高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面

合集下载

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

,即14x+ 43y+12z=0

令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵ PD =0,23 3,-1,显然 PD =
3 3 n.
26
∵ PD ∥n,∴ PD ⊥平面 ABE,即 PD⊥平面 ABE.
探究提高 证明线面平行和垂直问题,可以用 几何法,也可以用向量法,用向量法的关键在 于构造向量,再用共线向量定理或共面向量定 理及两向量垂直的判定定理。若能建立空间直 角坐标系,其证法较为灵活方便.
7
r 平面的法向量:如果表示向量 n的有向线段所在
直线垂直于r平面 ,则称r这个向量垂直于平r
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
r
l
给定一点Ar 和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
r 完全确定的.
n
几点注意:
1.法向量一定是非零向量;
17
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1
中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
18
证明 方法一 如图所示,以 D 为原点,DA、DC、DD1 所在
直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的
1,得
x
1 2
y 1
r n
(
1
,
1,1),
2
10
思考2:
因为方向向量与法向量可以确定直线和平面的 位置,所以我们应该可以利用直线的方向向量与平 面的法向量表示空间直线、平面间的平行、垂直、 夹角等位置关系.你能用直线的方向向量表示空间两 直线平行、垂直的位置关系以及它们之间的夹角吗? 你能用平面的法向量表示空间两平面平行、垂直的 位置关系以及它们二面角的大小吗?

3.2立体几何中的向量方法(用)

3.2立体几何中的向量方法(用)

A(0,0,0), B(1,0,0), P(0, 2 ,0),
z
2
O
D(- 2 , 2 ,0),O(0,0,2), M(0,0,1)
22
M
(1)设AB与MD所成的角为θ
∵ AB = (1,0,0), MD = (- 2 , 2 ,-1) 22
∴cos AB MD 1 ,∴
x
AB MD 2
3
所以MN ⊥CD 同理可证MN ⊥CD
2.解:l2 = EF2 = (EA + AA + AF)2 = m2 + d2 + n2 + 2mncosθ
d 2 l2 m2 n2 2mn cos 所以 | AA | d l2 m2 n2 2mn cos
3.证明:以点D为原点,DA,DC,DD ′的 方向分别为x轴,y轴,z轴正方向,建立 坐标系得下列坐标:
例1.如图, 在四棱锥P ABCD中, 底面ABCD是正方形,
侧棱PD 底面ABCD, PD DC, 点E是PC的中点, 作
EF PB交PB于点F.
(1)求证: PA// 平面EDB
P
(2)求证: PB 平面EFD
平面的法向量可利用方程组求出;
设a, b是平面内两个不共线向量,
F
E
n为平面的法向量, 则求法向量
设n (x, y, z)为平面PBC的法向量, 则
D
A X
CY
n PB 0 n BC 0
即2x
2y 2z 2x 0
0
B
可取n (0,1,1) 易证AC 面PDB
可取AC (2,2,0)作为平面PDB的法向量
n AC
cos n, AC

高中数学《第三章空间向量与立体几何3.2立体几何中的向量方法习题3.2...》97PPT课件

高中数学《第三章空间向量与立体几何3.2立体几何中的向量方法习题3.2...》97PPT课件

uuuur
2
∴ A=C(a,a,-a),
uuur DE=(a,-
,a0), 2
∴ uuuur uuur cos〈AC, DE〉
uuuur uuur ACgDE uuuur uuur
| AC |gDE
15 , 15
故A′C与DE夹角的余弦值为 15 . 15
解: (2)∵∠ADE=∠ADF,
所以AD在平面B′EDF内的射影在∠EDF的平分线上,又四边形
B′EDF为菱形,∴DB′为∠EDF的平分线,故直线AD与平面
B′EDF的夹角为∠ADB′,由坐标系知,A(0,0,0),B′(a,0,a),
D(0,a,0),
∴ Duu=Aur(0,-a,0), =DuuBu(ra ,-a,a), uuur uuur
∴cos∠ADB′=|cos〈 DA, 〉DB|
作业:1、完成练习册第三章 2、完成周三课堂测试
ur uur
cos = cos n1, n2
ur uur
cos cos n1, n2
ur uur nur1 unur2
n1 n2
(观察二面角是锐角还是钝角,再下结论)
判断
(1)两直线的方向向量的夹角就是两条直线的夹角. ( × )
(2)直线的方向向量和平面的法向量的夹角就是直线与平面的
所成的角.
的法向量,设n=(1,y,z),由
uuur E=D(-a,
,0a),

uuur ngEuuDur 0
ngEB 0
y 2 z 1,
2
∴n=(1,2,1),
∴cos〈n,m〉=
mgn | m |gn
6, 6
uuur =E(B0,-

高中数学第3章空间向量与立体几何3.2立体几何中的向量方法第一课时用空间向量解决平行关系a21

高中数学第3章空间向量与立体几何3.2立体几何中的向量方法第一课时用空间向量解决平行关系a21

12/8/2021
第二十四页,共四十三页。
(1)证法一:设 n1=(x1,y1,z1)是平面 ADE 的法向量, 则 n1⊥D→A,n1⊥A→E,即22xy11=+0z1,=0, 令 z1=2,则 y1=-1, 所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
目标导学
1.理解直线的方向向量与平面的法向量. 2.掌握运用方向向量和平面法向量,证明平行问题的方法. 3.能用向量语言表述线线、线面、面面的平行关系.
12/8/2021
第四页,共四十三页。
‖知识梳理‖ 1.空间中任意一条直线 l 的位置可以由_l上__一__个__(_yī_ɡ_è)定_以点及 __一__个__(y_ī ɡ_è_)向__量确定,这个向量叫做直线的方向向量. 2.若直线 l 垂直于平面 α,取直线 l 的方向向量 a,则 a⊥α, 则 a 叫做平面 α 的__法__向__量_(_xi_àn_g_lià.ng)
l1,l2 的方向向量,若 l1∥l2,则( )
A.x=6,y=15
B.x=3,y=125
C.x=3,y=15
D.x=6,y=125
12/8/2021
第三十四页,共四十三页。
解析:∵l1∥l2,∴a∥b, ∴存在 λ∈R,使 a=λb, 则有 2=3λ,4=λx,5=λy, ∴x=6,y=125. 答案:D
12/8/2021
第三十六页,共四十三页。
4.直线 l 的方向向量为 a=(2,-1,1),平面 α 的法向量为
n=12,0,-1,则 l 与 α 的位置关系为________. 解析:∵a=(2,-1,1),n=12,0,-1, ∴a·n=2×12+(-1)×0+1×(-1)=0, ∴a⊥n,∴l⊂α 或 l∥α. 答案:l∥α 或 l⊂α

3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件

3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件

研一研· 问题探究、课堂更高效
3.2 第1课时

(1)∵ a= (2,3,-1),b=(- 6,- 9,3) 1 ∴a=-3b,∴a∥b,∴l1∥l2.
(2)∵a=(-2,1,4),b=(6,3,3),∴a· b≠0 且 a≠kb(k∈R), ∴a,b 既不共线也不垂直,即 l1 与 l2 相交或异面. 1 (3)∵u=(1,-1,2),v=3,2,-2, ∴u· v=3-2-1=0,∴u⊥v,即 α⊥β. (4)∵u=(2, -3,4), v=(4, -2,1), ∴u· v≠0 且 u≠kv(k∈R), ∴u 与 v 既不共线也不垂直,即 α 和 β 相交但不垂直. (5)∵a=(0,-8,12),u=(0,2,-3), 1 ∴u=-4a,∴u∥a,即 l⊥α.
研一研· 问题探究、课堂更高效
3.2 第1课时
跟踪训练 2 用向量方法证明: 平面外一条直线与此平面内 的一条直线平行,则该直线与此平面平行. 已知:直线 l,m 和平面 α,其中 l⊄α,m⊂α,且 l∥m, 求证:l∥α.
证明 设直线 l,m 的方向向量分别为 a,b,平面 α 的 法向量分别为 u. 因为 l∥m,所以 a=kb,k∈R. 又因为 u⊥α,m⊂α,所以 u⊥b, 因此 u· b = 0, u· a= u· kb=0.所以 l∥α.
3.2 第1课时
探究点一 利用方向向量和法向量判定线面的位置关系 问题 1 对于一条确定的直线和一个确定的平面, 它的方向 向量及法向量有几个?
答案 一条直线的方向向量有无数多个,它们都是共线 向量;一个平面的法向量也有无数多个,它们也都是共 线向量.平面的法向量可看作平面的垂线的方向向量。
研一研· 问题探究、课堂更高效

第3章3.2 立体几何中的向量方法(一)平行关系

第3章3.2 立体几何中的向量方法(一)平行关系
【思路分析】 解答本题可先建立空间直角坐标系,写出每 个平面内两个不共线向量的坐标,再利用待定系数法求出平面的 法向量.
第11页
高考调研 ·新课标 ·数学选修2-1
【解析】 ∵AD,AB,AS 是三条两两垂直 的线段,∴以 A 为原点,以A→D,A→B,A→S的方向 为 x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则 A(0,0,0),D(12,0,0),C(1,1,0),S(0, 0,1),A→D=(12,0,0)是平面 SAB 的法向量,
2.用向量方法证明空间中的平行关系
线线 平行
设直线 l1,l2 的方向向量分别是 a,b,则要证明 l1∥l2,只需证 明 a∥b,即 a=kb(k∈R)
①设直线 l 的方向向量是 a,平面 α 的法向量是 u,则要证明
l∥α,只要证明 a⊥u,即 a·u=0
②根据线面平行判定定理在平面内找一个向量与已知直线的 线面平行
高考调研 ·新课标 ·数学选修2-1
【思路分析】 直线的方向向量与平面的法向量的关系和直 线与平面位置关系之间的内在联系是 l∥α⇔a⊥u,l⊥α⇔a∥u.
第22页
高考调研 ·新课标 ·数学选修2-1
【解析】 ①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0,∴u⊥a. ∴直线 l 和平面 α 的位置关系是 l⊂α或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12), ∴u=-14a,∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0), ∴u 和 a 既不共线,也不垂直. ∴l 与 α 斜交.
第2页
高考调研 ·新课标 ·数学选修2-1
要点 3 空间平行关系的向量表示 (1)线线平行. 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2),则 l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R). (2)线面平行. 设直线 l 的方向向量为 a=(a1,b1,c1),平面 α 的法向量为 u =(a2,b2,c2),则 l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.

2018学年高中数学人教B版选修2-1课件:3.2.1 直线的方向向量与直线的向量方程 精品

2018学年高中数学人教B版选修2-1课件:3.2.1 直线的方向向量与直线的向量方程 精品

∴m=52.
【答案】
5 2
2.若直线l1的方向向量与l2的方向向量的夹角是150°,则l1与l2这两条异面直 线所成的角等于________.
【解析】 由异面直线所成角的定义可知,l1与l2所成的角为180°-150°= 30°.
【答案】 30°
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________________ 解惑:________________________________________________________ 疑问2:________________________________________________________ 解惑:________________________________________________________ 疑问3:________________________________________________________
得A→1B=(0,4,-3),B→1C=(-4,0,-3).
设A→1B与B→1C的夹角为θ,则cos θ=|AA→→11BB|·|BB→→11CC|=295, 故A→1B与B→1C的夹角的余弦值为295, 即异面直线A1B与B1C所成角的余弦值为295.
[探究共研型] 利用空间向量证明线面、面面平行 探究1 利用待定系数法求平面法向量的解题步骤是什么? 【提示】
∴cos〈A→C,V→D〉=|AA→→CC|·|VV→→DD|=2×-22
Hale Waihona Puke =- 22 4.∴异面直线AC与VD所成角的余弦值为
2 4.

3.2立体几何中的向量方法

3.2立体几何中的向量方法

例1 如图 3.2 3 , 一个结晶 体形状为四棱柱 , 其中, 以顶 点A为端点的三条棱长都相 等, 且它们彼 此 的夹角都 是
D1
C1 B1
A1
D
60 0 , 那么这个顶点为端点的A B 晶体的对角线的长与棱 长有 图3.2 3 什么关系? 分析 如图3.2 3,由于四棱柱的棱之间具 有平行
ka2 , b1 kb2 , c1 kc2 图3.2 22.
我们随时随地看到向量 运算的 作用, 你同意"向量是躯体, 运算 是灵魂""没有运算的向量只能 起路标的作用 "的说法吗?

l u
v
图3.2 2 2
探究 1. 如图3.2 23, 若 直线l和平面的夹角为 , 你能用u, v表示 吗?
l // u v u v 0 a1 a2 b1b2 c1c2 0图3.2 21;
u
l
v
l u // v u kv a1 , b1 , c1 k a2 , b2 , c2 a1

图3.2 2 1
l
因为方向向量与法向量可以确定直线和平面的 位置, 所以我们可以利用直线 的方向向量与平面 的法向量表示空间直线 、平面间的平行、垂直 、 夹角等位置关系 .
u
l l l
v
u
v
u
v



1
2
图3.2 2
1
例如, 图3.2 2, 设直线l的方向向量是u a1 , b1 , c1 , 平面的法向量v a2 , b2 , c2 , 则
C
关系, 所以以A为起点的三个向量可以 将各棱用向 , 不妨设这三个向量的模 都 量形式表示 .根据题设 AC1的长, 可以将AC1用与棱 等于1.为了求出对角线 相关的向量表示出来 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1 直线的方向向量及平面的法向量1.用向量表示直线的位置条件直线l上一点A表示直线l方向的向量a(即直线l的□01方向向量)形式在直线l上取AB→=a,那么对于直线l上任意一点P,一定存在实数t使得AP→=□02tAB→作用定位置点A和向量a可以确定直线的位置定点可以具体表示出l上的任意一点(1)通过平面α上的一个定点和两个向量来确定条件平面α内两条□03相交直线的方向向量a,b和交点O形式对于平面α上任意一点P,存在有序实数对(x,y),使得OP→=□04x a+y b(2)通过平面α上的一个定点和法向量来确定平面的法向量□05直线l⊥α,直线l的方向向量,叫做平面α的法向量确定平面位置过点A,以向量a为法向量的平面是完全确定的3.空间中平行、垂直关系的向量表示设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则线线平行l∥m⇔□06a∥b⇔□07a=k b(k∈R)线面平行l∥α⇔□08a⊥u⇔□09a·u=0面面平行α∥β⇔□10u∥v⇔□11u=k v(k∈R)线线垂直 l ⊥m ⇔□12a ⊥b ⇔□13a ·b =0 线面垂直 l ⊥α⇔□14a ∥u ⇔□15a =λu (λ∈R ) 面面垂直 α⊥β⇔□16u ⊥v ⇔□17u ·v =01.判一判(正确的打“√”,错误的打“×”)(1)直线上任意两个不同的点A ,B 表示的向量AB →都可作为该直线的方向向量.( ) (2)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(3)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (4)若两条直线平行,则它们的方向向量的方向相同或相反.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(请把正确的答案写在横线上)(1)若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(2)已知a =(2,-4,-3),b =(1,-2,-4)是平面α内的两个不共线向量.如果n =(1,m ,n )是α的一个法向量,那么m =________,n =________.(3)(教材改编P 104T 2)设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =________.(4)已知直线l 1,l 2的方向向量分别是v 1=(1,2,-2),v 2=(-3,-6,6),则直线l 1,l 2的位置关系为________.答案 (1)(2,4,6) (2)120 (3)4 (4)平行探究1 点的位置向量与直线的方向向量例1 (1)若点A ⎝ ⎛⎭⎪⎫-12,0,12,B ⎝ ⎛⎭⎪⎫12,2,72在直线l 上,则直线l 的一个方向向量为( )A.⎝ ⎛⎭⎪⎫13,23,1B.⎝ ⎛⎭⎪⎫13,1,23C.⎝ ⎛⎭⎪⎫23,13,1D.⎝ ⎛⎭⎪⎫1,23,13(2)已知O 为坐标原点,四面体OABC 的顶点A (0,3,5),B (2,2,0),C (0,5,0),直线BD ∥CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.[解析] (1)AB →=⎝ ⎛⎭⎪⎫12,2,72-⎝ ⎛⎭⎪⎫-12,0,12=(1,2,3),⎝ ⎛⎭⎪⎫13,23,1=13(1,2,3)=13AB →,又因为与AB →共线的非零向量都可以作为直线l 的方向向量.故选A.(2)由题意可设点D 的坐标为(x,0,z ), 则BD →=(x -2,-2,z ),CA →=(0,-2,5).∵BD ∥CA ,∴⎩⎪⎨⎪⎧x -2=0,z =5,∴⎩⎪⎨⎪⎧x =2,z =5,∴点D 的坐标为(2,0,5). [答案] (1)A (2)见解析 拓展提升求点的坐标:可设出对应点的坐标,再利用点与向量的关系,写出对应向量的坐标,利用两向量平行的充要条件解题.【跟踪训练1】 已知点A (2,4,0),B (1,3,3),在直线AB 上有一点Q ,使得AQ →=-2QB →,求点Q 的坐标.解 由题设AQ →=-2QB →,设Q (x ,y ,z ),则(x -2,y -4,z )=-2(1-x,3-y,3-z ),∴⎩⎪⎨⎪⎧x -2=-2(1-x ),y -4=-2(3-y ),z =-2(3-z ),解得⎩⎪⎨⎪⎧x =0,y =2,∴Q (0,2,6).z =6,探究2 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 与平面SBA 的法向量.[解]∵AD ,AB ,AS 是三条两两垂直的线段,∴以A 为原点,分别以AD →,AB →,AS →的方向为x 轴、y 轴、z 轴的正方向建立坐标系,则A (0,0,0),D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ),则n ·DC →=(1,λ,u )·⎝ ⎛⎭⎪⎫12,1,0=12+λ=0,∴λ=-12.n ·DS →=(1,λ,u )·⎝ ⎛⎭⎪⎫-12,0,1=-12+u =0,∴u =12,∴n =⎝⎛⎭⎪⎫1,-12,12. 综上,平面SCD 的一个方向向量为n =⎝⎛⎭⎪⎫1,-12,12,平面SBA 的一个法向量为AD →=⎝ ⎛⎭⎪⎫12,0,0.拓展提升设直线l 的方向向量为u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ⊥α⇔u ∥v ⇔u =k v ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2,其中k ∈R ,平面的法向量的求解方法:①设出平面的一个法向量为n =(x ,y ,z ).②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).③依据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0.④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.【跟踪训练2】 在正方体ABCD -A 1B 1C 1D 1中,求证:DB 1→是平面ACD 1的一个法向量.证明 设正方体的棱长为1,分别以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系,则DB 1→=(1,1,1),AC →=(-1,1,0),AD 1→=(-1,0,1).于是有DB 1→·AC →DB 1→⊥AC →,即DB 1⊥AC . 同理,DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,从而是平面ACD 1的一个法向量. 探究3 利用方向向量、法向量判断线、面 关系例3 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1与l 2的位置关系:①a =(2,3,-1),b =(-6,-9,3); ②a =(5,0,2),b =(0,4,0); ③a =(-2,1,4),b =(6,3,3).(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系: ①u =(1,-1,2),v =⎝ ⎛⎭⎪⎫3,2,-12;②u =(0,3,0),v =(0,-5,0); ③u =(2,-3,4),v =(4,-2,1).(3)设u 是平面α的法向量,a 是直线l 的方向向量(l ⊄α),根据下列条件判断α和l 的位置关系:①u =(2,2,-1),a =(-3,4,2); ②u =(0,2,-3),a =(0,-8,12); ③u =(4,1,5),a =(2,-1,0).[解] (1)①因为a =(2,3,-1),b =(-6,-9,3),所以a =-13b ,所以a ∥b ,所以l 1∥l 2.②因为a =(5,0,2),b =(0,4,0),所以a ·b =0, 所以a ⊥b ,所以l 1⊥l 2.③因为a =(-2,1,4),b =(6,3,3),所以a 与b 不共线,也不垂直,所以l 1与l 2的位置关系是相交或异面.(2)①因为u =(1,-1,2),v =⎝⎛⎭⎪⎫3,2,-12,所以u ·v =3-2-1=0,所以u ⊥v ,所以α⊥β.②因为u =(0,3,0),v =(0,-5,0),所以u =-35v ,所以u ∥v ,所以α∥β.③因为u =(2,-3,4),v =(4,-2,1).所以u 与v 既不共线,也不垂直,所以α,β相交.(3)①因为u =(2,2,-1),a =(-3,4,2),所以u ·a =-6+8-2=0, 所以u ⊥a ,所以直线l 和平面α的位置关系是l ∥α.②因为u =(0,2,-3),a =(0,-8,12),所以u =-14a ,所以u ∥a ,所以l ⊥α.③因为u =(4,1,5),a =(2,-1,0),所以u 和a 不共线也不垂直,所以l 与α斜交. 拓展提升利用向量判断线、面关系的方法(1)两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. (2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.(3)两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.【跟踪训练3】 根据下列条件,判断相应的线、面位置关系: (1)直线l 1,l 2的方向向量分别为a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解 (1)因为a =(1,-3,-1),b =(8,2,2),所以a ·b =8-6-2=0,所以a ⊥b ,所以l 1⊥l 2.(2)因为u =(1,3,0),v =(-3,-9,0),所以v =-3u ,所以v ∥u ,所以α∥β. (3)因为a =(1,-4,-3),u =(2,0,3),所以a ≠k u (k ∈R )且a ·u ≠0,所以a 与u 既不共线也不垂直,即l 与α相交但不垂直.(4)因为a =(3,2,1),u =(-1,2,-1),所以a ·u =-3+4-1=0,所以a ⊥u ,所以l ⊂α或l ∥α.1.空间中一条直线的方向向量有无数个.2.线段中点的向量表达式:对于AP →=tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM →=12(OA →+OB →),这就是线段AB 中点的向量表达式.,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.(1)设n 是平面α的一个法向量,v 是直线l 的方向向量,则v ⊥n 且l 上至少有一点A ∉α,则l ∥α.(2)根据线面平行的判定定理:“如果平面外直线与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明平面外一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.(1)在一个平面内找到两个不共线的向量都与另一个平面的法向量垂直,那么这两个平面平行.(2)利用平面的法向量,证明面面平行,即如果a ⊥平面α,b ⊥平面β,且a ∥b ,那么α∥β.1.若平面α,β的法向量分别为a =⎝ ⎛⎭⎪⎫12,-1,3,b =(-1,2,-6),则( ) A .a ∥β B .α与β相交但不垂直 C .α⊥β D .α∥β或α与β重合 答案 D解析 ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1,平面BCC 1B 1的中心,以点A 为原点,建立如图所示的空间直角坐标系,则直线EF 的方向向量可以是( )A.⎝ ⎛⎭⎪⎫1,0,22B .(1,0,2) C .(-1,0,2) D .(2,0,-2) 答案 D解析 由已知得E (1,1,2),F ⎝ ⎛⎭⎪⎫2,1,22,所以|EF →|=⎝⎛⎭⎪⎫2,1,22-(1,1,2)=⎝⎛⎭⎪⎫1,0,-22,结合选项可知,直线EF 的方向向量可以是(2,0,-2).3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎪⎫33,33,-33 B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝ ⎛⎭⎪⎫-33,-33,-33 答案 D解析 由AB →=(-1,1,0),AC →=(-1,0,1),结合选项,验证知应选D.4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m =________.答案 -8解析 因为直线l ∥α,所以直线l 的方向向量与平面α的法向量垂直,所以(2,m,1)·⎝⎛⎭⎪⎫1,12,2=2+m 2+2=0,解得m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:OB →1是平面PAC 的法向量.证明 建立空间直角坐标系如右图所示,不妨设正方体的棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),∴OB 1→·AC →=-2+2=0,OB 1→·AP →=-2+2=0. ∴OB 1→⊥AC →,OB 1→⊥AP →,即OB 1⊥AC ,OB 1⊥AP . ∵AC ∩AP =A ,∴OB 1⊥平面PAC ,即OB 1→是平面PAC 的法向量.。

相关文档
最新文档