨氏模量、撕裂强度和承载力等方面。

杨氏模量和拉伸强度:在弹性限度内,拉伸应力与形变之比叫做杨氏模量(E)或者成为弹性模量。

聚氨酯弹性体与其他弹性体一样,只有在低伸长时(约2.5)才遵循胡克定律。

但是它的杨氏模量要比其他弹性体高得多。

而且聚氨酯弹性体的杨氏模量范围遍及橡胶和塑料的模量,范围之宽是其他材料无可比拟。

撕裂强度:聚氨酯弹性体的撕裂强度很高,尤其是聚酯型,约为天然橡胶的2倍以上。

承载能力:虽然在低硬度下聚氨酯弹性体的压缩强度也不高,但是聚氨酯弹性体可以在保持橡胶弹性的前提下提高硬度,从而达到很高的承载能力。

而其他橡胶的硬度受到很大的局限,所以承载能力无法大幅度提高。

耐磨性能:聚氨酯弹性体的耐磨性能非常突出,测试结果一般在0.03~0.20mm/m 范围内,约为天然橡胶的3~5倍。

实际使用中,由于润滑剂等因素的影响,其效果往往更好。

耐磨性与材料的撕裂强度和表面状况等关系很大。

聚氨酯弹性体的撕裂强度比其他橡胶高得多,但是他本身的摩擦系数并不低,一般在0.5以上,这就需要在实际使用中注意添加油类润滑剂,或加少量二硫化钼或石墨、硅油、四氟乙烯粉等,以降低摩擦系数,减少摩擦生热。

摩擦系数还与材料硬度和表面温度等因素有关。

在所有情况下,摩擦系数都随硬度的降低而提高,随表面温度的升高而上升,约60℃达到最大值。

耐水性能:聚氨酯弹性体在常温下的耐水性能是好的,一二年内不会发生明显水解作用,尤其是聚丁二烯型、聚醚型和聚碳酸酯型。

耐热和耐氧化性能:聚氨酯弹性体在惰性气体中的耐热性能尚好,常温下耐氧和耐臭氧性能也很好,尤其是聚酯型。

但是高温和氧的同时作用会加快聚氨酯的老化进程。

一般的聚氨酯弹性体在空气中长时间连续使用的温度上限是80~90℃,短时间使用可达到120℃,对热氧化显着影响的温度约为l30℃。

按品种来说,聚酯型的耐热氧化性能比聚醚型的好。

随着温度的下降,聚氨酯弹性体的硬度、拉伸强度、撕裂强度和扭转刚性显着增大,回弹和伸长率下降。

吸振性能:聚氨酯弹性体对交变应力的作用表现出明显的滞后现象。

在这一过程中外力作用的一部分能量消耗于弹性体分子的内摩擦,转变成为热能。

这种特性叫做材料的吸振性能,也称为能量吸收性能或阻尼性能。

吸振性能通常用衰减系数表示。

衰减系数表示发生形变的材料能吸收施加给它的能量的百分数。

它除了与材料的性质有关外,还与环境温度、振动频率有关。

温度越高,衰减系数越低,振动频率越高,吸收能量越大。

除了上述性能之外,聚氨酯弹性体的电绝缘性能在一般工作温度下是比较好的,大体相当于氯丁橡胶和酚醛树脂的水平。

由于它既可以浇注成型,又可热塑成型,故常用作电器元件灌封和电缆护套等材料。

聚氨酯弹性体由于其分子极性比较大,对水有亲和性,所以其电性能随环境温度变化比较大,同时也不适用于高频电器材料使用。

此外,聚氨酯弹性体的电性能随温度的上升而下降,随材料的硬度上升而提高。

在合成高分子材料中,聚氨酯弹性体的耐高能射线的性能很好。

但对于浅色或者透明的弹性体在射线的作用下会出现变色现象。

聚氨酯材料具有极好的生物相容性,急慢性毒理试验和动物试验证实,医用聚氨酯材料无毒,无至畸变作用,无过敏反应,无局部激性,无知热源性,是最具有价值的合成医用高分子材料之一。

聚氨酯弹性体的应用聚氨酯橡胶由于性能优异而广泛用于汽车工业、机械工业、电器和仪表工业、皮革和制鞋工业、医疗和体育等领域。

可作为各种部件、鞋底和后跟、实心轮胎、输送带、输送管道、筛板和滤网、轴衬和轴套、泵和叶轮包覆层、胶辊、垫圈、油封、运动鞋、野外电缆护套以及海绵泡沫制品等的原材料。

用PU 制成的合成革材料具有最接近天然革的性能,手感好、透气性高、柔软适度,广泛用于服装、皮鞋、家具、箱包及车辆座椅等。

用浇注PU 弹性体可制造轧辊,可用于高承重和高耐磨的钢铁及造纸工业中。

PU 弹性体还可用于油田、采矿和冶金工业中高耐磨和高强度的结构材料。

近年来,各国都在根据市场需求情况加强其应用开发研究,开发的重点有以下方面:汽车用热塑性弹性体以聚酯型为主,一般常用的为RIMPUR,并在其中加入玻璃纤维或者玻璃微球增强。

具体产品有:保险杠、挡泥板、方向盘、阻流板、行李箱盖、门把手、扶手、仪表盘及防滑链等。

现今的汽车工业正在向高性能、低重量、舒适与安全的方向发展。

橡塑合成材料正在逐步取代金属材料,这就为聚氨酯弹性体的应用开辟了极为广阔的前景。

美国Goodrich公司开发出第二代TPU。

该产品保持了第一代TPU Estaloc的特性,并采用中空玻璃球作填料,使光泽度提高15以上,可用于制造汽车边板和减震垫等。

在汽车上安装安全气囊,是现代汽车工业发展的需要,对保护驾驶员的生命安全有重大作用。

这种气囊必须具备一定强度才能经受高速冲击,还要有较好的低温柔性,适宜用聚氨酯制作,市场需求量很大。

聚氨酯橡胶可以应用到田径场塑胶跑道运动场地,包括篮球、排球、羽毛球和网球场地,有室内、外两种类型。

这种塑料场地比木地板使用时间长,又耐磨、耐油、耐天候老化,弹性适宜,吸振性能好,与基层粘合结实。

传统的沥青油毡防水材料已逐步被坚固耐用、整体施工的聚氨酯防水材料所替代;运动场的跑道、大型桥梁的伸缩缝、飞机场跑道及高速公路的嵌缝也开始采用常温固化的聚氯酯弹性体,是制作高速铁路轨枕十分理想的材料。

日本新干线铁路通过的隧道和桥梁上所铺的轨枕就是采用了聚氯酯弹性体材料。

这一新的应用充分发挥了聚氯酸弹性体质轻、吸振性好、耐老化等特点,很有推广价值。

聚氨酯轮胎采用浇注工艺制造,其结构与目前生产的轮胎有很大区别。

全聚氨酯充气轮胎是由胎体、带束层和胎面3部分构成。

部分聚氨酯充气轮胎有两种形式:一种是胎体为浇注的聚氨酯,而胎面则为制造普通轮胎用的橡胶;另一种是胎体为子午线胎体,而胎面则是聚氨酯。

聚氨酯树脂材料的化学结构保证了轮胎具有良好的稳定性。

由于聚氨酯树脂是一种完全反应的聚合物,其分子间都是通过化学键连接的,从而避免了被氧化或被其他化学品滤取的可能,从而在理论上延长了轮胎的寿命。

而对于橡胶来说,由于在其硫化过程中留下的未键合的部分会随着橡胶的变化继续发生反应,致使橡胶很容易出现硬化、开裂等问题,从而加快了备用轮胎的更换频率。

就轮胎的滚动阻力指标而言(这是轮胎的关键指标),聚氨酯树脂轮胎的滚动阻力比传统轮胎要小45%,这是由于聚氨酯树脂轮胎可以被制得非常圆,从而有利于减少滚动阻力。

据估计,装配有聚氨酯树脂轮胎的汽车可比装配传统橡胶轮胎的汽车节省10%的燃油费用。

采用聚氨酯树脂胎面,实际行驶里程可比普通轮胎高1~2倍,同时可消除大量的炭黑和芳烃油对环境的污染,是提高翻新胎性能的新途径。

利用PU 弹性体的生理相容性和抗血栓的优点,可用于绷带、心脏助动器、血泵、人造血管、人工肾及人造心室等。

良好的生物相容性、血液相容性、无各种添加剂是TPU和CPU材料在医疗领域获得应用的重要原因。

目前已开发成功的医用弹性体制品有:气管套管、假肢、计划生育用的栓堵剂、颅骨缺损修补材料、安全套等等,其在医疗卫生领域应用的前景十分广阔。

聚氨酯弹性体的发展潜力巨大由于聚氨酯弹性体的优异性能和广泛用途,国内外对聚氨酯弹性体研究方兴未艾,不断通过技术手段提高聚氨酯弹性体加工与应用性能。

近年来国内外开发出多种聚氨酯弹性体新品种,其中最有发展潜力的品种有:针对聚氨酯弹性体耐高温性能差和易水解等缺点,通过提高弹性体分子交联密度、提高微相分离程度和选择异氰酸酯和扩链剂等原料改善聚氨酯弹性体的性能,此外还通过加入抗氧剂、热稳定剂和一些填料来有效提高聚氨酯弹性体热稳定性能。

许多应用领域尤其是一些新开发的电子、医疗、汽车、包装等行业对抗静电要求较高,因此抗静电聚氨酯弹性体开发成为重要发展方向。

国内多家研究机构采用添加阳离子抗静电剂,填充炭黑、金属材料、金属纤维,与亲水性聚合物或本征导电高分子的共混物等手段制备抗静电的聚氨酯弹性体。

近年来液晶聚氨酯弹性体研究比较活跃,主要集中在原料的选择、工艺路线的优化和物性改善等方面。

相关文档
最新文档