小学奥数:乘除法数字谜(一).专项练习及答案解析

合集下载

小学生奥数数字谜练习题及答案

小学生奥数数字谜练习题及答案

学校生奥数数字谜练习题及答案1.学校生奥数数字谜练习题及答案[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?答案与解析:依据[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100,得到[21-(0.4+13)]×25=100,只有一个小数,假设小数有问题,那么,(21-17)×25=100,0.4应为4,2.5应为0.25答:把2.5改成0.25。

2.学校生奥数数字谜练习题及答案□+□+□+□+□=30在上面的□中填上5个连续的自然数,使等式成立。

解答:4+5+6+7+8=303.学校生奥数数字谜练习题及答案计算1234567972=______。

答案:原式=1234567998=1111111118=888888888。

4.学校生奥数数字谜练习题及答案把2,3,4,6,7,9分别填到下面六个圆圈中,使三个算式成立。

○+○=10,○-○=5,○+○=8解析分析1在2、3、4、6、7、9中相加等于8的只有2和6,先把2、6填在第三个算式中,剩下的就可填成3+7=10,9-4=5。

分析2六个数中9,而9不能填在第1或第3个算式中,所以把9填在第2个算式中作被减数。

其余的就好填了。

解:3+7=10,9-4=5,2+6=8。

5.学校生奥数数字谜练习题及答案小轩轩在中学校数学报社看到了几个奇怪的算式:数+数=小;学+学=学;中+中=数学。

这里面的汉字都代表0~9的一些数字。

相同的汉字代表相同的数字,不同的汉字代表不同的数字。

那么聪慧的同学们,你知道“学校数学”代表的四位数是多少吗?难度:★★★★【答案】:2010。

学+学=学,所以学=0;中+中=数学,所以中=5,数=1;数+数=小,所以小=2。

学校数学=2010。

小学初级奥数第35讲-乘除法数字谜

小学初级奥数第35讲-乘除法数字谜

练一练 在□内填入适当的数字,使下列乘法竖式成立:
例七
用代数方法求解下列竖式:
练一练 用代数方法求解下列竖式:
课后作业 <作业1>
下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?
×5
<作业2> 在下列算式的□中,填上适当的数字,使得算式成立。
课后作业
课后作业 <作业3>
在下式的□中填入合适的数字,并要求等式中没有重复的数字: 756=□×□□□。
例四
将1~7七个数码分别填入下列竖式的□内,使得竖式成立:
练一练
将1~7七个数码分别填入下列竖式的□内,使得竖式成立:
例五 将1~8分别填入下列竖式的八个□中,每题都有两种不同填法,请至少找出其中一种:
练一练
将1~8分别填入下列竖式的八个□中,每题都有两种不同填法,请至少找出其中一种:
例六 在□内填入填入下列3个算式的□中,使得3个等式同时成立:
□+□=□, □-□=□, □×□=□□。
例三 将1~9这九个数码填入下列三个算式的九个□中,使得三个等式都成立:
练一练
下列各小题都是由1~9九个数码组成的算式,其中有几个已知道, 请将其余的数码填入□中,使得各等式成立: (1)□×□=5□;□□÷□×□=□; (2)□×□×□=□+□;□÷□=□÷□; (3)□×□=□□□÷5□=□□。
<作业4> 在□中填入适当的数字,适当算式成立。
课后作业
课后作业 <作业5>
在下面的竖式中,被除数、除数、商、余数的和是709。请填上各□中的数字。
例一
在下列各式的□中填入适当数字,使得等式成立且数字关于等号左右对称: (1)12×23□=□32×21;(2)12×46□=□64×21; (3)□8×891=198×8□;(4)24×2□1=1□2×42; (5)□3×6528=8256×3□。

[实用参考]奥数试卷-乘除法算式谜.doc

[实用参考]奥数试卷-乘除法算式谜.doc

乘除法算式谜[问题一]在右面的□里填上合适的数字。

想:因为积的个位是6,那么两个因数个位相乘的积的个位也是6;一个因数十位上是6,如果它与比1大的数相乘,所得的积肯定是三位数,但两次乘得的积都是两位数,那另一个因数的十位和个位都只能填1。

解:[试一试]1.在下面的□里填上合适的数字。

2.在下面的□里填上合适的数字。

[问题二]下列算式中不同的汉字代表不同的数字,相同的汉字代表相同的数字。

它们各代表什么数字时算式成立。

想:(1)由积的个位是2,一个因数是3,推出另一个因数的各位数“杯”是4。

(2)4×3=12,在积的个位上写2,向十位进1,因为积的十位数“杯”为4,所以“金”×3的积的个位数是3,由此“金”是1。

(3)“金”是1,积的百位数为1,所以“庚”×3的积的末位数应是1,由此“庚”是7。

(4)7×3=21,在积的百位上写1,向千位进2,因为积的千位数为7,所以“罗”×3的积的末位数应是5,由此“罗”是5。

(5)由积的万位数“罗”是5,可推得“华”为8。

解:答:华=8,罗=5,庚=7,金=1,杯=4。

[试一试]1.下面算式中的a、b、c、d这四个字母各应代表什么数字?2.下式中“数学俱乐部”分别代表哪些数字?[问题三]右面的乘法算式中,算、式、谜各代表一个互不相同的数字。

它们各代表什么数字时算式成立。

想:由算式谜×谜=□□□谜,可知谜不等于1或0,因此移只等于5或6。

(1)若谜=5,由于算式谜×算的乘积是三位数,所以“算”不大于3,且算式谜×算的乘积的百位上的数字大于等于3小于等于5,所以算=2。

由于算式谜×式=□□5,可知式是奇数,且小于5。

(2)若谜=6,同理,算式谜×算的乘积的百位上的数字,必须大于等于4且小于等于6,所以算=2,由于2式6×式=□□6,所以式=1,但216×216=46656,不符合题意。

高斯小学奥数五年级上册含答案_数字谜综合一

高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一锻学王国的燥场上*有一些JS 字湘号在排队,平过有个小當伙站惜了位・,像知畫它应该站在■ 里吗?在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法•它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练. 但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.例题1.已知“ BAD BAD GOOD ”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字. 已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口•本题的突破口在哪里?练习1.在算式“路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字•已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.□□ □□□□ □□ 952「分析」从算式来看,是要找出两个两位数的乘积为952 .但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的. 我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2•从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?例题4.数数科学学数学.在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字. 请问:"数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数” X“学”的个位数字是“学”, 题中的“数数”有什么特点吗?但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现练习4数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字. 那么"好棒所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?年年岁岁花相似岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识.例题6.已知a是一个自然数,A、B是1至9中的数字,最简分数—0.3A3E&•请问:a是多少?222「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔詹姆斯基曾以开发心灵美为题, 一些令人叹服的巧妙算法,其中之一如下:例:8888 3333 296237048 38383832424242424242424242424242424242429623704这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了. 非是重点,趣味性才是它的精髓所在.列举了但结果并作业1.在算式12 2^ 口32 21的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2.用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质•已知组成的四位数是1860,那么其他的三个数是多少?作业3.将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1 ,5,6已经填好).口□□□ □口156作业4.在算式“钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5.已知a是一个自然数,b是一个1至9中的数字,如果―」0.&D&,那么a是多少?555第二十讲数字谜综合一例题1. 答案:3810详解:列竖式,易知D是0, G是1,且O是偶数.那么GOOD可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是610 610 1220 和830 830 1660,只有第二个满足.那么ABGD是3810.例题 2.答案:56 17 28 34 952详解:952 23 7 17 .考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成56 17、28 34和14 68 .考虑到8个数字不重复,只能是5617 28 34 952.例题 3. 答案:1、67、583 或1、67、853详解:2940 22 3 5 72,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8; 5、6、8; 5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8; 3、5、&经检验,有583、853符合要求.综上所述,一共有:1、67、583; 1、67、853两组答案.例题4.答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979 .依次验证几种情况,发现:当学数学为616,那么“学”为6, “数”为1, “ 数数科学学数学”变为“11科6 616 ”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“年岁121花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2,年4 .第二个算式为22 44人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是例题6.答案:83详解:按照混循环小数化分数的方法,0 3A3哗3A3B 3 ,因此等式变为9990—3A3B 3,即兰邑3,可知45 a 3A3B 3 .那么3A3B 3 一定是45的222 9990 9990 9990倍数,即为5和9的倍数,因此3A3B 3计算结果的个位一定是0后者5,那么3A3B的个位一定是3或者8,即B3或B3A338 .当B3时, 3A3B 333A30 一定是9的倍数,可知A3,原数为0.3333L不符合题意.当B8时, 3A3B 33A3833A35是9的倍数,可知 A 7 , 原数为0.373禺,符合题意,可知45 a 3735 , a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是72 72 144,要求的四位数是2417.练习2. 答案:1026简答:1026 2 33 19 .考虑最大的质因数19 .等号两边都有19的倍数,可以是19、38、57. 1026可以拆成19 54、38 27或57 18 .考虑到8个数字互不相同,只能是19 54 3827 1026 .练习3.答案:5和263简答:还有2、3、5和6可以用.714 2 3 7 17,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是27 37=999 .作业1.答案:12 231 132 21简答:21中有质因数乙所以23匚|应该是7的倍数,只能填1或8,经检验,应填1.作业2.答案:7, 43, 529简答:1860 22 3 5 31,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,968510.49是7的倍数,所以两位数只能是43, 259是7的倍数,所以三位数只能是529 . 作业3.答案:4 39 2 78 156简答:156 22 3 13,所以是4 39 2 78 156.作业4.答案:137简答:两个重复的三位数组成的六位数一定是1001的倍数,而1001 7 11 13,所以“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235简答:由分数化循环小数的方法可得, a 5 9 4b3 .所以9|4b3 , b=2, a=235.。

小学奥数题_数字谜

 小学奥数题_数字谜

《小学奥数教程:数字谜》专项突破(附答案详解)奥校小学数学竞赛教研中心一、单选题1.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”=2,“四”=4,如果四位数“二月四日”的22倍等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()二月四日数学科普节A. 12B. 15C. 16D. 272.如图,这个乘式中,PQRS是一个四位数,且P、Q、R及S分别为不同的数码.下列叙述不正确的是()A. PQRS是9的倍数B. P=1C. Q=0D. R=7二、填空题3.下面是计算一个六位数乘一个一位数的竖式,不同的汉字表示不同的数字,相同的汉字表示相同的数字。

这个六位数是________。

4.想一想,4,8,6,3这4个数字经过怎样的运算才能得到24呢?每个数字都要用到且只能使用一次,请至少写出两种运算顺序不同的方法。

方法一:________方法二:________5.将1~9这9个数字分别填入下图的方框中,每个数字恰好用一次,使等式成立;现已将8填入,则最左边的两个方框中所填的两位数是________。

6.把2、3、4、5、8、9、10、11这8个数字填入下面横线上(每个数字只能用一次),使等式成立。

________+________=________+________________+________-________=________7.不计算,运用规律直接填出得数。

6×7=426.6×6.7=44.226.66×66.7=________6.666×666.7=________8.在下面的乘法算式中,每个字母代表一个数字,不同字母代表不同数字,A不是零.求A、B、C和D分别代表什么数字.A=________ B=________C=________ D=________9.在下面的乘法算式中,A、B、C和D表示不同的数字,ABC是一个三位数.(1)A=________ B=________ C=________ D=________(2)ABC=________.10.在下面的算式中相同的字母代表0~9的一个数字,而且不同的字母代表不同的数字,请问:在0~9中,算式中缺少的一个数字是________.11.在下面的算式中,每个字母都代表0~9的一个数字,不同的字母代表不同的数字.请问:A代表的数字是________.12.下面算式中,每个“字”代表一个数字,要使加法竖式成立,每个“字”应该用哪一个数字去代表?祝=________ 小=________ 朋=________ 友=________节=________ 日=________ 愉=________ 快=________(按句中汉字的顺序填写)13.A=________ B=________ C=________ D=________ E=________14.A=________ B=________ C=________15.A=________ B=________ C=________ D=________16.D=________ E=________ F=________17.下面竖式中的字母各代表什么数字?18.有3个连续的数A,B,C,若A+B+C=A×B×C,则A是________,B是________,C是________.19.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有________个。

小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。

数字谜一般分为横式数字谜和竖式数字谜。

横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。

例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。

⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。

【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。

那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。

【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。

图中已填入3,5,8和x 四个数,那么x 代表的数是 。

分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。

小学奥数专题-算式谜(一).教师版

5-1-1-1.算式谜(一)教学目标数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题。

知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指+、-、×、÷、()、[]、{}。

二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.例题精讲模块一、巧填算符(一)巧填加减运算符号【例1】在下面算式适当的地方添上加号,使算式成立。

88888888=1000【考点】巧填算符之凑数法【难度】3星【题型】填空【解析】要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它可以是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。

本题的答案是:888+88+8+8+8=1000【答案】888+88+8+8+8=1000【例2】在等号左边9个数字之间填写6个加号或减号组成等式:1 2 3 4 5 6 7 8 9=101【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】迎春杯,中年级,初赛,第2题【解析】(不唯一)123456789101++++-+=或123456789101-+-+++=【答案】123456789101-+-+++=++++-+=或123456789101【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210□□□□□□□□3□□=【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【答案】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321=□□□□□□5□4□□【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】希望杯,六年级,初赛,第2题,6分【解析】11+10+9……3+2=65,所以只要将其中和为32的几项的加号改成减号即11-10-9-8+7+6-5+4+3+2=1 【答案】11-10-9-8+7+6-5+4+3+2=1【例4】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。

奥数乘除数字谜

乘除竖式迷
专题简析:
解决算式谜题,关键是找准突破口,推理时应注意以下几点:
1.认真分析算式中包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;
2.利用列举和筛选相结合的方法,逐步排除不合理的数字;
3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;
4.算式谜解出后,要验算一遍。

例1:在下面的方框中填上合适的数字。

□7 6
×□□
1 8 □□
□□□□
3 1 □□0
练习一
在□里填上适当的数。

(1) 6 □(2)□ 2 □□(3) 2 8 5 × 3 5 ×□ 6 ×□□
3 3 □□□0
4 1 □ 2 □1 □8 □□7 0 □□□
□□□□□□□□□□9 □□
例2:在下面方框中填上适合的数字。

练习二
在□内填入适当的数字,使下列除法竖式成立。

例3:下面算式中的a、b、c、d这四个字母各代表什么数字?
a b c d
×9
d c b a
a= b= c= d=
练习三
求下列各题中每个汉字所代表的数字。

(1)1 数学俱乐部
× 3 数= 学= 俱= 数学俱乐部 1 乐= 部=
(2)我= 们= 爱=
祖= 国=
(3)我们爱数学
×我我= 们= 爱= 学学学学学学数= 学=
巩固练习:
(3)(4)
(5)(6)
(7)
我= 爱= 数= 学=。

小学六年级数学思维训练(奥数)数字谜(一)例题及练习题

小学六年级数学思维训练(奥数)数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

解:将5568质因数分解为5568=26×3×29。

由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

小学奥数数字谜(乘除法)专项练习30题(有答案)

第10讲数字谜二专项练习30题(有答案)1.如图式中,不同的汉字代表不同的数字,“马年好”代表的三位数是_________.2.在下面的乘法算式中,A,B,C,D,E代表不同的数码.是一个三位数,是一个两位数,则是_________,是_________.3.在如图乘法中,A=_________,B=_________.4.右面是一个乘法算式,每个方框填一个数字,而每一个汉字表示一个数字,不同的汉字代表不同的数字,“总”字所代表的数字大于2,那么“总决赛”所代表的三位数字是_________.5.确定下式中各汉字代表的数字,使竖式成立.那么“奥”代表_________,“林”代表_________,“匹”代表_________,“克”代表_________.6.如图的乘法算式中,“赛”是9,那么“来”是_________,“参”是_________,“加”是_________,“镇”是_________,“数”是_________,“学”是_________,“竞”是_________.7.如果图中的竖式成立,那么广=_________,州=_________,亚=_________,运=_________,欢=_________,迎=_________,您=_________.8.右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是_________.9.根据竖式推算出下面的汉字分别代表什么数字?新=_________塘=_________小=_________将=_________学=_________奥=_________数=_________.10.无锡欢迎您代表5个不同数字,相同的字代表相同的数字,那么无锡欢迎您代表_________.11.右面算式中,三个字各代表什么数字,算式才能成立.答:“太”代表_________,“好”字代表_________,“了”年代表_________.12.下面式子相同的字代表相同的数字,不同的字代表不同的数字,则“欢迎你来北京”是_________.13.A=_________B=_________C=_________D=_________E=_________.14.如图,则A=_________;B=_________;C=_________;D=_________.15.“迎接奥运会”每个文字各代表一个不同的一位数字,它们各等于多少?“迎”=_________“接”=_________“奥”=_________“运”=_________“会”=_________.16.“伟大祖国繁荣昌盛”各代表一个不同的一位数字,它们各等于多少?“伟”=_________“大”=_________“祖”=_________“国”=_________“繁”=_________“荣”=_________“昌”=_________“盛”=_________.17.在这个乘法算式中,p、q、r、s各代表不同的数字.请问:p+q+r+s=_________.18.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为_________.二.解答题(共12小题)19.下面的除法中,不同的汉字代表不同数字.问“明天更美好”代表的五位数是什么?20.在下面乘法算式中,每一方框要填一个数字,若一个汉字代表一个数字,不同汉字代表不同的数字.请问最后的积(五位数)是多少?21.下列竖式中的A、B、C、D、E分别代表1~9中不同的数字,求出它们使竖式成立的值.则:ABCDE=_________.22.根据竖式推算出下面的汉字分别代表什么数字?新=_________塘=_________小=_________学=_________好=_________.23.图所示的乘法算式中,每个字母都代表0~9的一个数字,而且不同的字母代表不同的数字,那么D代表的数字是几?24.如果A、B满足下面算式,则A+B=_________.25.如图的竖式中,相同的文字表示相同的数字,不同的文字表示不同的数字.“我们爱希望杯”表示的六位数是_________.26.“我爱北京奥运”是个六位数,每个汉字表示不同的数.请把符合下面竖式的这个六位数写在下面的括号里:_________27.右边是一个残缺算式,只已知一个2和三个0.其中不同的汉字代表不相同的数字,那么“新年好”代表的三位数是_________.28.如图的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且“好”是不为1的奇数,那么此算式成立时“上海博奥好”所代表的数是多少?29.算式谜:下面算式中相同的字母代表相同的数,不同的字母代表不同的数.A=_________B=_________C=_________.30.下面竖式中每个“奇”字代表1、3、5、7、9中的一个,每个“偶”字代表0、2、4、6、8中的一个,求当他们表示几时,竖式成立.参考答案:1.根据竖式可知,好×7的末尾是好,由5×7=35,可得,好=5,向十位进3;马×7+3=马年,由1×7+3=10,可得,马=1,年=0;由以上分析可得竖式是:故答案为:1052.因为4063=239×17.所以是239,是17;故答案为:239,17.3.根据题干分析可得:所以A=3,B=8.故答案为:3;84.根据题干分析可得:所以总=3,决=2,赛=7,“总决赛”所代表的三位数字是327.答:“总决赛”所代表的三位数字是327.故答案为:3275.根据题干分析可得:答:奥=8,林=7,匹=1,克=2.故答案为:8;7;1;2.6.因为“赛”代表9,9×9=81,可得“来”代表1,111111111÷9=12345679;由此可得:来、参、加、镇、数、学、竞、赛分别表示1、2、3、4、5、6、7、9;故答案为:1;2;3;4;5;6;77.解:根据竖式可得:您×您的末尾是1,由9×9=81,可得,您=9,向十位进8;迎×9+8的末尾是1,7×9+8=71,可得,迎=7,向百位进7;欢×9+7的末尾是1,6×9+7=61,可得,欢=6,向千位进6;运×9+6的末尾是1,5×9+6=51,可得,运=5,向万位进5;亚×9+5的末尾是1,4×9+5=41,可得,亚=4,向十万位进4;州×9+4的末尾是1,3×9+4=31,可得,州=3,向百万位进3;广×9+3的末尾是1,2×9+7=21,可得,广=2,向千万位进2.根据以上分析可得竖式是:故答案为:2,3,4,5,6,7,9.8.解:由题意可知,赛×赛个位上是9,只有7×7=49,确定赛是7,向上一位进4;杯×7+4个位上是9,可知杯×7个位上是9﹣4=5,因5×7=35,确定杯是5,向上一位进3;望×7个位上是9﹣3=6,因8×7=56,确定望是8,向上一位进5;希×7个位上是9﹣5=4,因2×7=14,确定希是2,向上一位进1;学×7个位上是9﹣1=8,因4×7=28,确定学是4,向上一位进2;小×7个位上是9﹣2=7,因1×7=7,确定小是1,没有进位;验算一下:1 42 8 5 7×7﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9 9 9 9 9 9所以六位数是:142857.故填:142857.9.根据题干分析可得:答:新=1;塘=2;小=3;将=6;学=4;奥=0;数=8.故答案为:1;2;3;6;4;810. 根据题干分析可得:142857,所以无锡欢迎您代表42857.故答案为:42857.11.根据以上分析知:(1)当“好”是7时,“好好”乘上“好”积是539,不合题意,(2)当“好”是8时,“好好”乘上“好”积是704,不合题意,(2)当“好”是9时,“好好”乘上“好”积是891,符合题意,答:“太”代表8,“好”字代表9,“了”年代表1.故答案为:8,9,1.12.根据以上分析可知:故答案为:28571413.答案如下,故答案为:4,2,8,5,7.14.根据题意可得:ABCD×4=DCBA,也就是一个四位数与4相乘的积也是四位数,那么A一定小于3,即A=1或A=2;当A=1,个位上,D×4的末尾是A,即是1,没有一个数与4相乘积的末尾是1,A=1不符合,因此A=2;因为,3×4=12,8×4=32,可得:D=3或D=8;因为千位上,A×4的末尾是D,即2×4=8,所以,D=3不符合,因此D=8;百位上不能有进位,因此,B=0、1、2;当B=0时,个位上8×4=32,向十位进3;十位上:C×4+3的末尾是B,即是0,找不到一个数字与4相乘再加上3的末尾是0,所以,B=0不符合;当B=1时,C×4+3的末尾是B,即是1,2×4+3=11,7×4+3=31,可得:C=2或者C=7;当C=2时,2×4+3=11,向百位进1,百位上,B×4++1=C,即C=1×4+1=5,与C=2不符,因此,C=2不符合题意;当C=7时,7×4+3=31,向百位进3,百位上,B×4++1=C,即,,C=1×4+3=7,符合题意,故B=1,C=7;当B=2时,C×4+3的末尾是B,即是2,找不到一个数字与4相乘再加上3的末尾是2,所以,B=2不符合;因此,由以上推算可得竖式是:故答案为:2,1,7,8.15.根据以上分析可知故答案为:8,7,9,1,2.16.据据以上分析可知,“伟”是9,“大”是8,“祖”是7,“国”是6,“繁”是5,“荣”是4,“昌”是3,“盛”是2.故答案为:9,8,7,6,5,4,3,2.17.由分析得出符合题意的算式是:27×37=999,所以p=2,q=7,r=3,s=9.p+q+r+s=2+7+3+9=21.故答案为:2118.设“学奥林匹克“=A,“数”=B,则3×(A+100000B)=10A+B,3A+300000B=10A+B,7A=299999B,A=42857B.只可能B=1,符合题意,从而A=42857,B=1.所以被乘数是142857.故答案为:14285719.根据竖式可知,世界×9=3□□,世界×8=2□□,可以得出,世界×8<300,世界<38,世界×9>299,世界>33,所以,33<世界<38;假设世界=34,34×1998=67932,数字3重复,不符合题意;假设世界=35,35×1998=69930,3,9都重复,不符合题意;假设世界=36,36×1998=71928,符合题意;假设世界=37,37×1998=73926,3,7都重复不符合题意;所以,世界=36,那么明天更美好代表的五位数是:7192820.根据题意,由竖式可知,□恭□×1=□□8,可得出被乘数的个位数字是8;年是贺与被乘数的积的个位,即贺×8的个位,一定是偶数,从9+9+8=26,就知年是6;新+年的结果小于10,即新+6<10,新<4;□恭8×贺=□□96,48×2=96,28×7=196,可以得出贺是2或7,当贺是2时,恭是4,被乘数的百位数字大于4,因为□恭8×□=9新□,被乘数的百位与乘数的个位相乘的结果是9或加上进位是9,只有9×1=9,所以被乘数的百位数字是9,乘数的个位数字是1,因为1×948=9新□,新=4,与题意不符;当贺是7时,恭是2,被乘数的百位数字大于1,228×4=912,符合题意,被乘数是228,乘数是174,竖式是:2 2 8×1 7 4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9 1 21 5 9 62 2 8﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣3 9 6 7 2答:这个乘法算式的最后乘积是39672.21.根据题意可得:个位上:E×3的末尾是1,因为,7×3=21,所以可得:E=7,向十位上进2;十位上:D×3+2的末尾是E,即是7,因为,5×3+2=17,所以可得:D=5,向百位上进1;百位上:C×3+1的末尾是D,即是5,因为,8×3+1=25,所以可得:C=8,向千位上进2;千位上:B×3+2的末尾是C,即是8,因为,2×3+2=8,所以可得:B=2;万位上:A×3的末尾是B,即是2,因为,4×3=12,所以可得:A=4,向十万位上进1;十万位上:1×3+1=4,正好等于A;由以上推算可得竖式是:所以,ABCDE=42857.故答案为:42857.22.假设:“好”≥5,则“新”=1,故“好“=7或9.若“好”=7,则“学”=3,引出矛盾;假设:“好“=9,则“学”=9,引出矛盾.故“好’’≤4.显然“好“≠1;假设:“好”=2,则“新”≤4,假设“新”=4,则“学”=8或9,引出矛盾;假设:“好”=3,则“新”≤2,但若“新”=1,则“学”=7,引出矛盾;假设:“新”=2,则“学”=4,引出矛盾.故只有“好”=4,则“新”≤2,但若“新”=1,引出矛盾;假设“新”=2,则“学”=8,“塘”=1,“小”=7,即:答:新=2,塘=1,小=7,学=8,好=4.故答案为:2;1;7;8;423.根据竖式可得:A×==D×111=D×3×37;所以,=37或74(2×37);如果=37,则A=3D;那么,①D=1,A=3;②D=2,A=6;③D=3,A=9;如果=74,则2A=3D;那么,④D=2,A=3;⑤D=4,A=6;⑥D=6,A=9;共有6中可能的情况;由于每个字母代表一个不同的数字,故①③⑤可排除;将②、④、⑥的数值代入运算,可得以下算式:;其中,只有②符合题意.所以,D代表的数字是2.答:D代表的数字是224.因B×B的个位是4,根据乘法口决可知B是2或8,因若B是2,B×A等于30,一位数乘一位数,没有,所以B是2不和题意.B只能是8,B是8,A×B的个位是4,根据乘法口决可知A只能是3,故答案为:1125.根据分析可知,“杯”字是7,999999÷7=142857.故答案是:142857.26.142857;故答案为:142857.27.根据题意可知,千禧年代表的数大于被除数的前三位,再根据竖式可知,千禧年×新的积百位上是0,千禧年×年的积的十位上是0,根据整数中间有0的乘法,可以推出禧代表的是数字是0,千禧年×新与千禧年×年的积都是四位数,可以推出千×新与千×年的积大于10,根据竖式可知,千0年×新=□0□□,可以推知千×新=20,也就是千与新代表队数字是4或5,这样由千×新与千×年的积大于10可以推知年代表的数字是3,是其它数字都不符合题意,假如千代表的数字是4,那么千禧年=403,403×3=1209,根据竖式□0□□﹣1209最小791大于403,不符合题意,所以千代表的数字是5,那么新代表的数字是5,这样除数是503,在□0□□﹣1509,可知□0□□最大是1509+502=2011,最小是2000,2000﹣1509=491,5020÷503商9,4910÷503也商9,所以好代表的数字是9.例如竖式是:4 3 92 0 1 2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 1 11 5 0 9﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5 0 2 04 5 2 7﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣4 9 3所以新年好代表的三位数是439.故填:439.28.根据题意可得:“好”是不为1的奇数,“好”=3,5,7,9中的一个;一个不是1的奇数与“运”相乘所得的积的末尾还是“运”,那么,“运”只能是0或5,很明显0不符合题意,那么,“运”=5;假设“好”=3,3×5=15,向上一位进1;“奥”×5+1的末尾是8,也就是“奥”×5的末尾数是8﹣1=7,找不到一个数与5相乘的积的末尾数7,因此,“好”不是3;假设“好”=5,与“运”=5重复,因此,“好”不是3;假设“好”=9,9×5=45,向上一位进4;“奥”×5+4的末尾是8,也就是“奥”×5的末尾数是8﹣4=4,找不到一个数与5相乘的积的末尾数4,因此,“好”不是9;由以上可以得出:“好”=7;十位上,7×5=35,向上一位进3;“奥”×5+3的末尾是8,也就是“奥”×5的末尾数是8﹣3=5,那么,“奥”代表的数是奇数,并且只能是1,3或9,5与7被“运”和“好“所用;假设“奥”=9,9×5+3=48,向上一位进4;“博”×5+4的末尾是0,也就是“博”×5的末尾是10﹣4=6,找不到一个数与5相乘的积的末尾数6,因此,“奥”不是9;假设“奥”=3,3×5+3=18,向上一位进1;“博”×5+1的末尾是0,也就是“博”×5的末尾是10﹣1=9,找不到一个数与5相乘的积的末尾数9,因此,“奥”不是3;由以上可以得出:“奥”=1;1×5+3=8;“博”×5的末尾是0,“博”只能是偶数,也就是“”是0,2,4,6,8中的一个;假设“博”=8,8×5=40,向上一位进4;“海”×5+4末尾是0,也就是“海”×5的末尾是10﹣4=6,找不到一个数与5相乘的积的末尾数6,因此,“海”不是8;假设“博”=6,6×5=30,向上一位进3;“海”×5+3末尾是0,也就是“海”×5的末尾是10﹣3=7,找不到一个数与5相乘的积的末尾数7,因此,“海”不是6;假设“博”=4,4×5=20,向上一位进2;“海”×5+2末尾是0,也就是“海”×5的末尾是10﹣2=8,找不到一个数与5相乘的积的末尾数8,因此,“海”不是4;假设“博”=2,2×5=10,向上一位进1;“海”×5+1末尾是0,也就是“海”×5的末尾是10﹣1=9,找不到一个数与5相乘的积的末尾数9,因此,“海”不是2;由以上可得:“博”=0;0×5=0;“海”×5的末尾是0,“海”只能是0除外的偶数,也就是“”是2,4,6,8中的一个;又因为“上”×5加上“海”×5的进位结果是12,只有2×5+2=12,也就是“海”×5进位是2,4×5=20,进位是2,所用,“海”=4,“上”=2;由以上分析可得竖式是:;所以,“上海博奥好”所代表的数是:2401729.111111÷3=37037,所以37037所以A=3,B=7,C=0.故答案为:3;7;0.30.(1)竖式如下:48×2696(2)竖式如下:285×39855。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【考点】乘法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第2题 【解析】 乘积是两位数并且是5的倍数,因而最大是95.95÷5=19,所以题中的算式实际上是例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)59915×所以,所填四个数字之和便是1+9+9+5=24【答案】24【例 2】下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【考点】乘法数字谜【难度】2星【题型】填空【关键词】走美杯,四年级,初赛,第12题,五年级,初赛,第11题【解析】由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,如果“美”为2,根据“美”ד学”的个位数为“妙”,那么“妙”为偶数,即为4,推出“学”为7,又由“美”+“学”=“数”,可知“数”为9,所以=美妙数学2497。

【答案】2497【例 3】北京有一家餐馆,店号“天然居”,里面有一副著名对联:客上天然居,居然天上客。

巧的很,这副对联恰好能构成一个乘法算式(见右上式)。

相同的汉字代表相同的数字,不同的汉字代表不同的数字。

“天然居”表示成三位数是_______。

×客上天然居4居然天上客【考点】乘法数字谜【难度】2星【题型】填空【关键词】走美杯,4年级,决赛,第6题,10分【解析】因为竖式中五位数乘4仍是五位数,所以“客”是人于0小于3的偶数,只能是2,并推知“居”=8。

因为“上”乘4不向上进位,且是奇数,所以“上”=1,并推知“然”=7。

则所表示的三位数是978。

【答案】978【例 4】下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是多少?【考点】乘法数字谜【难度】2星【题型】填空【解析】如式(2),由题意a≠2,所以b≥6,从而d≥6.由22□÷c≥60和c>2知c=3,所以22□是225或228,75de=或76.因为75×399<30 000,所以76de=.再由乘积不小于30000和所有的□≠2,推出唯一的解76×396=30096.【答案】76×396=30096【例 5】下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是?【考点】乘法数字谜【难度】2星【题型】填空【解析】为了说明的方便,这个算式中的关键数字用英文字母表示.很明显e= 0.从c ab⨯的个位数是1,b可能是3,7,9三数之一,两位数ab应是(100+f)的因数.101,103,107,109是质数,f=0或5也明显不行.102=17×6,则ab=17,C只能取3,317c ab⨯=⨯,不是三位数;104=13×8,则13ab=,c可取7,c ×ab=7×13,仍不是三位数;106=53×2,53ab=,c=7,753c ab⨯=⨯是三位数;108=27×4,则ab=27,c是3.327c ab⨯=⨯,不是三位数.因此这个乘法算式是53×72=3816,故这个算式的乘积是3816。

【答案】3816【例 6】右面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字.美+妙+数+学+花+园= .423805⨯美妙数学花园数学真美妙好好好美妙【考点】乘法数字谜【难度】3星【题型】填空【关键词】走美杯,3年级,决赛,第5题,10分【解析】从式中可以看出“花”⨯“学”的乘积末位为零,故“花”与“学”之中必有一个为数字0或5,当“学”是0时,由下面一列中的“学”、“3”,“好”,知“好”为“3”或“4”,则“数”取0~9中的任何一个数字也不行,同样地“学”也不是5,而“花”不能是0,所以“花”为数字5,则可以逆向计算出:美妙数学4238058476=÷=.故“美”8=,“妙”4=,“数”7=“学”6=.再看下面的加法:“数”2+=“好”且进1位,可知必有进位且“好”0=,于是“真”2=,所以再次逆推“园”7628484769=÷=.符合题意,假设成立,故,美+妙+数+学+花+园84765936=+++++=.【答案】36【例 7】在右边的乘法算式中,字母A、B和C分别代表一个不同的数字,每个空格代表一个非零数字.求A、B和C分别代表什么数字?941A B CA B C⨯【考点】乘法数字谜【难度】3星【题型】填空【解析】第一个部分积中的9是C C⨯的个位数字,所以C要么是3,要么是7.如果3C=,第二个部分积中的4是积3B⨯的个位数字,所以8B=.同理,第三个部分积中的1是积3B⨯的个位数字,因此7A=.检验可知7A=,8B=,3C=满足题意.如果7C=,类似地可知2B=,3A=,但这时第二个部分积3272⨯不是四位数,不合题意.所以A、B和C代表的数字分别是7、8、3.【答案】7、8、3【例 8】在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.【考点】乘法数字谜【难度】3星【题型】填空【关键词】迎春杯,高年级,复试,5题【解析】A与乘数的乘积比2与乘数的乘积小,所以1=A,1=C,又B与2的乘积个位是0,所以0 5或=B,6⨯C不进位,那么6⨯D个位是0,得5=D,两个乘法式子分别为515216⨯和510216⨯,乘积的差为(515510)2161080-⨯=.【答案】1080【例 9】在图中的每个方框中填入一个适当的数字,使得乘法竖式成立。

乘积等于。

28⨯【考点】乘法数字谜【难度】3星【题型】填空【关键词】走美杯,5年级,决赛,第6题,10分【解析】根据乘法算式,被乘数乘以2后得到一个3位数,且此三位数的最高位在最终的运算中进位了,所以被乘数的最高位应该是4,而乘数的十位数乘以被乘数后得到的结果也是三位数,所以乘数的十位数只能是1或2,如果是1,那么被乘数的十位数肯定是0,第三位数字必为4,但此时40421⨯不可能是6位数,故乘数第二位必为2,被乘数第三位必为4,被乘数第二位为5或0,假设被乘数第二位是0,则40422⨯不可能是六位数,所以被乘数必然是454,经试算,乘式为454229103966⨯=。

【答案】103966【例 10】 如图,请在右图每个方框中填入一个数字,使乘法竖式成立。

700×2【考点】乘法数字谜 【难度】3星 【题型】填空 【关键词】走美杯,初赛,六年级,第7题【解析】 70088888333455212×007【答案】70088888333455212×007【例 11】 在下面的乘法算式中,相同的字母表示相同的数字,不同的字母表示不同的数字.则A = ,ABCDE 表示的五位数是 .68A BA C A DA A ED ⨯【考点】乘法数字谜 【难度】3星 【题型】填空【关键词】学而思杯,5年级,第13题 【解析】 2A =,23147ABCDE = 【答案】2A =,23147ABCDE =【例 12】如图,请在右图每个方框中填入一个不是8的数字,使乘法竖式成立。

【考点】乘法数字谜【难度】4星【题型】填空【关键词】走美杯,四年级,第11题【解析】【答案】【例 13】在下面的算式中:abc cba acbba⨯=,,,a b c别代表0~9中的三个不同的数字,那么,数字b是.【考点】乘法数字谜【难度】3星【题型】填空【关键词】迎春杯,中年级,复试,第8题【解析】这是一道数字谜问题.考察同学们的推理能力.首先列成竖式:⨯c b aa b ca cb b a从⨯cba a,及乘积为acbba看,1=c,所以111⨯=⨯=cba c ba ba.88888×1111⨯b a a b b aa ab b a从竖式的十位上看1⨯ba b ,的个位数字是0.(1)当0≠b 时,从十位看1⨯ba b ,的个位数字必是0,只能是5=a ,b 是偶数或5=b ,a 为偶数.①若5=a ,b 是偶数.从155□□⨯=ba 及乘积515bb 看,2<b ,因为0≠b 且b 是偶数,所以5=a 时是无解的.15511505515⨯b b b b b②若5=b ,a 为偶数.从算式的千位看,由于155700>⨯a ,由于不能进位,所以7加几也不能等于1.所以时是无解的.15511570155⨯a a a a a a(2)当0=b 时,从百位看,1⨯ba a 的个位数字必是9,十位数字必是0,那么3=a .此时301=abc .100110100⨯a a aaa a【答案】301【例 14】 如图所示的乘法竖式中,“学而思杯”分别代表0~9 中的一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么“学而思杯”代表的数字分别为________⨯学而思杯学而思杯【考点】乘法数字谜 【难度】3星 【题型】填空 【解析】 首先从式子中可以看出“思”0=,另外第三个部分积的首位只能为9,所以“学”只能为3.由于3个部分积都是四位数,而且第三个部分积的首位为9,所以它比其它两个部分积要大,从而“学”比“而”和“杯”都大,所以“而”和“杯”只能分别为1和2,这样“学而思杯”就可能为3102或3201.分别进行检验,发现310231029622404⨯=,与算式不相符,而3201320110246401⨯=符合,所以“学而思杯”代表的数字分别为3、2、0、1.【答案】3、2、0、1模块二、除法数字谜【例 15】 在方格内填上适当的数字,使得除法竖式成立。

相关文档
最新文档