专题08:平面直角坐标系(填空题专练)(原卷版)
专题05平面直角坐标系选填题压轴训练原卷版

专题05 平面直角坐标系选填题压轴训练(时间:60分钟 总分:120) 班级 姓名 得分 选择题解题策略:(1)注意审题。
把题目多读几遍,弄清这道题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。
可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。
若有时间,再去拼那些把握不大或无从下手的题目。
这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错、易混点。
(5)方法多样,不择手段。
中考试题凸显能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。
不要在一两道小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”,也有25%的正确率。
(6)控制时间。
一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
填空题解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
专题08 勾股定理与利用378和578模型解题(原卷版)

专题08 勾股定理与利用378和578模型解题知识对接考点一、勾股定理 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222c b a =+勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方考点二、勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形专项训练一、单选题1.(2021·南山实验教育集团南海中学九年级三模)如图,已知ABC ,90ACB ∠=,3BC =,4AC =,小红按如下步骤作图:①分别以A 、C 为圆心,以大于12AC 长为半径在 AC 两边作弧,交于两点M 、N ;①连接MN ,分别交AB 、AC 于点D 、O ; ①过点C 作//CE AB 交MN 于点E ,连接AE 、CD . 则四边形ADCE 的周长为( )A.10B.20C.12D.242.(2021·沙坪坝区·重庆八中九年级)在Rt ABC中,①A=90°,tan①C=13,E为AC上一点,且CE=5AE,点D为BC中点,把CDE沿ED翻折到FDE,且EG DF的长度为()A B C D.3.(2021·杭州市丰潭中学九年级)如图,已知平面直角坐标系中,点A,B坐标分别为A(4,0),B(﹣6,0).点C是y轴正半轴上的一点,且满足①ACB=45°,圆圆得到了以下4个结论:①①ABC的外接圆的圆心在OC上;①①ABC=60°;①①ABC的外接圆的半径等于①OC=12.其中正确的是()A.①①B.①①C.①①D.①①4.(2021·杭州市丰潭中学九年级)如图,点A的坐标为(﹣3,2),①A的半径为1,P为坐标轴上一动点,PQ切①A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为()A.(0,2)B.(0,3)C.(﹣2,0)D.(﹣3,0)5.(2021·珠海市紫荆中学九年级)如图,D 是ABC 内一点,BD CD ⊥,E 、F 、G 、H 分别是边AB 、BD 、CD 、AC 的中点.若10AD =,8BD =,6CD =,则四边形EFGH 的周长是( )A .24B .20C .12D .106.(2021·西宁市教育科学研究院中考真题)如图,ABC 的内切圆О与,,AB BC AC 分别相切于点D ,E ,F ,连接OE ,OF ,90C ∠=︒,6AC =,8BC =,则阴影部分的面积为( )A .122π-B .142π-C .4π-D .114π-7.(2021·四川绵阳·)如图,在边长为3的正方形ABCD 中,30∠=︒CDE ,DE CF ⊥,则BF 的长是( )A .1BCD .28.(2021·四川巴中·中考真题)如图,矩形AOBC 的顶点A 、B 在坐标轴上,点C 的坐标是(﹣10,8),点D 在AC 上,将BCD 沿BD 翻折,点C 恰好落在OA 边上点E 处,则tan①DBE 等于( )A .34B .35C D .129.(2021·广西河池·中考真题)如图,在边长为4的正方形ABCD 中,点E ,F 分别在CD ,AC 上,BF EF ⊥,1CE =,则AF 的长是( )A.B C D .5410.(2021·山东滨州·)在Rt ABC 中,若90C ∠=︒,3AC =,4BC =,则点C 到直线AB 的距离为( ) A .3 B .4C .5D .2.4二、填空题11.(2021·西宁市教育科学研究院中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,10CD =,2BE =,则O 的半径OC =_______.12.(2021·西宁市教育科学研究院中考真题)如图,在矩形ABCD 中,E 为AD 的中点,连接CE ,过点E 作CE 的垂线交AB 于点F ,交CD 的延长线于点G ,连接CF .已知12AF =,5CF =,则EF =_________.13.(2021·西宁市教育科学研究院中考真题)如图,在Rt ABC △中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,连接AE ,DE ,若92DE =,152AE =,则点A 到BC 的距离是________.14.(2021·重庆实验外国语学校九年级三模)如图,在矩形ABCD 中,点E 是线段AB 上的一点,AE AB <,DE CE ⊥,将BCE 沿CE 翻折,得到FCE △,连接DF ,若3AD =,10AB =,则线段DF 的长度为______.15.(2021·哈尔滨市虹桥初级中学校九年级二模)如图,①ABC 中,AB =BC ,AD ①BC 垂足为D ,BE =AC ,①EAC =3①C ,BD =7,AC ﹣2AE =8,则AE 的长为 __.三、解答题16.(2021·合肥市第四十五中学九年级)如图,①ABC 中,①ACB =90°,CB =CA ,CE ①AB 于E ,点F 是CE上一点,连接AF并延长交BC于点D,CG①AD于点G,连接EG.(1)求证:CD2=DG•DA;(2)如图1,若CF=2EF,求证:点D是BC中点;(3)如图2,若GC=2,GE=,求GD.17.(2021·靖江市靖城中学九年级一模)如图,①ABD中,①ABD=①ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC、DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;①取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.18.(2021·日照市新营中学九年级三模)如图,P A,PB分别与①O相切于点A,B.点M在PB上,且OM //AP,MN AP,垂足为N.(1)求证:OM=AN;(2)若①O的半径R=4,P A=8,求OM的长.19.(2021·陕西西安·交大附中分校九年级)问题提出:(1)如图①,在Rt①ABC中,①ACB=90°,AC=6,BC=①A的大小为;问题探究:(2)如图①,在四边形ABCD中,AD①BC,对角线AC与BD相交于O.若AC=8,BD=6,①AOD=60°,求四边形ABCD的面积;问题解决:(3)在西安市“三河一山”生态绿道长廊建设中.规划将某条绿道一侧的四边形区域修建成主题公园.设计要求:如图①,四边形ABCD中,AD=160m,BC=CD,①ABC=①BCD=120°.求这个主题公园的最大面积.20.(2021·四川省宜宾市第二中学校九年级)如图,CD为O的直径,M是半圆CD的中点,延长DC到P,使OC=CP=AC,连结PA、CM.(1)求证:PA是O的切线;(2)求证:2=⋅;CM MN MAPC=,求CM的长.(3)若221.(2021·西藏中考真题)如图,AB是①O的直径,OC是半径,延长OC至点D.连接AD,AC,BC.使①CAD=①B.(1)求证:AD是①O的切线;(2)若AD=4,tan①CAD=1,求BC的长.222.(2021·广西梧州·中考真题)如图,在Rt①ACD中,①ACD=90°,点O在CD上,作①O,使①O与AD 相切于点B,①O与CD交于点E,过点D作DF①AC,交AO的延长线于点F,且①OAB=①F.(1)求证:AC是①O的切线;(2)若OC=3,DE=2,求tan①F的值.23.(2021·江苏南通·中考真题)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关∠=.于直线BE的对称点为点F,连接CF,设ABEα∠的大小(用含α的式子表示);(1)求BCF⊥,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;(2)过点C作CG AF△为等(3)将ABE△绕点B顺时针旋转90︒得到CBH,点E的对应点为点H,连接BF,HF.当BFH腰三角形时,求sinα的值.9。
专题08 二次函数中特殊四边形存在性问题的四种考法(原卷版)(人教版)

专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题例.已知抛物线2y x bx c =-++与x 轴交于()1,0A -,()3,0B 两点,与轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为D ,在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.【变式训练1】如图,在平面直角坐标系中,二次函数2=23y x x --与x 轴交于A 、B 两点(A 点在B 点的左侧),直线y x m =+与抛物线交于A 、C 两点.(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点P 作y 轴平行线交AC 于E 点,当EP 最长时求此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点N ,使以,,,A B M N 为顶点的四边形为平行四边形?若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA PC+值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【变式训练3】综合与实践如图,抛物线23y ax x c=++与x轴交于A,B两点(点A在点(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点E在x轴上运动,点F在抛物线上运动,当以点B,C,E,F为顶点的四边形是平行四边形,直接写出点E的坐标.类型二、菱形存在性问题(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【变式训练1】如图1,抛物线23y ax bx =++交x 轴于点()30A ,和点(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由(1)求ABC 的面积;(2)点P 为直线AC 上方抛物线上的任意一点,过点P 作PD y ∥轴交直线22PD CD +的最大值及此时点P 的坐标;(3)如图2,将抛物线沿着水平方向向右平移2个单位长度得到新的抛物线,点与平移后的抛物线的交点,点M 为平移后的抛物线对称轴上的一动点,点的一点,直接写出所有使得以点B E M N 、、、为顶点的四边形是菱形的点求其中一个点N 的坐标的求解过程写出来.类型三、矩形存在性问题例.已知抛物线()240y ax bx a =+-≠交x 轴于点()4,0A 和点()2,0B -,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD PE +取最大值时,求点P 的坐标及PD PE +最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.(1)求点A、B、C的坐标;(2)将抛物线L向右平移1个单位,得到新抛物线对称轴l上是否存在点D,使得以点D的坐标;若不存在,请说明理由.(1)求抛物线的表达式;的面积为S,求S (2)若点P为第一象限内抛物线上的一点,设PBC坐标;(3)已知M是抛物线对称轴上一点,在平面内是否存在点N,使以B的四边形是矩形?若存在,直接写出N点坐标;若不存在,请说明理由.类型四、正方形存在性问题例.如图,在平面直角坐标系xOy 中,直线4y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过,A B 两点,P 是位于对称轴左侧的抛物线上的一个动点.(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,若四边形AMPN 是正方形,求此正方形的面积.【变式训练1】如图,二次函数223y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .连接BC .点P 是抛物线第一象限内的一个动点,设点P 的横坐标为m ,过点P 作直线PD x ⊥轴于点D .交BC 于点E .过点P 作BC 的平行线,交y 轴于点M .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)在点P 的运动过程中,求使四边形CEPM 为菱形时,m 的值;(3)点N 为平面内任意一点,在(2)的条件下,直线PM 上是否存在点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.课后训练1.如图1,抛物线()230y ax bx a =+-≠与x 轴交于()1,0A -,()3,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点P 的横坐标大1,过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求PM QN +的最大值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移1个单位长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E ,使得以点B 、C 、D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.(1)求该抛物线的函数表达式;(2)点D为直线y x=上的动点,当点P在第四象限时,求四边形PBDC点P的坐标;(3)已知点E为x轴上一动点,点Q为平面内任意一点,是否存在以点P的四边形是以PC为对角线的正方形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.(1)求出抛物线与直线的解析式;(2)已知点K为线段AD上一动点,过点求AHD的最大面积;(3)若点M是x轴上的一动点,点N的四边形是平行四边形时,请你直接写出符合条件的点4.在平面直角坐标系中,抛物线2y ax bx c =++(0a ≠)经过点(1,0)-,(3,0)和()0,3.(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点N ,在第一象限内与抛物线交于点M ,当AN MN +有最大值时,求出抛物线上点M 的坐标;(3)若点P 为抛物线2y ax bx c =++(0a ≠))的对称轴上一动点,将抛物线向左平移1个单位长度后,Q 为平移后抛物线上一动点,在(2)的条件下求得的点M ,是否能与A ,P ,Q 构成平行四边形?若能构成,求出Q 点坐标;若不能构成,请说明理由.。
专题08 平面解析几何(解答题)三年(2017-2019)高考真题数学(理)分项汇编 (原卷版)

专题08平面解析几何(解答题)1.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB,求|AB |.2.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.3.【2019年高考全国Ⅲ卷理数】已知曲线C:y=22x,D为直线y=12 上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.5.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为5.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.6.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.7.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G的坐标.8.【2017年高考全国III 卷理数】已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.9.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x yE a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.(注:椭圆22221(0)x y a b a b +=>>的准线方程:2a x c=±)10.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24,-,39()24,B ,抛物线上的点13(,)(22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求||||PA PQ ⋅的最大值.11.【2018年高考全国Ⅱ卷理数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.12.【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.13.【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.【2018年高考全国Ⅲ卷理数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.15.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.16.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△PAB 面积的取值范围.17.【2018年高考天津卷理数】设椭圆22221x y a b+=(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为3,点A 的坐标为(,0)b ,且FB AB ⋅=.(1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠(O 为原点),求k 的值.18.【2017年高考全国I 理数】已知椭圆C :22221()0x y a ba b +=>>,四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.19.【2017年高考全国II 理数】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .20.【2017年高考北京卷理数】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)求证:A 为线段BM 的中点.1121.【2017年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为2,求直线AP 的方程.22.【2017年高考山东卷理数】在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的离心率为2,焦距为2.(1)求椭圆E 的方程;(2)如图,动直线13:2l y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且124k k =,M 是线段OC 延长线上一点,且|:||2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T ,求SOT ∠的最大值,并求取得最大值时直线l 的斜率.。
专题08 定义新运算(原卷版)-2021年中考数学选填压轴题专项复习

6.定义:a是不为1的有理数,我们把 称为a的差倒数,如:2的差倒数是 =-1,-1的差倒数是 = .a1=- ,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,,以此类推,那么a2022=____________ .
定义新运算问题在中考中的常考点有新定义学习型,新公式应用型,纠错补全型等;解决问题的数学思想是方程思想,类比思想,化归思想;常用的数学方法有分析法,比拟法等.
【典例引领】
〔一〕代数问题中的定义新运算
例1:定义:分数 〔m,n为正整数且互为质数〕的连分数〔其中为整数,且等式右边的每一个分数的分子都为1〕,记作 :例如 , 的连分数是 ,记作 ,那么________________ .
A. B. C. D.
13.〔2021湖北随州〕将关于 的一元二次方程 变形为 ,就可以将 表示为关于 的一次多项式,从而到达“降次〞的目的,又如 …,我们将这种方法称为“降次法〞,通过这种方法可以化简次数较高的代数式.根据“降次法〞,: ,且 ,那么 的值为〔 〕
A. B. C. D.
14.对一组数 的一次操作变换记为 ,定义其变换法那么如下: ;且规定 〔 为大于 的整数〕,
如 , , ,那么 〔 〕
A. B. C. D.
15.〔2021•长沙〕某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌〔假定发到每个同学手中的扑牌数量足够多〕,然后依次完成以下三个步骤:
第一步,A同学拿出二张扑克牌给B同学;
第二步,C同学拿出三张扑克牌给B同学;
第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.
专题08 直线和圆的方程(解答题)(11月)(人教A版2021)(原卷版)

专题08 直线和圆的方程(解答题)1.直角坐标系xOy 中,点A 坐标为()2,0-,点B 坐标为()4,3,点C 坐标为()1,3-,且()AM t AB t R =∈.(1)若CM AB ⊥,求t 的值;(2)当01t ≤≤时,求直线CM 的斜率k 的取值范围.2.已知ABC 的顶点()5,1A ,边AB 上的中线CM 所在直线方程为250x y --=,边AC 上的高BH 所在直线方程为250x y --=,(1)求顶点C 的坐标;(2)求ABC 的面积.3.如图所示,在平面直角坐标系中,已知矩形ABCD 的长为3,宽为2,边,AB AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在线段DC 上,已知折痕所在直线的斜率为12-.(1)求折痕所在的直线方程;(2)若点P 为BC 的中点,求PEF 的面积.4.已知圆C 过点(4,2)A ,()1,3B ,它与x 轴的交点为()1,0x ,()2,0x ,与y 轴的交点为()10y ,,()20,y ,且12126x x y y +++=.(1)求圆C 的标准方程;(2)若(3,9)A --,直线:20l x y ++=,从点A 发出的一条光线经直线l 反射后与圆C 有交点,求反射光线所在的直线的斜率的取值范围.5.已知圆O 圆心为坐标原点,半径为43,直线l :)4y x =+交x 轴负半轴于A 点,交y 轴正半轴于B 点(1)求BAO ∠(2)设圆O 与x 轴的两交点是1F ,2F ,若从1F 发出的光线经l 上的点M 反射后过点2F ,求光线从1F 射出经反射到2F 经过的路程;(3)点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标.6.一条光线从点()6,4P 射出,与x 轴相交于点()2,0Q ,经x 轴反射后与y 轴交于点H . (1)求反射光线QH 所在直线的方程;(2)求P 点关于直线QH 的对称点P'的坐标.7.已知直线l :()120kx y k k R -++=∈.(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设AOB ∆的面积为S ,求S 的最小值及此时直线l 的方程.8.已知直线1:3470l x y +-=与2:3480l x y ++=.(1)若()11,A x y 、()22,B x y 两点分别在直线1l 、2l 上运动,求AB 的中点D 到原点的最短距离;(2)若()2,3M ,直线l 过点M ,且被直线1l 、2l 截得的线段长为l 的方程. 9.已知圆22:(3)(4)4C x y -+-=.(1)若直线l 过点(2,3)A 且被圆C 截得的弦长为l 的方程;(2)若直线l 过点(1,0)B 与圆C 相交于P ,Q 两点,求CPQ ∆的面积的最大值,并求此时直线l 的方程.10.(1)已知直线l 过点()3,4P -,若直线l 在两坐标轴上的截距之和为12,求直线l 的一般式方程;(2)已知直线l 过点()3,2P 且与x 轴,y 轴的正半轴相交于A ,B 两点,求ABO 面积最小值及这时直线l 的一般式方程;(3)已知直线l 经过点()2,2P -,且与第一象限的平分线(0)y x x =≥,y 轴(原点除外)分别交于A ,B 两点,直线l ,射线(0)y x x =≥,y 轴围成的三角形OAB 的面积为12,则符合要求的直线共有几条,请说明理由.11.设集合L ={|l 直线l 与直线3y x =相交,且以交点的横坐标为斜率}.(1)是否存在直线0l 使0l L ∈,且0l 过点()1,5,若存在,请写出0l 的方程;若不存在,请说明理由;(3)设(0,)a ∈+∞,点()3,P a -与集合L 中的直线的距离最小值为()f a ,求()f a 的解析式.12.已知直线:20l x y --=和点(1,1),(1,1)A B -,(1)直线l 上是否存在点C ,使得ABC 为直角三角形,若存在,请求出C 点的坐标;若不存在,请说明理由;(2)在直线l 上找一点P ,使得APB ∠最大,求出P 点的坐标.13.已知过点(,)P m n 的直线l 与直线:240l x y '++=垂直.(1) 若12m =,且点P 在函数11y x=-的图象上,求直线l 的一般式方程;14.已知直线1:21l y x =-,2:1l y x =-+的交点为P ,求(1)过点P 且与直线32y x =-+平行的直线l 的方程;(2)以点P 为圆心,且与直线3410x y ++=相交所得弦长为125的圆的方程. 15.(1)一条直线经过()2,3A -,并且它的斜率是直线y x =斜率的2倍,求这条直线方程; (2)求经过两条直线280x y +-=和210x y -+=交点,且平行于直线4370x y --=的直线方程.16.求圆心在直线30x y -=上,与x 轴相切,被直线0x y -=截得的弦长的圆的方程.17.(1)求圆221:10C x y +=的切线方程,使得它经过点(2M (2)圆()()222:122C x y ++-=的切线在x y 、轴上截距相等,求切线方程 18.已知圆心在直线270x y --=上的圆C 与y 交于两点()04A -,,()02B -, (1)求圆C 的标准方程(2)求圆C 上的点到直线210x y --=距离的最大值和最小值19.求圆221:10100C x y x y +--=与圆2226240C x y x y +-+-=:的公共弦长.20.已知圆22:414450C x y x y +--+=.(1)求圆的圆心C 的坐标和半径长;(2)若直线7:2l y x =与圆C 相交于A B 、两点,求AB 的长; 21.已知圆1C 与y 轴相切于点()03,,圆心在经过点()2,1与点()2,3--的直线l 上 (1)求圆1C 的方程;(2)若圆1C 与圆2C :226350x y x y +--+=相交于M 、N 两点,求两圆的公共弦MN的长.22.已知圆1C 过点1)-,且圆心在直线1y =,圆222:420C x y x y +-+=.(1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;23.已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求圆C 的标准方程;(2)过点(0,2)P 的直线l 与圆C 相交于,M N 两点,且||MN =l 的方程. 24.已知点(2,)P a (0a >)在圆C :22(1)2x y -+=上.(1)求P 点的坐标;(2)求过P 点的圆C 的切线方程.25.已知直线1l ,2l 的方程分别为20x y -=,230x y -+=,且1l ,2l 的交点为P . (1)求P 点坐标;(2)若直线l 过点P ,且与x ,y 轴正半轴围成的三角形面积为92,求直线l 的方程. 26.圆C 经过点()2,1A -,和直线1x y +=相切,且圆心在直线2y x =-上.(1)求圆C 的方程;(2)圆内有一点52,2B ⎛⎫- ⎪⎝⎭,求以该点为中点的弦所在的直线的方程. 27.ABC 中,(0,1)A ,AB 边上的高线方程为240x y +-=,AC 边上的中线方程为230x y +-=,求,,AB BC AC 边所在的直线方程.28.根据下列条件求直线方程:(1)已知直线过点(2,2)P -且与两坐标轴所围成的三角形的面积为1;(2)已知直线过两直线3210x y -+=和340x y ++=的交点,且垂直于直线340x y ++=.29.已知直线1:0l x y -=,2:230l x y +-=,3:240l ax y -+=.(1)若点P 在1l 上,且到直线2l 的距离为,求点P 的坐标;(2)若2l //3l ,求2l 与3l 的距离.30.如图,在ABC 中,(5,2)A -,(7,4)B ,且AC 边的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求ABC 的面积.31.已知点(5,1)A 关于x 轴的对称点为B ,关于原点的对称点为C .(1)求ABC 中过AB ,BC 边上中点的直线方程;(2)求AC 边上高线所在的直线方程.32.已知直线1:10l ax y a +++=与22(:1)30l x a y +-+=.(1)当0a =时,求直线1l 与2l 的交点坐标;(2)若12l l ,求a 的值.33.已知直线l 的方程为210x y -+=.(1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求过l 与1l 的交点B ,且倾斜角是直线l 的一半的直线2l 的方程.34.已知点(1,2),(1,4),(5,2)A B C -,求ABC ∆的边AB 上的中线所在的直线方程.35.已知ABC ∆的顶点坐标为(1,5)A -,(2,1)B --,(4,3)C .(1)求AB 边上的高线所在的直线方程;(2)求ABC ∆的面积.36.已知直线()():20l m n x m n y m n ++++-=及点()4,5P(1)证明直线l 过某定点,并求该定点的坐标(2)当点P 到直线l 的距离最大时,求直线l 的方程37.如图所示,在平行四边形OABC 中,点(1,3),(3,0)C A .(1)求直线AB 的方程;(2)过点C 作CD AB ⊥于点D ,求直线CD 的方程.38.求适合下列条件的直线方程:(1)已知()2,3A -,()3,2B -,求线段AB 的垂直平分线的方程;(2)求经过点()2,3A -并且在两个坐标轴上的截距相等的直线方程.39.已知ABC ∆的顶点()3,1A ,AB 边上的中线CM 所在直线方程为210x y --=,B ∠的角平分线BN 所在直线方程为20x y -=.(1)求顶点B 的坐标;(2)求直线BC 的方程.40.已知点(3,2)A ,直线l :210x y ++=.(1)求直线l 关于点A 对称的直线方程;(2)求直线l 与两坐标轴围成的三角形的重心坐标. 41.已知两个定点()0,4A ,()0,1B ,动点P 满足2PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;42.已知圆C 经过点()31A ,和点()20B -,,且圆心C 在直线24y x =-上. (1)求圆C 的方程;(2)过点()14D -,的直线l 被圆C 截得的弦长为6,求直线l 的方程. 43.已知圆C : ()2215x y +-=,直线:10.l mx y m -+-=(1)求证:对m R ∈,直线l 与圆C 总有两个不同的交点;(2)设直线l 与圆C 交于,A B 两点,若AB l 的方程.44.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度AD 为,行车道总宽度BC 为,侧墙面高EA ,FD 为2m ,弧顶高MN 为5m .(1)建立适当的直角坐标系,求圆弧所在的圆的方程.(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5m .请计算车辆通过隧道的限制高度是多少.45.已知圆1C 过点),()1,1-,且圆心在直线1y =上,圆222:420C x y x y +-+=. (1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;(3)求过两圆的交点且圆心在直线241x y +=上的圆的方程.46.已知直线240x y +-=与圆224:20(0)C x y mx y m m+--=>相交于点M N 、,且||||OM ON =(O 为坐标原点).(1)求圆C 的标准方程;(2)若(0,2)A ,点P Q 、分别是直线20x y ++=和圆C 上的动点,求||||PA PQ +的最小值及求得最小值时的点P 的坐标.47.在平面直角坐标系xOy 中,已知圆C 的方程为2230x y x y +-+=,点()1,1P 是圆C 上一点.(1)若M ,N 为圆C 上两点,若四边形MONP 的对角线MN 的方程为20x y m ++=,求四边形MONP 面积的最大值;(2)过点P 作两条相异直线分别与圆C 相交于A ,B 两点,若直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.48.已知坐标平面上两个定点()0,4A ,()0,0O ,动点(),M x y 满足:3MA OM =. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点1,12N ⎛⎫-⎪⎝⎭的直线l 被C所截得的线段的长为直线l 的方程.49.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(3)若两条切线,PA PB 与y 轴分别交于S T 、两点,求ST 的最小值.50.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4.(1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.51.如图,已知圆22:(4)4M x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(1)当P 的横坐标为165时,求APB ∠的大小; (2)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所有定点的坐标.52.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线和直线MN 的方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.53.已知两个定点A (0,4),B (0,1),动点P 满足|P A |=2|PB |,设动点P 的轨迹为曲线E ,直线l :y =kx ﹣4.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若k =1,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.54.已知ABC 的顶点()45A AB -,,边上的中线CM 所在直线方程为450x y AC --=,边上的高BH 所在直线方程为410x y --=,求:(1)顶点C 的坐标;(2)直线BC 的方程.55.已知三角形的三个顶点()2,0A -,()4,4B -,()0,2C .(1)求线段BC 的垂直平分线所在直线方程;(2)求过AB 边上的高所在的直线方程;56.已知直线l 过点P (2,3)且与定直线l 0:y =2x 在第一象限内交于点A ,与x 轴正半轴交于点B ,记AOB 的面积为S (O 为坐标原点),点B (a ,0).(1)求实数a 的取值范围;(2)求当S 取得最小值时,直线l 的方程.57.在平面直角坐标系xOy 中,已知点,,P B C 坐标分别为0,12,(),(),0(0,2),E 为线段BC 上一点,直线EP 与x 轴负半轴交于点A ,直线BP 与AC 交于点D .(1)当E 点坐标为13,22⎛⎫ ⎪⎝⎭时,求直线OD 的方程; (2)求BOE △与ABE △面积之和S 的最小值.58.已知()()221340m x m y m -++++=.(1)m 为何值时,点Q (3,4)到直线距离最大,最大值为多少;(2)若直线分别与x 轴,y 轴的负半轴交于AB 两点,求三角形AOB 面积的最小值及此时直线的方程.59.已知ABC 的三边所在直线的方程分别是43100AB l x y -+=:,2BC l y =:,345CA l x y -=:.(1)求与AB 边平行的中位线方程;(2)求AB 边上的高所在直线的方程.60.已知ABC 的三个顶点为()4,0A ,()0,2B ,()2,6C .(1)求AC 边上的高BD 所在直线的方程;(2)求ABC 的外接圆的方程.61.已知直线l 经过点()2,3P -.(1)若原点到直线l 的距离为2,求直线l 的方程;(2)若直线l 被两条相交直线220x y --=和30x y ++=所截得的线段恰被点P 平分,求直线l 的方程.62.直线l 1过点A (0,1), l 2过点B (5,0), l 1∥l 2且l 1与l 2的距离为5,求直线l 1与l 2的一般式方程.63.已知ABC ∆的三个顶点(4,6)A -,(4,0)B -,(1,4)C -,求:(1)AC 边上的高BD 所在直线的方程;(2)BC 的垂直平分线EF 所在直线的方程;(3)AB 边的中线的方程.64.已知圆C :()()221+11x y --= (1)求过点A ()24,且与圆C 相切的直线方程.(2)若(),P x y 为圆C 上的任意一点,求()()2223x y +++的取值范围. 65.已知ABC 中,顶点()4,5A ,点B 在直线:220l x y -+=上,点C 在x 轴上,求ABC 周长的最小值.66.已知ABC ∆的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S ∆=,求点A 的坐标. 67.已知圆22:(4)1M x y +-=,直线:20l x y -=,点P 在直线l 上,过点P 作圆M 的切线PA 、PB ,切点为A 、B .(1)若60APB ∠=,求P 点坐标;(2)若点P 的坐标为(1,2),过P 作直线与圆M 交于C 、D 两点,当CD =线CD 的方程;(3)求证:经过A 、P 、M 三点的圆与圆M 的公共弦必过定点,并求出定点的坐标. 68.已知直线l 经过点(6,4)P ,斜率为k(1)若l 的纵截距是横截距的两倍,求直线l 的方程;(2)若1k =-,一条光线从点(6,0)M 出发,遇到直线l 反射,反射光线遇到y 轴再次反射回点M ,求光线所经过的路程.69.已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OO T ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系;70.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.71.已知圆C 轨迹方程为()22225x y -+=(1)设点31,2M ⎛⎫- ⎪⎝⎭,过点M 作直线l 与圆C 交于A ,B 两点,若8AB =,求直线l 的方程;(2)设P 是直线60x y ++=上的点,过P 点作圆C 的切线PA ,PB ,切点为A ,B .求证:经过A ,P ,C 三点的圆必过定点,并求出所有定点的坐标.。
专题08 直线和圆的方程(解答题)(11月)(人教A版2021)(原卷版)

专题08 直线和圆的方程(解答题)1.直角坐标系xOy 中,点A 坐标为()2,0-,点B 坐标为()4,3,点C 坐标为()1,3-,且()AM t AB t R =∈.(1)若CM AB ⊥,求t 的值;(2)当01t ≤≤时,求直线CM 的斜率k 的取值范围.2.已知ABC 的顶点()5,1A ,边AB 上的中线CM 所在直线方程为250x y --=,边AC 上的高BH 所在直线方程为250x y --=,(1)求顶点C 的坐标;(2)求ABC 的面积.3.如图所示,在平面直角坐标系中,已知矩形ABCD 的长为3,宽为2,边,AB AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在线段DC 上,已知折痕所在直线的斜率为12-.(1)求折痕所在的直线方程;(2)若点P 为BC 的中点,求PEF 的面积.4.已知圆C 过点(4,2)A ,()1,3B ,它与x 轴的交点为()1,0x ,()2,0x ,与y 轴的交点为()10y ,,()20,y ,且12126x x y y +++=.(1)求圆C 的标准方程;(2)若(3,9)A --,直线:20l x y ++=,从点A 发出的一条光线经直线l 反射后与圆C 有交点,求反射光线所在的直线的斜率的取值范围.5.已知圆O 圆心为坐标原点,半径为43,直线l :)4y x =+交x 轴负半轴于A 点,交y 轴正半轴于B 点(1)求BAO ∠(2)设圆O 与x 轴的两交点是1F ,2F ,若从1F 发出的光线经l 上的点M 反射后过点2F ,求光线从1F 射出经反射到2F 经过的路程;(3)点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标.6.一条光线从点()6,4P 射出,与x 轴相交于点()2,0Q ,经x 轴反射后与y 轴交于点H . (1)求反射光线QH 所在直线的方程;(2)求P 点关于直线QH 的对称点P'的坐标.7.已知直线l :()120kx y k k R -++=∈.(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设AOB ∆的面积为S ,求S 的最小值及此时直线l 的方程.8.已知直线1:3470l x y +-=与2:3480l x y ++=.(1)若()11,A x y 、()22,B x y 两点分别在直线1l 、2l 上运动,求AB 的中点D 到原点的最短距离;(2)若()2,3M ,直线l 过点M ,且被直线1l 、2l 截得的线段长为求直线l 的方程.9.已知圆22:(3)(4)4C x y -+-=.(1)若直线l 过点(2,3)A 且被圆C 截得的弦长为l 的方程;(2)若直线l 过点(1,0)B 与圆C 相交于P ,Q 两点,求CPQ ∆的面积的最大值,并求此时直线l 的方程.10.(1)已知直线l 过点()3,4P -,若直线l 在两坐标轴上的截距之和为12,求直线l 的一般式方程;(2)已知直线l 过点()3,2P 且与x 轴,y 轴的正半轴相交于A ,B 两点,求ABO 面积最小值及这时直线l 的一般式方程;(3)已知直线l 经过点()2,2P -,且与第一象限的平分线(0)y x x =≥,y 轴(原点除外)分别交于A ,B 两点,直线l ,射线(0)y x x =≥,y 轴围成的三角形OAB 的面积为12,则符合要求的直线共有几条,请说明理由.11.设集合L ={|l 直线l 与直线3y x =相交,且以交点的横坐标为斜率}.(1)是否存在直线0l 使0l L ∈,且0l 过点()1,5,若存在,请写出0l 的方程;若不存在,请说明理由;(2)点()3,5P -与集合L 中的哪一条直线的距离最小?(3)设(0,)a ∈+∞,点()3,P a -与集合L 中的直线的距离最小值为()f a ,求()f a 的解析式.12.已知直线:20l x y --=和点(1,1),(1,1)A B -,(1)直线l 上是否存在点C ,使得ABC 为直角三角形,若存在,请求出C 点的坐标;若不存在,请说明理由;(2)在直线l 上找一点P ,使得APB ∠最大,求出P 点的坐标.13.已知过点(,)P m n 的直线l 与直线:240l x y '++=垂直.(1) 若12m =,且点P 在函数11y x=-的图象上,求直线l 的一般式方程; (2)若点(,)P m n 在直线l '上,判断直线0:(1)50l mx n y n +-++=是否经过定点?若是,求出该定点的坐标;若不是,请说明理由.14.已知直线1:21l y x =-,2:1l y x =-+的交点为P ,求(1)过点P 且与直线32y x =-+平行的直线l 的方程;(2)以点P 为圆心,且与直线3410x y ++=相交所得弦长为125的圆的方程. 15.(1)一条直线经过()2,3A -,并且它的斜率是直线y x =斜率的2倍,求这条直线方程;(2)求经过两条直线280x y +-=和210x y -+=交点,且平行于直线4370x y --=的直线方程.16.求圆心在直线30x y -=上,与x 轴相切,被直线0x y -=截得的弦长的圆的方程.17.(1)求圆221:10C x y +=的切线方程,使得它经过点(2M (2)圆()()222:122C x y ++-=的切线在x y 、轴上截距相等,求切线方程 18.已知圆心在直线270x y --=上的圆C 与y 交于两点()04A -,,()02B -, (1)求圆C 的标准方程(2)求圆C 上的点到直线210x y --=距离的最大值和最小值19.求圆221:10100C x y x y +--=与圆2226240C x y x y +-+-=:的公共弦长.20.已知圆22:414450C x y x y +--+=.(1)求圆的圆心C 的坐标和半径长;(2)若直线7:2l y x =与圆C 相交于A B 、两点,求AB 的长; 21.已知圆1C 与y 轴相切于点()03,,圆心在经过点()2,1与点()2,3--的直线l 上 (1)求圆1C 的方程;(2)若圆1C 与圆2C :226350x y x y +--+=相交于M 、N 两点,求两圆的公共弦MN的长.22.已知圆1C 过点1)-,且圆心在直线1y =,圆222:420C x y x y +-+=.(1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;23.已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求圆C 的标准方程;(2)过点(0,2)P 的直线l 与圆C 相交于,M N 两点,且||MN =l 的方程. 24.已知点(2,)P a (0a >)在圆C :22(1)2x y -+=上.(1)求P 点的坐标;(2)求过P 点的圆C 的切线方程.25.已知直线1l ,2l 的方程分别为20x y -=,230x y -+=,且1l ,2l 的交点为P . (1)求P 点坐标;(2)若直线l 过点P ,且与x ,y 轴正半轴围成的三角形面积为92,求直线l 的方程. 26.圆C 经过点()2,1A -,和直线1x y +=相切,且圆心在直线2y x =-上.(1)求圆C 的方程;(2)圆内有一点52,2B ⎛⎫- ⎪⎝⎭,求以该点为中点的弦所在的直线的方程. 27.ABC 中,(0,1)A ,AB 边上的高线方程为240x y +-=,AC 边上的中线方程为230x y +-=,求,,AB BC AC 边所在的直线方程.28.根据下列条件求直线方程:(1)已知直线过点(2,2)P -且与两坐标轴所围成的三角形的面积为1;(2)已知直线过两直线3210x y -+=和340x y ++=的交点,且垂直于直线340x y ++=.29.已知直线1:0l x y -=,2:230l x y +-=,3:240l ax y -+=.(1)若点P 在1l 上,且到直线2l 的距离为,求点P 的坐标;(2)若2l //3l ,求2l 与3l 的距离.30.如图,在ABC 中,(5,2)A -,(7,4)B ,且AC 边的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求ABC 的面积.31.已知点(5,1)A 关于x 轴的对称点为B ,关于原点的对称点为C .(1)求ABC 中过AB ,BC 边上中点的直线方程;(2)求AC 边上高线所在的直线方程.32.已知直线1:10l ax y a +++=与22(:1)30l x a y +-+=.(1)当0a =时,求直线1l 与2l 的交点坐标;(2)若12l l ,求a 的值.33.已知直线l 的方程为210x y -+=.(1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求过l 与1l 的交点B ,且倾斜角是直线l 的一半的直线2l 的方程.34.已知点(1,2),(1,4),(5,2)A B C -,求ABC ∆的边AB 上的中线所在的直线方程. 35.已知ABC ∆的顶点坐标为(1,5)A -,(2,1)B --,(4,3)C .(1)求AB 边上的高线所在的直线方程;(2)求ABC ∆的面积.36.已知直线()():20l m n x m n y m n ++++-=及点()4,5P(1)证明直线l 过某定点,并求该定点的坐标(2)当点P 到直线l 的距离最大时,求直线l 的方程37.如图所示,在平行四边形OABC 中,点(1,3),(3,0)C A .(1)求直线AB 的方程;(2)过点C 作CD AB ⊥于点D ,求直线CD 的方程.38.求适合下列条件的直线方程:(1)已知()2,3A -,()3,2B -,求线段AB 的垂直平分线的方程;(2)求经过点()2,3A -并且在两个坐标轴上的截距相等的直线方程.39.已知ABC ∆的顶点()3,1A ,AB 边上的中线CM 所在直线方程为210x y --=,B ∠的角平分线BN 所在直线方程为20x y -=.(1)求顶点B 的坐标;(2)求直线BC 的方程.40.已知点(3,2)A ,直线l :210x y ++=.(1)求直线l 关于点A 对称的直线方程;(2)求直线l 与两坐标轴围成的三角形的重心坐标. 41.已知两个定点()0,4A ,()0,1B ,动点P 满足2PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;42.已知圆C 经过点()31A ,和点()20B -,,且圆心C 在直线24y x =-上. (1)求圆C 的方程;(2)过点()14D -,的直线l 被圆C 截得的弦长为6,求直线l 的方程.43.已知圆C : ()2215x y +-=,直线:10.l mx y m -+-=(1)求证:对m R ∈,直线l 与圆C 总有两个不同的交点;(2)设直线l 与圆C 交于,A B 两点,若AB l 的方程.44.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度AD 为,行车道总宽度BC 为,侧墙面高EA ,FD 为2m ,弧顶高MN 为5m .(1)建立适当的直角坐标系,求圆弧所在的圆的方程.(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5m .请计算车辆通过隧道的限制高度是多少.45.已知圆1C 过点),()1,1-,且圆心在直线1y =上,圆222:420C x y x y +-+=. (1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;(3)求过两圆的交点且圆心在直线241x y +=上的圆的方程.46.已知直线240x y +-=与圆224:20(0)C x y mx y m m+--=>相交于点M N 、,且||||OM ON =(O 为坐标原点).(1)求圆C 的标准方程;(2)若(0,2)A ,点P Q 、分别是直线20x y ++=和圆C 上的动点,求||||PA PQ +的最小值及求得最小值时的点P 的坐标.47.在平面直角坐标系xOy 中,已知圆C 的方程为2230x y x y +-+=,点()1,1P 是圆C 上一点.(1)若M ,N 为圆C 上两点,若四边形MONP 的对角线MN 的方程为20x y m ++=,求四边形MONP 面积的最大值;(2)过点P 作两条相异直线分别与圆C 相交于A ,B 两点,若直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.48.已知坐标平面上两个定点()0,4A ,()0,0O ,动点(),M x y 满足:3MA OM =. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点1,12N ⎛⎫- ⎪⎝⎭的直线l 被C所截得的线段的长为直线l 的方程.49.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(3)若两条切线,PA PB 与y 轴分别交于S T 、两点,求ST 的最小值.50.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4.(1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点. 51.如图,已知圆22:(4)4M x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(1)当P 的横坐标为165时,求APB ∠的大小; (2)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所有定点的坐标.52.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线和直线MN 的方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.53.已知两个定点A (0,4),B (0,1),动点P 满足|P A |=2|PB |,设动点P 的轨迹为曲线E ,直线l :y =kx ﹣4.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若k =1,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.54.已知ABC 的顶点()45A AB -,,边上的中线CM 所在直线方程为450x y AC --=,边上的高BH 所在直线方程为410x y --=,求:(1)顶点C 的坐标;(2)直线BC 的方程.55.已知三角形的三个顶点()2,0A -,()4,4B -,()0,2C .(1)求线段BC 的垂直平分线所在直线方程;(2)求过AB 边上的高所在的直线方程;56.已知直线l 过点P (2,3)且与定直线l 0:y =2x 在第一象限内交于点A ,与x 轴正半轴交于点B ,记AOB 的面积为S (O 为坐标原点),点B (a ,0).(1)求实数a 的取值范围;(2)求当S 取得最小值时,直线l 的方程.57.在平面直角坐标系xOy 中,已知点,,P B C 坐标分别为0,12,(),(),0(0,2),E 为线段BC 上一点,直线EP 与x 轴负半轴交于点A ,直线BP 与AC 交于点D .(1)当E 点坐标为13,22⎛⎫ ⎪⎝⎭时,求直线OD 的方程; (2)求BOE △与ABE △面积之和S 的最小值.58.已知()()221340m x m y m -++++=.(1)m 为何值时,点Q (3,4)到直线距离最大,最大值为多少;(2)若直线分别与x 轴,y 轴的负半轴交于AB 两点,求三角形AOB 面积的最小值及此时直线的方程.59.已知ABC 的三边所在直线的方程分别是43100AB l x y -+=:,2BC l y =:,345CA l x y -=:.(1)求与AB 边平行的中位线方程;(2)求AB 边上的高所在直线的方程.60.已知ABC 的三个顶点为()4,0A ,()0,2B ,()2,6C .(1)求AC 边上的高BD 所在直线的方程;(2)求ABC 的外接圆的方程.61.已知直线l 经过点()2,3P -.(1)若原点到直线l 的距离为2,求直线l 的方程;(2)若直线l 被两条相交直线220x y --=和30x y ++=所截得的线段恰被点P 平分,求直线l 的方程.62.直线l 1过点A (0,1), l 2过点B (5,0), l 1∥l 2且l 1与l 2的距离为5,求直线l 1与l 2的一般式方程.63.已知ABC ∆的三个顶点(4,6)A -,(4,0)B -,(1,4)C -,求:(1)AC 边上的高BD 所在直线的方程;(2)BC 的垂直平分线EF 所在直线的方程;(3)AB 边的中线的方程.64.已知圆C :()()221+11x y --= (1)求过点A ()24,且与圆C 相切的直线方程. (2)若(),P x y 为圆C 上的任意一点,求()()2223x y +++的取值范围. 65.已知ABC 中,顶点()4,5A ,点B 在直线:220l x y -+=上,点C 在x 轴上,求ABC 周长的最小值.66.已知ABC ∆的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S ∆=,求点A 的坐标. 67.已知圆22:(4)1M x y +-=,直线:20l x y -=,点P 在直线l 上,过点P 作圆M 的切线PA 、PB ,切点为A 、B .(1)若60APB ∠=,求P 点坐标;(2)若点P 的坐标为(1,2),过P 作直线与圆M 交于C 、D 两点,当CD =线CD 的方程;(3)求证:经过A 、P 、M 三点的圆与圆M 的公共弦必过定点,并求出定点的坐标. 68.已知直线l 经过点(6,4)P ,斜率为k(1)若l 的纵截距是横截距的两倍,求直线l 的方程;(2)若1k =-,一条光线从点(6,0)M 出发,遇到直线l 反射,反射光线遇到y 轴再次反射回点M ,求光线所经过的路程.69.已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OO T ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系; (3)是否存在定点(),M m n ,使过点M 有无数对相互垂直的直线12,l l 满足12l l ⊥,且它们分别被圆O 、圆1O 所截得的弦长相等?若存在,求出所有的点M ;若不存在,请说明理由.70.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.71.已知圆C 轨迹方程为()22225x y -+=(1)设点31,2M ⎛⎫- ⎪⎝⎭,过点M 作直线l 与圆C 交于A ,B 两点,若8AB =,求直线l 的方程;(2)设P 是直线60x y ++=上的点,过P 点作圆C 的切线PA ,PB ,切点为A ,B .求证:经过A ,P ,C 三点的圆必过定点,并求出所有定点的坐标.。
专题09:平面直角坐标系(简答题专练)(解析版)

专题09:平面直角坐标系(简答题专练) 一、解答题 1.如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)
平移后的对应点为P′(x1+6,y1+4) (1)请在图中作出△A′B′C′; (2)写出点A′、B′、C′的坐标.
【答案】(1)作图见详解;(2)A′(2,3),B′(1,0),C′(5,1) 【分析】(1)由点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)可得其平移规律为:向右平移6个单位,向上平移4个单位;故把△ABC的各顶点向右平移6个单位,再向上平移4个单位,顺次连接各顶点即为△A′B′C′; (2)根据各点所在的象限和距离坐标轴的距离得到平移后相应各点的坐标即可. 【解答】解:(1)∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4), ∴平移规律为:向右平移6个单位,向上平移4个单位. 如图所示: (2)A′(2,3),B′(1,0),C′(5,1). 2.建立适当的坐标系表示图中各景点的位置.
【答案】见解析 【解析】【分析】以猴山为原点的位置,可得平面直角坐标系,根据点在坐标系中的位置,可得答案. 【解答】建立如图所示的以猴山为原点的平面直角坐标系,则猴山、鸟语林、蝴蝶馆、蛇山、熊猫馆的坐标分别为(0,0)、(1,1)、(3,2)、(4,3)、(4,-1).
【点评】本题考查了坐标确定位置,选择原点建立平面直角坐标系是解题关键. 3.如图,在单位正方形网格中,建立了平面直角坐标系,xOy试解答下列问题:
(1)写出ABC三个顶点的坐标; (2)画出ABC向右平移6个单位,再向下平移2个单位后的图形111ABC△; (3)求ABC的面积. 【答案】(1)A(-1,8),B(-4,3),C(0,6);(2)答案见解析;(3)112 . 【分析】(1)直接利用平面直角坐标系即可得出答案; (2)根据点的平移规律找到A,B,C的对应点111,,ABC,然后顺次连接111,,ABC即可; (3)用三角形所在的长方形的面积减去三个小三角形的面积即可得出答案. 【解答】(1)根据平面直角坐标系可得,(1,8),(4,3),(0,6)ABC; (2) 图形如图:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习是件很有意思的事
专题08:平面直角坐标系(填空题专练)
一、填空题
1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P
从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2021秒时,点P的坐标是__.
2.已知点A(-1,b+2)在坐标轴上,则b=_____.
3.已知点A(﹣2,0),B(3,0),点C在y轴上,且S
△ABC
=10,则点C坐标为_____.
4.已知点,Mab的坐标满足0ab,且0ab,则点M在第______象限.
5.若P(4,﹣3),则点P到x轴的距离是_____.
6.点P(x-2,x+3)在第一象限,则x的取值范围是___.
7.在平面直角坐标系中,已知A(﹣2,4),B(3,4),则AB的长度为_____.
8.点5,1P到x轴距离为______.
9.将点P向左平移3个单位,再向上平移1个单位得103P,,则点P的坐标______.
10.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2
,
2m﹣1)在第四象限,则m的值为_____.
11.若点P(2m+4,3m+3)在x轴上,则点P的坐标为________.
12.在第二象限,到x轴距离为4,到y轴距离为3的点P的坐标是 .
13.已知点A(0,1),B(0 ,2),点C在x轴上,且2ABCS,则点C的坐标________.
14
.在平面直角坐标系中,第二象限内的点M到横轴的距离为2,到纵轴的距离为3,则点M的坐标是
________.
15.已知直线AB∥x轴,A点的坐标为(2,1),并且线段AB=2,则点B的坐标为_____
16.如图,点,AB的坐标分别为(2,0),(0,1),若将线段AB平移至11AB,则ab的值为_____.
学习是件很有意思的事
17.在平面直角坐标系中,点A(2,0)B(0,4),作△BOC,使△BOC和△ABO全等,则点C坐标为________
18.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________.
19.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC
的边时反弹,反弹时反
射角等于入射角. 当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰
到矩形的边时的点为Pn. 则点P3的坐标是_______,点P2014的坐标是
_______.
20.已知点(1,2)Am和点(3,1)Bm,若直线//ABx轴,则m的值为________.
21.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“”
方向排列,如(1,0),
(2,0),(2,1),(1,1),(1,2)
,(2,2)根据这个规律,第2019个点的坐标为___.
22.如图,在平面直角坐标系中,有若千个整数点,其顺序按图中“”方向排列,如1, 0, 2, 0, 2, 1,….
根据这个规律探索可得,第100个点的坐标为__________.
学习是件很有意思的事
23
.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点
的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、
、…、…,若点的坐标为,则点的坐标为__________.
24.如图,把图1中的圆A经过平移得到圆O(如图2),如果图1⊙A上一点P的坐标为(m,n
),那么平
移后在图2中的对应点P′的坐标为
____
25.如图所示,一个动点在第一象限内及x轴,y轴上运动,在第1分钟,它从原点运动到(1,0),第2
分钟,从(1,0)运动到(1,1),然后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每
分钟运动1个单位长度.当动点所在位置的坐标是(5,5)时,所经过的时间是______分钟,在第1002分钟
后,这个动点所在的位置的坐标是
______.
26.如图所示,在平面直角坐标系上有个点1,0P(),点P第1次向上跳动1
个单位至点1(1,1)P,紧接着第
2次向左跳动2个单位至点2(1,1)P,第3次向上跳动1个单位,第4次向右跳动3个单位,第5
次又向上
跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点99P的坐标是_____;
学习是件很有意思的事
点P第2009次跳动至点2009P的坐标是
______.
27.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P
从
原点O出发,速度为1cm/s,且整点P做向上或向右运动(如图所示),其运动时间与整点的关系见下表
.
整点P从原点出发的时间/s 可以得到整点P的坐标 可以得到整点P的个数
1 (0,1),(1,0) 2
2 (0,2),(1,1),(2,0) 3
3 (0,3),(1,2),(2,1),(3,0) 4
… … …
根据表中的规律,回答下列问题:
(1)当整点P从点O出发4s时,可以得到的整点的个数为_____个
.
(2)当整点P从点O出发_____s时,可以得到整点(16,4)的位置
.
28
.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点。请你观察图中正方形1111DCBA,
22223333
,ABCDABCD
,每个正方形四条边上的整点的个数.按此规律推算出正方形10101010ABCD四条边上的
整点共有多少个
.
学习是件很有意思的事
学习是件很有意思的事
坚持希望
一天,一个瞎子和一个瘸子结伴去寻找那种仙果,他们一直走呀走,途中他们翻山越岭。历经
千辛万苦,头发开始斑白。有一天,那瘸子对瞎子说:“天哪!这样下去哪有尽头?我不干了,受不
了了。“老兄,我相信不远了,会找到的,只要心中存有希望,会找到的。”瞎子却说。可瘸子执意
要留在途中的山寨中,瞎子便一个人上路了。
由于瞎子看不见,不知道该走向何处,他碰到人便问,人们也好心地指引他,他身上捉襟见肘,
遍体鳞伤,可他心中的希望未曾改变。
终于有一天,他到达了那座山,他全力以赴向上爬,快到山顶的时候,他感觉自己浑身充满了
力量,像年轻了几十岁,他向身旁摸索,便摸到了果子一样的东西,放在嘴里咬一口,天哪!他复
明了,什么都看见了,绿绿的树木,花儿鲜艳,小溪清澈。果子长满了山坡,他朝溪水俯身看去,
自己竞变成了一个英俊年轻的小伙子!
准备离去的时候,他没有忘记替同行而来的瘸子带上两个仙果,到山寨的时候,他看到瘸子
拄着拐棍,变成了一个头发花白的老头,瘸子认不出他了,因为他已是一个年轻的小伙子。可当
他们相认后,瘸子吃下那果子,却丝毫未起任何变化,他们终于知道,只有自己的行动,才能换
来成功和幸福。所谓成功,我们要心存希望,要勇往直前,要坚持,要有毅力,那么,成功早晚
属于你。
学习是件很有意思的事
一饭千金
帮助汉高祖打平天下的大将韩信,在未得志时,境况很是困苦。那时候,他时常往城下钓鱼,希望碰
着好运气,便可以解决生活。但是,这究竟不是可靠的办法,因此,时常要饿着肚子。幸而在他时常钓鱼
的地方,有很多漂母(清洗丝棉絮或旧衣布的老婆婆)在河边作工的,其中有一个漂母,很同情韩信的遭
遇,便不断的救济他,给他饭吃。韩信在艰难困苦中,得到那位以勤劳克苦仅能以双手勉强糊口的漂母的
恩惠,很是感激她,便对她说,将来必定要重重的报答她。那漂母听了韩信的话,很是不高兴,表示并不
希望韩信将来报答她的。后来,韩信替汉王立了不少功劳,被封为楚王,他想起从前曾受过漂母的恩惠,
便命从人送酒菜给她吃,更送给她黄金一千两来答谢她。
这句成语就是出于这个故事的。它的意思是说:受人的恩惠,切莫忘记,虽然所受的恩惠很是微小,
但在困难时,即使一点点帮助也是很可贵的;到我们有能力时,应该重重地报答施惠的人才是合理。
【感恩小结】
感恩,是结草衔环,是滴水之恩涌泉相报。
感恩,是一种美德,是一种境界。
感恩,是值得你用一生去等待的一次宝贵机遇。
感恩,是值得你用一生去完成的一次世纪壮举。
感恩,是值得你用一生去珍视的一次爱的教育。
感恩,不是为求得心理平衡的喧闹的片刻答谢,而是发自内心的无言的永恒回报。
感恩,让生活充满阳光,让世界充满温馨……