高一数学函数的表示法2

合集下载

高一数学函数的概念及表示方法

高一数学函数的概念及表示方法

全方位教学辅导教案⑴()2x y =;⑵33x y =;⑶2x y =例4 下列各组中的两个函数是否为相同的函数?①3)5)(3(1+-+=x x x y 52-=x y②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f二、函数-区间的概念及求定义域的方法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x 和y 之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定前面我们已经学习了函数的概念,,现在我们来学习区间的概念和记号 二、讲解新课:1.区间的概念和记号在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b ∈R ,且a<b.我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a,b]; ②满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a,b );③满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b) ,(a ,b].这里的实数a 和b 叫做相应区间的端点.在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点:定 义 名 称 符 号数 轴 表 示{x|a ≤x ≤b} 闭区间 [a ,b]{x|a<x<b} 开区间 (a ,b){x|a ≤x<b} 左闭右开区间 [a ,b]{x|a<x ≤b} 左开右闭区间 (a ,b)这样实数集R 也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”。

高一数学函数的概念及表示方法

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一教学内容函数与映射的概念及其函数的表示法重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素;2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法3.了解映射的概念及表示方法4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象.5.会结合简单的图示,了解一一映射的概念教学过程课前检查与交流作业完成情况:交流与沟通针对性授课一、函数的概念一、复习引入:初中(传统)的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等问题1:()是函数吗?问题2:与是同一函数吗?观察对应:304560902122239411-12-23-33-32-21-1149123123456(1)(2)(3)(4)开平方求正弦求平方乘以2AAAAB BBB1二、讲解新课:(一)函数的有关概念设A,B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个,在集合B中都有唯一确定的数和它对应,那么就称为从集合A到集合B的函数,记作,x A其中叫自变量,的取值范围A叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合(B)叫做函数y=f(x)的值域.函数符号表示“y是x的函数”,有时简记作函数.(1)函数实际上就是集合A到集合B的一个特殊对应这里A, B 为非空的数集.(2)A:定义域,原象的集合;:值域,象的集合,其中B ;:对应法则, A , B(3)函数符号:是的函数,简记(二)已学函数的定义域和值域1.一次函数:定义域R,值域R;2.反比例函:定义域,值域;3.二次函数:定义域R值域:当时,;当时,(三)函数的值:关于函数值例:=+3x+1 则f(2)=+3×2+1=11注意:1在中表示对应法则,不同的函数其含义不一样2不一定是解析式,有时可能是“列表”“图象”3与是不同的,前者为变数,后者为常数(四)函数的三要素:对应法则、定义域A、值域只有当这三要素完全相同时,两个函数才能称为同一函数三、例题讲解例1求下列函数的定义域:①;②;③.例2 已知函数=3-5x+2,求f(3), f(-), f(a+1).例3下列函数中哪个与函数是同一个函数?⑴;⑵;⑶例4 下列各组中的两个函数是否为相同的函数?①②③二、函数-区间的概念及求定义域的方法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定前面我们已经学习了函数的概念,,现在我们来学习区间的概念和记号二、讲解新课:1.区间的概念和记号在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b R ,且a<b.我们规定:①满足不等式a x b的实数x的集合叫做闭区间,表示为[a,b];②满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);③满足不等式a x<b 或a<x b的实数x的集合叫做半开半闭区间,分别表示为[a,b) ,(a,b].这里的实数a和b叫做相应区间的端点.在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点:数轴表示定义名称符号{x|a x b} 闭区间[a,b]{x|a<x<b} 开区间(a,b){x|a x<b} 左闭右开区间[a,b]{x|a<x b} 左开右闭区间(a,b)这样实数集R也可用区间表示为(-,+),“”读作“无穷大”,“-”读作“负无穷大”,“+”读作“正无穷大”.还可把满足x a,x>a,x b,x<b 的实数x的集合分别表示为[a,+,(a,+),(- ,b,(- ,b).注意:书写区间记号时:①有完整的区间外围记号(上述四者之一);②有两个区间端点,且左端点小于右端点;③两个端点之间用“,”隔开.2.求函数定义域的基本方法我们知道,根据函数的定义,所谓“给定一个函数”,就应该指明这个函数的定义域和对应法则(此时值域也往往随着确定),不指明这两点是不能算给定了一个函数的,那么为什么又在给定函数之后来求它的定义域呢?这是由于用解析式表示函数时,我们约定:如果不单独指出函数的定义域是什么集合,那么函数的定义域就是能使这个式子有意义的所有实数x的集合.有这个约定,我们在用解析式给出函数的对应法则的同时也就给定了定义域,而求函数的定义域就是在这个意义之下写出使式子有意义的所有实数组成的集合.3.分段函数:有些函数在它的定义域中,对于自变量x的不同取值范围,对应法则不同,这样的函数通常称为分段函数.分段函数是一个函数,而不是几个函数.4.复合函数:设f(x)=2x3,g(x)=x2+2,则称f[g(x)] =2(x2+2)3=2x2+1(或g[f(x)] =(2x3)2+2=4x212x+11)为复合函数三、讲解范例:下面举例说明函数定义域的求法.例1已知例2已知f(x)=x2 1 g(x)=求f[g(x)]例3 求下列函数的定义域:①②③④⑤例4 若函数的定义域是R,求实数a 的取值范围例5 若函数的定义域为[1,1],求函数的定义域求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.求解函数解析式例6 已知f(x)满足,求;例7设二次函数满足且=0的两实根平方和为10,图象过点(0,3),求的解析式.四、练习:1.设的定义域是[3,],求函数的定义域2.已知f(x)是一次函数, 且f[f(x)]=4x1, 求f(x)的解析式3.若,求f(x)检测:补充:1已知:=x x+3 求:f(x+1), f()2已知函数=4x+3,g(x)=x,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].3 若求f(x)三、函数-映射内容分析:本节是在集合与简易逻辑和函数的概念之后学习的,映射概念本身就属于集合的知识因此,要联系前一章的内容和函数的概念来学习本节,映射是是两个集合的元素与元素的对应关系的一个基本概念映射中涉及的“原象的集合A”“象的集合B”以及“从集合A到集合B的对应法则f”可以更广泛的理解集合A、B不仅仅是数集,还可以是点集、向量的集合等,本章主要是指数的集合随着内容的增多和深入,可以逐渐加深对映射概念的理解,例如实数对与平面点集的对应,曲线与方程的对应等都是映射的例子映射是现代数学的一个基本概念教学过程:一、复习引入:在初中我们已学过一些对应的例子:(学生思考、讨论、回答)①看电影时,电影票与座位之间存在者一一对应的关系②对任意实数a,数轴上都有唯一的一点A与此相对应③坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应④任意一个三角形,都有唯一的确定的面积与此相对应⑤高一(2)班的每一个学生与学号一一对应函数的概念本节我们将学习一种特殊的对应—映射.二、讲解新课:看下面的例子:设A,B分别是两个集合,为简明起见,设A,B分别是两个有限集0 300 450 600 902122 239 4 11 -12 -23 -33-32-21-1149123123456(1)(2)(3)(4)开平方求正弦求平方乘以2A AAAB BBB1说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A中的任何一个元素,在右边集合B中都有唯一的元素和它对应映射:设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射记作:象、原象:给定一个集合A到集合B的映射,且,如果元素和元素对应,则元素叫做元素的象,元素叫做元素的原象关键字词:(学生思考、讨论、回答,教师整理、强调)①“A到B”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射,A到B是求平方,B到A则是开平方,因此映射是有序的;②“任一”:就是说对集合A中任何一个元素,集合B中都有元素和它对应,这是映射的存在性;③“唯一”:对于集合A中的任何一个元素,集合B中都是唯一的元素和它对应,这是映射的唯一性;④“在集合B中”:也就是说A中元素的象必在集合B中,这是映射的封闭性.指出:根据定义,(2)(3)(4)这三个对应都是集合A到集合B的映射;注意到其中(2)(4)是一对一,(3)是多对一思考:(1)为什么不是集合A到集合B的映射?回答:对于(1),在集合A中的每一个元素,在集合B中都有两个元素与之相对应,因此,(1)不是集合A到集合B的映射思考:如果从对应来说,什么样的对应才是一个映射?一对一,多对一是映射但一对多显然不是映射辨析:①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;③存在性:映射中集合A的每一个元素在集合B中都有它的象;④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都有原象,即A中元素的象集是B的子集.映射三要素:集合A、B以及对应法则,缺一不可;三、例题讲解例1 判断下列对应是否映射?有没有对应法则?a e a e a eb f b f b fc g c g c gd d(是) (不是)(是)是映射的有对应法则,对应法则是用图形表示出来的例2下列各组映射是否同一映射?a e a e d eb f b f b fc g c g c g例3判断下列两个对应是否是集合A到集合B的映射?(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则(2)设,对应法则(3),,(4)设(5),四、练习:1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中的元素x按照对应法则“乘2加1”和集合B中的元素2x+1对应.这个对应是不是映射?(是)2.设A=N*,B={0,1},集合A中的元素x按照对应法则“x除以2得的余数”和集合B中的元素对应.这个对应是不是映射?(不是(A中没有象))3.A=Z,B=N*,集合A中的元素x按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射?(是)4.A={0,1,2,4},B={0,1,4,9,64},集合A中的元素x按照对应法则“f :a b=(a1)2”和集合B中的元素对应.这个对应是不是映射?(是)5.在从集合A到集合B的映射中,下列说法哪一个是正确的?(A)B中的某一个元素b的原象可能不止一个(B)A中的某一个元素a的象可能不止一个(C)A中的两个不同元素所对应的象必不相同(D)B中的两个不同元素的原象可能相同6.下面哪一个说法正确?(A)对于任意两个集合A与B,都可以建立一个从集合A到集合B的映射(B)对于两个无限集合A与B,一定不能建立一个从集合A到集合B的映射(C)如果集合A中只有一个元素,B为任一非空集合,那么从集合A到集合B 只能建立一个映射(D)如果集合B只有一个元素,A为任一非空集合,则从集合A到集合B只能建立一个映射7.集合A=N,B={m|m=,n∈N},f:x→y=,x∈A,y∈B.请计算在f作用下,象,的原象分别是多少.( 5,6.)分析:求象的原象只需解方程=求出x即可.同理可求的原象.课堂检测课后作业1判断下列各组中的两个函数是同一函数的为()⑴,;⑵,;⑶,;⑷,;⑸, A⑴、⑵ B⑵、⑶ C⑷ D⑶、⑸2函数的图象与直线的公共点数目是()A B C或 D或3已知,若,则的值是()A B或 C,或 D4设函数则实数的取值范围是5函数的定义域6若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是7函数的定义域是__________________8函数的最小值是_________________9求函数的定义域10.是关于的一元二次方程的两个实根,又,求的解析式及此函数的定义域11已知函数在有最大值和最小值,求、的。

高一数学函数的概念表示

高一数学函数的概念表示

函数概念与表示一、知识要点:1.函数的定义及“三要素”: 定义域、对应关系 、值域。

2.常用的函数表示法:(1)列表法:(2)图象法:(3)解析法(分段函数):(4)复合函数:(1)求函数定义域一般方法:①给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;②实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;③复合函数定义域: ,已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域。

由()a g x b ≤≤解出。

已知[()]f g x 的定义域[],a b ,求()f x 的定义域。

是()g x 在[],a b 上的值域 (2)求函数解析式的方法:①已知函数类型,求函数的解析式:待定系数法; ②已知复合关系,求函数的解析式:换元法、配凑法; ③已知函数图像,求函数解析式;数形结合法; (3)求函数值域的类型与求法:类型:①求常见函数值域;②复合函数的值域;③组合函数的值域。

$求法:①直接法、②配方法、 ③离常数法、④换元法、⑤逆求法、⑥判别式法、⑦数形结合。

二、基础练习:1、下各组函数中表示同一函数的有(1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。

2、函数y=x x x +-)1(的定义域为3、已知函数()f x 定义域为(0,2), 2()23f x +定义域 ;*4、(2009山东卷理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x则f (2009)的值为5、设函数1()f x =112223()(),x f x x f x x -==,,则123(((2007)))f f f = .三、例题精讲: 题型1:函数关系式例1.设函数).89(,)100()5()100(3)(f x x f x x x f 求⎩⎨⎧<+≥-=)变式1:已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.题型2:求函数解析式例2.(1)f(x +1)=x+2x ;求f(x)(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.](3)已知()f x 满足12()()3f x f x x+=,求()f x 。

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

高一数学:函数及其表示(导学案含答案)

高一数学:函数及其表示(导学案含答案)

第一节 函数及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)函数y =ln (1-x )x +1+1x的定义域是( ) A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[答案] (1)D (2)B 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x );所以f (x )=x 2-5x +9(x ∈R).考点三 分段函数考法(一) 求函数值[典例] 已知f (x )=⎩⎪⎨⎪⎧ log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=()A .-2B .2C .3D .-3[答案] B考法(二) 求参数或自变量的值(或范围)[典例] 设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[答案] D[题组训练]1.设f (x )=⎩⎨⎧ x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________. 解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2.答案:23.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧ ⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4故选B.2.函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧ 2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74C.43 D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.下列函数中,同一个函数的定义域与值域相同的是( )A .y =x -1B .y =ln xC .y =13x -1 D .y =x +1x -1解析:选D5.已知函数f (x )=⎩⎪⎨⎪⎧ log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516 B .3C .-6364或3 D .-1516或3 解析:选A 6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( ) A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1],得0≤x ≤1,故-1≤2x -1≤1,∴f (x )的定义域是[-1,1],∴要使函数f (2x +1)log 2(x +1)有意义, 需满足⎩⎪⎨⎪⎧ -1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .① 解析:选B 9.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 答案:(0,1]10.若函数f (x )=⎩⎨⎧ lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________. 答案:-211.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

山东省冠县第一中学人教版高中数学必修一导学案《1-2-1 函数的表示法(二)》 Word版无答案

山东省冠县第一中学人教版高中数学必修一导学案《1-2-1 函数的表示法(二)》 Word版无答案

函数的概念 一、学习目标通过丰富实例,使同学建立起函数概念的背景,体会函数是描述变量之间依靠关系的重要数学模型,能用集合与对应的语言来刻画函数,培育同学的抽象概括力量,体会对应关系在刻画函数概念中的作用;了解构成函数的三个要素,会求一些简洁函数的定义域和值域;了解区间的概念,体会区间表示集合的意义与作用,会推断两个函数是否相等.重点:函数概念的理解,函数的三要素;难点:函数概念及符号)(x f y =的理解 二、学问回顾(你已做好学问预备了吗?你肯定还记得以下学问吧!) 1. 函数在学校是怎样定义的? 2.填表函数一次函数二次函数反比例函数0>a0<a解析式 X 的范围 Y 的范围三、预习自学(自主学习课本15~19 页,了解本节学问点) 1.函数的概念:(结合课本实例,形成函数概念)设B A 、.是两个 的 ,假如依据某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数. 记作A x ∈.2.函数的三要素:在函数()x f y =中,其中x 叫 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 的值 叫做 ,函数值的集合(){}A x x f ∈|叫做函数的 ,那么值域是集合B 的 .(留意:函数的定义域与函数的值域都是以集合的形式呈现的) 、 和 是函数的三个构成要素.3.区间的概念?如何用区间表示数集?(规定,符号)4.相等函数 : 四、探究合作(师生互动,合作探究,分组呈现,点拨提升!) 问题:下面哪些能构成集合A 到集合B 的函数 (1)某位同学的几次考试状况如下:序号(数) 1 2 3 4 5 6 分数909390因病缺考9892集合{}{},92,98,93,90,6,5,4,3,2,1==B A 能否构成集合A 到集合B 的函数? (2)高一(6)班的同学组成集合A ,教室里的座椅组成集合B ,每一位同学都有唯一的一个座椅,班上还有空椅子.这能否算作一个集合A 到集合B 的函数的例子? 思考:1.理解函数B A f →:的概念你认为应把握哪几个关键词?2.函数的构成要素有哪些?一个函数必需具备全部要素吗?这些要素之间有什么关系?3.你认为若要判定两个函数相等,至少要满足什么条件?4.符号()x f 是什么意思?()()x f a f 与有什么区分?5.函数的图像既可以是连续的曲线,也可以是直线、折线、离散的点等等。

【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)

第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。

函数的表示方法课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

(2)便于数形结合思想的应用
数值,而且有时误差较大
高中数学
必修第一册
配套江苏版教材
示例 下表是某校高一(1)班三名同学在高一学年六次数学测试的成绩及班级平均分表.
测试序号
姓名
1
2
3
4
5
6
小伟
98
87
91
92
88
95
小城
90
76
88
75
86
80
小磊
68
65
73
72
75
82
班级平均分
88.2
78.3
85.4
高中数学
必修第一册
配套江苏版教材
例6 某镇响应“绿水青山就是金山银山”的号召,因地制宜地将该镇打造成“生态水果特色镇”.经调
研发现:某珍稀水果树的单株产量W(单位:千克)与施用肥料x(单位:千克)满足如下关系:
配套江苏版教材
3.分段函数的图象
分段函数有几段,它的图象就由几条曲线组成,在同一直角坐标系中,根据每段的定义区间和表达式依次
画出图象,要注意每段图象的端点是空心点还是实心点.
示例 已知函数f(x)=1+

(-2<x≤2).
2
(1)用分段函数的形式表示f(x);(2)画出f(x)的图象;(3)写出函数f(x)的值域.
高中数学
必修第一册
配套江苏版教材
+ 1 2 , ≤ −1,
例5 已知函数f(x)= 2 + 2, −1 < < 1, 若f(a)>1,则实数a的取值范围是(
C )
1
, ≥ 1,

1

3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

只可能是 ( B )
03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25

高一数学复习知识讲解课件24 函数的概念及其表示

3.1函数的概念高一数学复习知(习题课的概念及其表示复习知识讲解课件习题课)题型一题型一 复合函数例1已知函数f(x)的定义域为[-1【分析分析】】函数f(x)的定义域为[a,下,接受法则的对象无论是什么代数式时【解析解析】】因为函数f(x)的定义域为1≤2x-1≤3,解得0≤x≤2.故函数f(2x-1)的定义域是[0,2].合函数定义域的求法,3],求函数f(2x-1)的定义域.b]指a≤x≤b,即在同一对应法则f的作用式时,必受a≤x≤b制约.[-1,3],所以对于函数f(2x-1),有-探究1 (1)此题比较抽象,理解的关键范围,而f (x )的自变量是x ,对于函数f (g (的“x ”的范围与f (g (x ))中的“g (x )”的范围是相(2)法则“f ”相当于一间屋子,任何(3)已知f (x )的定义域为[a ,b ],求f (b ,即得f (g (x ))的定义域.的关键在于:由于函数的定义域是自变量的x ))而言,自变量也是x ,但同时有f (x )中围是相同的.“人”住进来,空间都不变!g (x ))的定义域,只需解不等式a ≤g (x )≤例2已知函数f(x+3)的定义域为[【分析分析】】由于函数f(x+3)的定义域为2≤x+3≤6,故可以得到函数f(x)的定义域【解析解析】】因为函数f(x+3)的定义域为所以由-1≤x≤3,得到2≤x+3≤6.所以函数f(x)的定义域是[2,6].-1,3],求函数f(x)的定义域.义域为[-1,3],所以-1≤x≤3,得到义域.义域为[-1,3],探究2已知f(g(x))的定义域为[a,b],求f(x)的定义域只需根据a≤x≤b,求出的范围即得的定义域.g(x)f(x)(3)已知函数f (x +2)的定义域为[1,3 【解析解析】】 ∵f (x +2)的定义域为[1∴3≤x +2≤5,∴f (x )的定义域为[3要使f (1-x )有意义,则3≤1-x ≤5,∴f (1-x )的定义域为{x |-4≤x ≤-3],求函数f (1-x )的定义域. ,3],,5].,∴-4≤x ≤-2. 2}.题往往采取赋值法.探究3此类抽象函数的求值问题往往题型三题型三函数图例4 向高为H 的水瓶中注水,注满为止的图象如图所示,那么水瓶形状是( )B函数图象的应用满为止,如果注水量V 与水深h 的函数关系)探究4 函数图象直观,能够帮助我们是研究数学的一个重要手段,是解题的一个观,便于发现问题,启发思考,有助于培养力.助我们正确理解概念和有关性质,数形结合的一个有效途径,用数形结合解题比较直于培养综合运用数学知识来解决问题的能思考题4 如图所示的四个容器高度相同的速度注入其中,注满为止.用下面对和时间t 之间的关系,其中不正确的个数为A .1 C .3【解析解析】】 对于第一个图,水面的高度其他均正确.选A.器高度都相同,将水从容器顶部一个孔中以下面对应的图象显示该容器中水面的高度h 数为( )AB .2 D .4的高度h 的增加应是均匀的,因此不正确,课后 巩 固1.著名的狄利克雷函数D (x )= 1,0,. A 0C. 1,x 为无理数,0,x 为有理数x 为有理数,x 为无理数,则D (D (x ))=().B B 1D. 1,x 为有理数,0,x 为无理数2.已知函数f (x )的定义域为[a ,b ],A .[2a ,a +b ] C .[a ,b ],则y =f (x +a )的定义域为( ) B .[0,b -a ] B D .无法确定3.客车从甲地以60km/h的速度匀速行时,然后以80km/h的速度匀速行驶1小时到过乙地,最后到达丙地所经过的路程s解析解析 图象是经过(0,0),(1,60)选C.匀速行驶1小时到达乙地,在乙地停留了半小小时到达丙地.下列描述客车从甲地出发,经与时间t之间关系的图象中,正确的是()C,(1.5,60),(2.5,140)的三段折线.故4.兔子和乌龟赛跑,领先的兔子看着一觉.当它醒来时,发现乌龟快到终点了还是先到达了终点……用s1,s2分别表示乌如下图所示的图象中与故事情节相吻合的是子看着缓慢爬行的乌龟,骄傲了起来,睡了点了,于是急忙追赶,但为时已晚,乌龟表示乌龟和兔子所走的路程,x 为时间,则合的是( )D5.某客运公司确定车票价格的方法是每千米0.5元;如果超过100千米,超过部分 y (元)与行程x (千米)之间的函数关系式是___ 解析解析 由题意得,当0≤x ≤100时,-100)×0.4=10+0.4x .方法是:如果行程不超过100千米,票价是过部分按每千米0.4元定价,则客运票价 y = 0.5x ,0≤x ≤100,________________. 10+0.4x ,x >100y =0.5x ;当x >100时,y =100×0.5+(x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档