信号和系统实验实验报告材料
信号与系统实验报告(一) 大二下

电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。
应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。
完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。
实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。
(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。
不得不加引用标记地抄袭任何资料。
每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。
再按照学时比例与本课程其它部分实验综合成为总实验成绩。
每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。
信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告

1、求门函数g4(t)的傅里叶变换,并画出其频率特性曲线。
程序如下:w=linspace(-3*pi,3*pi,512);N=length(w);F=zeros(1,N);for k=1:NF(k)=quadl('sf1',-3,3,[],[],w(k));endfigure(1);plot(w,real(F));xlabel('\omega');ylabel('F(j\omega)');figure(2);plot(w,real(F)-sinc(w/2/pi).^2);xlabel('\omega');title('计算误差');运行结果如图一、图二所示:图一g4(t)的傅里叶变换图二g4(t)傅里叶变换的计算误差2、已知频率特性函数为:H(jw)=2(jw)3+jw+4(jw)4+3(jw)3+2(jw)2+5jw+2求其幅频特性和相频特性。
程序如下:w=linspace(0,5,200);b=[2 0 1 4];a=[1 3 2 5 2];H=freqs(b,a,w);subplot(2,1,1);plot(w,abs(H));set(gca,'xtick',[0 1 2 3 4 5]);set(gca,'ytick',[0 0.4 0.707 1]);xlabel('\omega');ylabel('|H(j\omega)|');subplot(2,1,2);plot(w,angle(H));set(gca,'xtick',[0 1 2 3 4 5]);xlabel('\omega');ylabel('\phi(\omega)');运行结果如图三所示:图三幅频特性和相频特性3、设H s=s(s−p1)(s−p2)设①p1=-2,p2=-30;②p1=-2,p2=3(1)针对极点参数①②,画出系统零、极点分布图,判断该系统稳定性。
信号与系统实验报告

信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。
3、学会使用示波器对常用波形参数的测量。
二、实验仪器1、20MHz 双踪示波器一台。
2、信号与系统实验箱一台。
三、实验容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。
2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。
四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。
1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。
其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKetf=)(。
对于不同的a取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为⎪⎩⎪⎨⎧><=-)0()sin()0()(ttKettfatω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为:sin()tSa tt=。
)(tSa是一个偶函数,t = ±π,±2π,…,±nπ时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。
7、方波信号:信号周期为T ,前2T 期间信号为正电平信号,后2T期间信号为负电平信号。
信号与系统综合实验报告材料

目录实验一常用信号的观察 (4)实验二零输入、零状态及完全响应 (7)实验五无源与有源滤波器 (8)实验六低通、高通、带通、带阻滤波器间的变换 (14)实验七信号的采样与恢复实验 (19)实验八调制与解调实验 (31)实验体会 (35)实验一常用信号的观察一、任务与目标1. 了解常用信号的波形和特点。
2. 了解相应信号的参数。
3. 学习函数发生器和示波器的使用。
二、实验过程1.接通函数发生器的电源。
2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。
三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x-π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案。
二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线。
四、实验报告上图为零输入响应、零状态响应和完全响应曲线。
五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。
因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。
信号与系统实验实验报告
信号与系统实验实验报告 实验报告:信号与系统实验 实验目的: 1.学习信号与系统的基本概念和理论知识; 2.熟悉信号与系统的常用分析方法和工具; 3.实践信号与系统的基本操作和处理。 实验器材: 1.信号发生器; 2.示波器; 3.计算机。 实验原理: 信号是指随时间或空间变化的物理量,通常用数学函数来表示。系统是对信号进行处理、转换或传输的物理实体,可以用数学模型来描述。信号与系统是研究信号在系统中传输、变换和处理的理论和方法。
实验步骤: 1.用信号发生器产生一个正弦信号,并将其输入到示波器上观察; 2.调节信号的频率、幅度和相位,观察示波器上信号的变化; 3.将信号输入到系统中,观察输出信号的特性; 4.使用计算机进行信号和系统的分析和处理。 实验结果: 1.在示波器上观察到的正弦信号具有周期性和振幅; 2.调节信号的频率、幅度和相位时,示波器上信号的波形和大小发生变化;
3.输入不同的信号到系统中,观察到系统的输出信号具有不同的特性; 4.使用计算机对信号和系统进行分析和处理,得到相关的数学模型和结果。
实验讨论: 通过实验可以看出,正弦信号是一种具有周期性的信号,其频率决定了信号的周期,幅度决定了信号的大小,而相位则表示信号在时间轴上的延迟。通过在示波器上观察信号的波形和调节信号的参数,可以探索信号的特性和变化规律。
系统是对信号进行处理、转换或传输的物理实体,通过观察系统的输入和输出信号,可以评估系统的性能和特性。不同的系统对信号的处理方式不同,可能会引入失真、滤波等效应,通过观察系统的输出信号可以对系统进行分析和评估。
计算机在信号与系统的分析和处理中起到了重要的作用,可以利用计算机的强大计算能力和软件工具进行信号的数学建模和分析,得到更准确和详细的结果。
实验结论: 通过本实验,我们学习了信号与系统的基本概念和理论知识,并熟悉了信号与系统的常用分析方法和工具。通过实践操作,我们掌握了信号与系统的基本操作和处理,加深了对信号与系统的理解和认识。
信号与系统实验报告
信号与系统实验报告好啦,今天咱们来聊聊信号与系统实验报告。
这话题有点儿“高大上”,但咱们不妨来点轻松的,把它聊得有趣一些。
先说说信号是什么。
信号其实就是一种信息传递的方式,可能是声音,可能是光,甚至是你手机屏幕上刷过的每一条消息。
简单来说,信号就是承载着信息的载体。
你看,像咱们日常生活中,电台广播,手机接收到的短信,甚至你家电视里放的广告,它们都是信号的一种表现形式。
啊,听起来有点儿复杂吧?其实不难,就像你一收到朋友发来的微信,手机屏幕上跳出来的就是一个信号。
信号怎么才能“正常工作”呢?这就得说到“系统”了。
系统呢,说白了就是一套能够处理信号的工具。
你想啊,信号如果没有一个合适的“平台”去接收、传递和处理,那就变得一团乱麻了。
就像是你给朋友发了个短信,但他手机坏了,信号接收不进去,结果信息就白发了。
系统在这里就相当于是一个“修理工”,它能让信号顺利通过、准确无误地到达目的地。
接下来说说我们在实验中的“主角”——信号与系统。
你看,实验嘛,往往让我们有点“心慌慌”。
不过,信号与系统的实验其实有点像玩拼图。
你得先弄清楚信号的各种“形状”,然后用系统去“加工处理”,让它变得符合要求。
比如,咱们常用的模拟信号,它是一个连续的过程,类似于咱们生活中的声音一样,是没有间断的。
而数字信号呢,就像你手机屏幕上的数字,离散的,断断续续的。
每种信号都有自己独特的“脾气”,你得了解它们的特点,才能搭配合适的系统。
你要是觉得这些实验有点儿复杂,那就来点儿幽默的比喻吧。
信号就像是你的朋友说的话,而系统就是你听的耳朵。
朋友说话的声音,可能因为距离远近,语速快慢,甚至音量的大小而有所不同。
系统就得根据这些变化去处理,比如调节音量、清晰度,甚至过滤掉不必要的噪声。
你想想,假如你能在嘈杂的环境下清楚地听到朋友的声音,那就是系统给你提供的帮助。
信号与系统的实验,就是在这种“听”和“说”之间找到平衡点。
咱们得说说实验中的一些基本工具了。
信号与系统实验报告
信号与系统实验报告实验一连续时间信号1.1表示信号的基本MATLAB函数1.2连续时间负指数信号1、对下面信号创建符号表达式x(t)=sin(2πt/T)cos(2πt/T)。
对于T=6,8和16,利用ezplot 画出0<=t<=32内的信号。
什么是x(t)的基波周期?x1=sym('sin(2*pi*t/T)');x2=sym('cos(2*pi*t/T)');x=x1*x2x4=subs(x,4,'T');ezplot(x4,[0,32]);x8=subs(x,8,'T');ezplot(x8,[0,32]);x16=subs(x,16,'T');ezplot(x16,[0,32]);T=4 T=8T=162、对下面信号创建一个符号表达式x(t)=exp(-at)cos(2πt)。
对于a=1/2,1/4,1/8,利用ezplot确定td,td为|x(t)|最后跨过0.1的时间,将td定义为该信号消失的时间。
利用ezplot对每一个a值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素Q=(2π/T)/2a?x1=sym('exp(-a*t)');x2=sym('cos(2*pi*t)');x=x1*x2;xa1=subs(x,1/2,'a');ezplot(xa1);xa2=subs(x,1/4,'a');ezplot(xa2);xa3=subs(x,1/8,'a');ezplot(xa3);a=1/2 a=1/4a=1/83、将信号x(t)=exp(j2πt/16)+exp(j2πt/8)的符号表达式存入x中。
函数ezplot不能直接画出x(t),因为x*(t)是一个复数信号,实部和虚部分量必须要提取出来,然后分别画出他们。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 连续系统分析
一、实验目的
深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中
的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。掌握利用MATLAB
分析连续系统的时域响应、频响特性和零极点的基本方法。
二、实验原理
MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、
系统时域响应、系统频域响应等分析函数。
三、实验容
1. 已知描述连续系统的微分方程为,输入,初始状态
,计算该系统的响应,并与理论结果比较,列出系统响应分析的步骤。
实验代码:
a=[1 10];
b=[2];
[A B C D]=tf2ss(b,a);
sys=ss(A,B,C,D);
t=0:0.001 :5;
xt=t>0;
sta=[1];
y=lsim(sys,xt,t,sta);
subplot(3,1,1);
plot(t,y);
xlabel('t');
title('系统完全响应 y(t)');
subplot(3,1,2);
plot(t,y,'-b');
hold on
yt=4/5*exp(-10*t)+1/5;
plot(t,yt,' : r');
legend('数值计算','理论计算'); hold off
xlabel('t');
subplot(3, 1 ,3);
k=y'-yt;
plot(t,k);
k(1)
title('误差');
实验结果:
结果分析:
理论值 y(t)=0. 8*exp(-10t)*u(t)+0.2
程序运行出的结果与理论预期结果相差较大误差随时间增大而变小, 初始值相差最大,
而后两曲线基本吻合,表明该算法的系统响应在终值附近有很高的契合度,而在初值附近有
较大的误差。
2. 已知连续时间系统的系统函数为,求输入分别为,
,时,系统地输出,并与理论结果比较。
实验代码:
a=[1,3,2,0]; b=[4,1];
sys=tf(b,a);
t=0:0.001 :5;
x1=t>0;
x2=(sin(t)).*(t>0);
x3=(exp(-t)).*(t>0);
y1=lsim(sys,x1,t);
y2=lsim(sys,x2,t);
y3=lsim(sys,x3,t);
subplot(3,1,1);
plot(t,y1);
xlabel('t');
title('X(t)=u(t)');
subplot(3,1,2);
plot(t,y2);
xlabel('t');
title('X(t)=sint*u(t)');
subplot(3, 1 ,3);
plot(t,y3);
xlabel('t');
title('X(t)=exp(-t)u(t)');
实验结果:
结果分析:
a=[1,3,2,0]; b=[4,1];
sys=tf(b,a);
t=0:0.001 :5;
x1=t>0;
x2=(sin(t)).*(t>0);
x3=(exp(-t)).*(t>0);
y1=lsim(sys,x1,t);
y2=lsim(sys,x2,t);
y3=lsim(sys,x3,t);
subplot(3,1,1);
plot(t,y1,'-b');
hold on
yt1=5/4+0.5*t.*(t>0)+7/4*exp(-2*t).*(t>0)-3*exp(-t).*(t>0);
plot(t,yt1,' : r');
legend('数值计算','理论计算'); hold off
xlabel('t');
subplot(3,1,2);
plot(t,y2,'-b');
hold on
yt2=0.5+1.5*exp(-t).*(t>0)-0.7*exp(-2*t).*(t>0)-1.3*cos(t).*(t>
0)+0.1*sin(t).*(t>0);
plot(t,yt2,' : r');
legend('数值计算','理论计算'); hold off
xlabel('t');
subplot(3,1,3);
plot(t,y3,'-b');
hold on
yt3=0.5-4*exp(-t).*(t>0)+7/2*exp(-2*t).*(t>0)+3*t.*exp(-t).*(t>
0);
plot(t,yt3,' : r');
legend('数值计算','理论计算'); hold off
xlabel('t');
可见数值计算和理论计算曲线基本重合。
误差分析:可见误差小于0.001, 计算值与理论值契合度很高。
3. 研究具有以下零极点的连续系统:
(a) 1个极点s=—0.1,增益k=1。
(b) 1个极点s=0,增益k=1。
(c) 2个共轭极点,增益k=1。
(d) 2个共轭极点,增益k=1。
(e) 零点在,极点在,增益k=1。
(f) 零点在,极点在,增益k=1。
完成下列任务:
(1) 利用zpk和tf命令建立系统的系统函数,画出系统的零极点图。
(2) 分析系统是否稳定。若稳定,画出系统的幅频特性曲线。
(3) 画出系统的冲激响应波形。
(4) 详细列出根据零极点分析系统特性的过程。
实验代码:
(a)
%零极点图
subplot(3,1,1)
b=[1];
a=[1,0.1];
z=roots(b);
p=roots(a);
sys=tf(b,a);
pzmap(sys)
%幅频响应
subplot(3,1,2)
b=[1];
a=[1,0.1];
[H,w] =freqs(b,a);
plot(w,abs(H));
xlabel('w');
ylabel('幅频响应');
%冲激响应
subplot(3,1,3)
b=[1];
a=[1,0.1];
sys=tf(b,a);
t=0:0.1:10;
h=impulse(sys,t);
plot(h);
xlabel('t');
ylabel('h(t)')
(b)
%零极点图
subplot(3,1,1)
b=[1];
a=[1,0];
z=roots(b);
p=roots(a);
sys=tf(b,a);
pzmap(sys)
%幅频响应
subplot(3,1,2)
b=[1];
a=[1,0];
[H,w] =freqs(b,a);
plot(w,abs(H));
xlabel('w');
ylabel('幅频响应');
%冲激响应
subplot(3,1,3)
b=[1];
a=[1,0];
sys=tf(b,a);
t=0:0.1:10;
h=impulse(sys,t);
plot(h);
xlabel('t');
ylabel('h(t)')
(c)
%零极点图
subplot(3,1,1)
b=[1];
a=conv([1,5j],[1,-5j]);
z=roots(b);
p=roots(a);
sys=tf(b,a);
pzmap(sys)
%幅频响应
subplot(3,1,2)
b=[1];
a=conv([1,5j],[1,-5j]);
[H,w] =freqs(b,a);
plot(w,abs(H));
xlabel('w');
ylabel('幅频响应');
%冲激响应
subplot(3,1,3)
b=[1];
a=conv([1,5j],[1,-5j]);
sys=tf(b,a);
t=0:0.1:10;
h=impulse(sys,t);
plot(h);
xlabel('t');
ylabel('h(t)')
(d)
%零极点图
subplot(3,1,1)
b=[1];
a=conv([1,0.5+5j],[1,0.5-5j]);
z=roots(b);
p=roots(a);
sys=tf(b,a);
pzmap(sys)
%幅频响应
subplot(3,1,2)
b=[1];
a=conv([1,0.5+5j],[1,0.5-5j]);
[H,w] =freqs(b,a);
plot(w,abs(H));
xlabel('w');
ylabel('幅频响应');
%冲激响应
subplot(3,1,3)
b=[1];
a=conv([1,0.5+5j],[1,0.5-5j]);
sys=tf(b,a);