simulink仿真模型

simulink仿真模型
simulink仿真模型

《MATLAB/Simulink通信系统建模与仿真实例》

题目:采样定理仿真验证(使用Simulink)

设计内容:

使用simulink建模验证采样定理。假设模拟基带信号的最高频率为100Hz,分别使用160Hz 和400Hz的采样脉冲对信号进行采样,并使用滤波器恢复模拟信号,滤波器参数自行设计。模型其他参数自行设定。

设计指标:

1)给出仿真模型图。

2)给出两种采样频率下原始信号、采样信号和恢复信号的时域波形。

3)给出两种采样频率下原始信号、采样信号和恢复信号的频域波形。

4)通过仿真,给出采样定理的时域、频域解释,证明定理的正确性。

仿真模型:

160Hz下的原始信号和采样信号的时域波形:

400Hz下的原始信号和采样信号的时域波形:

160Hz下的原始信号和采样信号的频域波形:

400Hz下的原始信号和采样信号的频域波形:

通过仿真,可以看出一个频带限制在(0,f1)的时间连续信号f(t).如果以T≤1/2f1秒的时间间隔对它进行等间隔采样.则f(t)所得到的采样值完全确。

模拟基带信号的最高频率为100Hz,当使用160Hz的采样脉冲对信号进行采样时,由上两图可以看出,波形比较混乱误差比较大,而当使用400Hz的采样脉冲对信号进行采样时,由上图可以看出原始信号很接近采样信号,反映了采样定理的正确性。

CarSim与Simulink联合仿真

CarSim与Simulink联合仿真 1 软件介绍 在MATLAB中,Simulink是用来建模、仿真和分析动态多维系统的交互工具。可以使用Simulink提供的标准模型库或者自行创建模型库,描述、模拟、评价和精化系统行为,同时,Simulink和MATLAB之间的联系十分便捷,可以使用一个灵活的操作系和应用广泛的分析和设计工具。最后,除了可以使用Simulink建模和仿真之外,还可以通过其他软件联合来完成更多的分析任务,如CarSim、ADAMS、AMEsim等许多软件。 CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。CarSim软件的主要功能如下: ●适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; ●可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; ●可以通过软件如MA TLAB,Excel等进行绘图和分析; ●可以图形曲线及三维动画形式观察仿真的结果; ●包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率 谱分析模块; ●程序稳定可靠; ●软件可以实时的速度运行,支持硬件在环,CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL 仿真; ●先进的事件处理技术,实现复杂工况的仿真; ●友好的图形用户界面,可快速方便实现建模仿真; ●提供多种车型的建模数据库; ●可实现用户自定义变量的仿真结果输出; ●可实现与simulink的相互调用; ●多种仿真工况的批运行功能; 2 CarSim与Simulink联合仿真 2.1 Simulink接口 1) 变量由Simulink导入CarSim(导入变量) 可由Simulink导入到CarSim中的变量可达160多个,主要分为以下几部分: ?控制输入

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

实验七 SIMULINK仿真集成环境

实验七 SIMULINK 仿真集成环境 一、实验目的 熟悉SIMULINK 的模型窗口、熟练掌握SIMULINK 模型的创建,熟练掌握常用模块的操作及其连接。 二、实验内容 (1) SIMULINK 模型的创建和运行。 (2)一阶系统仿真 三、实验步骤 1. Simulink 模型的创建和运行 (1) 创建模型。 ① 在MATLAB 的命令窗口中输入simulink 语句,或者单击MATLAB 工具条上的SIMULINK 图标,SIMULINK 模块库浏览器。 ②在MA TLAB 菜单或库浏览器餐单中选择File|New|Model ,或者单击库浏览器的图标,即可新建一个“untitle ”的空白模型窗口。 ③打开“Sources ”模块库,选择“Sine Wave ”模块,将其拖到模型窗口,再重复一次;打开“Math Operatioins ”模块库选取“Product ”模块;打开“Sinks ”模块库选取“Scope ”模块。 (2) 设置模块参数 ① 修改模块注释。单击模块的注释处,出现虚线的编辑框,在编辑框中修改注释。 ② 双击下边“Sine Wave ”模块,弹出参数对话框,浆“Frequency ”设置为100;双击“Scope ”模块,弹出示波器窗口,然后单击示波器图标,弹出参数对话框,修改示波器的通道数“Number of axes ”为3. ③如图所示,用信号线连接模块。 (3) 启动仿真 ① 单击工具栏上的图标或者选择Simulation|Start 菜单项,启动仿真;然后双击“Scope ”模块弹出示波器窗口,可以看到波形图。 ② 修改仿真步长。在模块窗口的Simulation 菜单下选择“Configuration Parameters ”命令,把“Max step size ”设置为0.01;启动仿真,观察波形是不是比原来光滑。 ③再次修改“Max step size ”为0.001;设置仿真终止时间为10s ;启动仿真,单击示波器工具栏中的按钮,可以自动调整显示范围,可以看到波形的起点不是零点,这是因为步长改小后,数据量增大,超出了示波器的缓冲。 浆示波器的参数对话框打开,选择“Data history ”页,把“Limit data point tolast ”设置为10000;再次启动仿真,观察示波器将看到完整的波形。 2.. 一阶系统仿真 使用阶跃信号作为输入信号,经过传递函数为1 6.01 s 的一阶系统,观察其输出。 ①设置“Step ”模块的“Step time ”为0;浆仿真参数的最大步长“Max step size ”设置为0.01. 把结果数据输出到工作空间。 ②打开“Sources ”模块库,选取“Clock ”模块添加到模型窗口中。 ③代开“Sinks ”模块库,选取两个“To workspace ”模块添加到模型窗口中,两个模块分别连接输出和“Clock ”模块。

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真 ——模拟通信系统姓名:XX 完成时间:XX年XX月XX日

一、实验原理(调制、解调的原理框图及说明) AM调制 AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。AM调制原理框图如下 AM信号的时域和频域的表达式分别为 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。 AM解调 AM信号的解调是把接收到的已调信号还原为调制信号。 AM信号的解调方法有两种:相干解调和包络检波解调。 AM相干解调原理框图如下。相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。 AM包络检波解调原理框图如下。AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成。 DSB调制 在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。DSB调制原理框图如下 DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调 DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制 SSB调制分为滤波法和相移法。 滤波法SSB调制原理框图如下所示。图中的为单边带滤波器。产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。产生上边带信号时即为,产生下边带信号时即为。

自动实验一——典型环节的MATLAB仿真 报告

班级 姓名 学号 XXXXXX电子与信息工程学院实验报告册 课程名称:自动控制原理实验地点: 实验时间同组实验人: 实验题目:典型环节的MATLAB仿真 一、实验目的: 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理及SIMULINK图形: 1.比例环节的传递函数为22 12 11 ()2100,200 Z R G s R K R K Z R =-=-=- == 其对应的模拟电路及SIMULINK图形如图1-3所示。 2.惯性环节的传递函数为 2 21 121 121 2 ()100,200,1 10.21 R Z R G s R K R K C uf Z R C s =-=-=-=== ++ 其对应的模拟电路及SIMULINK图形如图1-4所示。 3.积分环节(I)的传递函数为 uf C K R s s C R Z Z s G1 , 100 1.0 1 1 ) ( 1 1 1 1 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-5所示。 图1-5 积分环节的模拟电路及及SIMULINK图形 图1-4 惯性环节的模拟电路及SIMULINK图形

4.微分环节(D)的传递函数为 uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<< 其对应的模拟电路及SIMULINK 图形如图1-6所示。 5.比例+微分环节(PD )的传递函数为 )11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<=== 其对应的模拟电路及SIMULINK 图形如图1-7所示。 6.比例+积分环节(PI )的传递函数为 )11(1)(11212s R s C R Z Z s G +-=+-=-= uf C K R R 10,100121=== 其对应的模拟电路及SIMULINK 图形如图1-8所示。 三、实验设备: 计算机 Matlab 软件 四、试验内容: 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G 图1-6 微分环节的模拟电路及及SIMULINK 图形 图1-7 比例+微分环节的模拟电路及SIMULINK 图形 图1-8 比例+积分环节的模拟电路及SIMULINK 图形曲线

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目信息系统课程设计仿真 院(系): 信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012年1 月14 日至2012年1 月25 日 华朴中科技大学武昌分校制 信息系统仿真课程设计任务书

20 年月日 目录 摘要 (5)

一、Simulink 仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLA仿真设计 (12) 2.1 、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2 自编matlab 程序: (13) 2.1.3 仿真图形 (13) 2.1.4 仿真结果分析 (15) 2.2 用双线性变换法设计IIR 数字滤波器 (15) 2.2.1 双线性变换法的基本知识 (15) 2.2.2 采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3 自编matlab 程序 (16) 2.2.4 仿真波形 (17) 2.2.5 仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20) 摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能

强大、简单易学、编程效率高,目前已发展成为由MATLAB 语言、MATLAB 工作环境、MATLAB 图形处理系统、MATLAB 数学函数库和MATLAB 应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB 和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A 律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM 编码器对一连续信号进行编码。最后利用MATLAB 进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR 数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

Matlab中的Simulink和SimMechanics做仿真

这里我们利用Matlab中的Simulink和SimMechanics做仿真,那么先来看看相关的资料。 SimMechanics ——机械系统建模和仿真 SimMechanics 扩展Simscape? 在三维机械系统建模的能力。用户可以不进行方程编程,而是借助该多刚体仿真工具搭建模型,这个模型可以由刚体、铰链、约束以及外力组成。自动化3-D动画生成工具可做到仿真的可视化。用户也可通过从CAD系统中直接导入模型的质量、惯量、约束以及三维几何结构。Real-Time Workshop可以对SimMchanics模型进行自动化C代码生成,并在硬件在回路仿真过程中可以使用生成的代码而不是硬件原型测试嵌入式控制器。 SimMechanics可以用于开发悬架、机器手臂、外科医疗设备、起落架和大量的其它机械系统。用户也可以在SimMechanics环境下集成其它的MathWorks物理建模工具,这样做可以实现更加复杂跨领域的物理建模。 特点: ?提供了三维刚体机械系统的建模环境 ?包含了一系列分析机械运动和设计机械元件尺寸的仿真技术 ?三维刚体可视化仿真 ?SimMechanics Link utility,提供Pro/ENGINEER 和SolidWorks CAD平台的接口并且也提供了API函数和其它CAD平台的接口

?能够把模型转化为C代码(使用Real-Time Workshop) ?由于集成在Simulink环境中,因此可以建立高精度、非线性的模型以支持控制系统的开发和测试。 强大功能: 搭建机械系统模型 使用SimMechanics用户仅需要收集物理系统信息即可建立三维机械系统模型。使用刚体、坐标系、铰链和作用力元素定义和其它Simulink模型直接相连的部分。这个过程可以重用Simulink模型以及扩展了SimMechanics工具的能力。用户还可把Simulink模型和SimMechnics模型集成为一个模块,并可封装成可在其它模型中复用的子系统。 机械系统建模仿真和分析 SimMechanics包含如下子系统: ?使用Simulink查表模块和SimMechanics传感器和作动器定义的非线性的弹性单元 ?用来定义航空器件压力分布的空气动力学拖曳模块,例如副翼和方向舵 ?车辆悬架系统,例如防侧翻机械装置和控制器 ?轮胎模型

实验三__SIMULINK仿真实验

实验三 SIMULINK 仿真实验 一、实验目的 1.熟悉Simulink 的操作环境并掌握绘制系统模型的方法。 2.掌握Simulink 中子系统模块的建立与封装技术。 3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。 二、实验设备及条件 计算机一台(带有MATLAB7.0软件环境)。 三、实验内容 1.建立下图5-1所示的Simulink 仿真模型并进行仿真,改变Gain 模块的增益,观察Scope 显示波形的变化。 图3-1 正弦波产生及观测模型 2.利用Simulink 仿真下列曲线,取πω2=。 t t t t t t x ωωωωωω9sin 9 17sin 715sin 513sin 31sin )(++++=。 仿真参考模型如下图3-2,Sine Wave5模块参数设置如下图3-3,请仿真其结果。

图3-2 ()x t 的仿真参考模型图 图3-3 Sine Wave5模块参数设置图 3. 已知某控制系统的传递函数如题3-4图所示。试利用SIMULINK 建模仿真,并用示波器显示该系统的阶跃响应曲线。(注:系统中e -0.4 s 环节表示的是控制中的延时环节,可用SIMULINK 的连续系统模块库中的“Transport Delay”模块表示) 图3-4 4、已知某控制系统的传递函数如题3-5图所示。 试利用SIMULINK 建模,并实现以下功能: (1) 将已建模型转化为一个名为“mysys”的子系统; (2) 将已建子系统进行适当的封装; (3) 封装完毕后双击子系统图标,在弹出的属性设置窗口中对变量进行赋值(Tm = 0.5,Tp = 1),并在模型中加入源模块和显示模块,观察系统的阶跃响应曲线。

adams和simulink联合仿真的案例分析

相信大家在联合仿真ADAMS和SIMULINK时都会遇到很多的问题:ADAMS/contro中的例子ball_beam通过联合仿真,更容易理解adams和simulink的联合仿真精髓。小球在一脉冲力的作用下沿着横梁滚动,此时梁的两端受力不平衡,梁的一段倾斜,为了使得小球不掉下横梁,在横梁上施加一个绕Z轴的力矩,横梁达到一定的角度之后逆向转动,然后小球就在这个作用力矩的控制下来回滚动而不掉下横梁!其中控制力矩在整个过程中是个动态变化的,力矩Torque_In是通过位移Position 和横梁转角Beam_Angle确定,这个是在simulink中通过框图完成的。 首先我申明一下我用的是adams2003和matlab6.5 以下我说明一下我的操作步骤: 1、把control中的ball_beam文件copy到另外一个文件夹下,同时设置adams和matlab的默认路径即为ball_beam文件夹,这样可以省略很多不必要的麻烦! 2、用aview打开ball_beam.cmd文件,先试试仿真一下,可以看到小球会在脉冲的作用下滚动,仿真时间最好大于8s 3、载入control模块,点击tools|plugin manager在control框选定。 4、点击control|plant export在file prefix下输入你的文件名,这个可以随便的,我输入的是myball,在plant input点击右键点

击guess选定tmp_MDI_PINPUT,在tmp_MDI_PINPUT中就是输入力矩Torque_In,只有一个输入参数;同样在plant output 中点击右键guess选定tmp_MDI_POUTPUT,这是模型的输出变量横梁转角Beam_Angle和小球与横梁中心轴的距离position。control package选择matlab,type是non_linear,初始化分析选择no,然后按ok!此时m文件已经生成了! 5、打开matalb,设置你的工作路径在ball_beam文件夹上,键入myball,马上有 %%% INFO : ADAMS plant actuators names : 1 Torque_In %%% INFO : ADAMS plant sensors names : 1 Beam_Angle 2 Position 出现 6、再键入adams_sys,弹出一个控制框图,这时可以新建一个mdl文件,将adams_sub拖入你新建的mdl框图中,其实再这里有一个偷懒的办法,就是在matlab中打开ball_beam.mdl文件,然后把他的那个adams_sub用你的刚产生的这个代替,然后另存为my_ball.mdl!

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间围0---Tn 。 3、),(T sys step ;表示时间围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:)()()()(1 )(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

第12章--MATLAB-Simulink系统仿真-习题答案

, 第12章 MATLAB Simulink系统仿真 习题12 一、选择题 1.启动Simulink后,屏幕上出现的窗口是()。A A.Simulink起始页 B.Simulink Library Browser窗口 C.Simulink Block Browser窗口 D.Simulink模型编辑窗口 2.模块的操作是在()窗口中进行的。D A.Library Browser B.Model Browser ( C.Block Editer D.模型编辑 3.Integrator模块包含在()模块库中。B A.Sources B.Continuous C.Sinks D.Math Operations 4.要在模型编辑窗口中复制模块,不正确的方法是()。B A.单击要复制的模块,按住鼠标左键并同时按下Ctrl键,移动鼠标到适当位置放开鼠标 B.单击要复制的模块,按住鼠标左键并同时按下Shift键,移动鼠标到适当位置放开鼠标 C.在模型编辑窗口选择Edit→Copy命令和Edit→Paste命令 D.右键单击要复制的模块,从快捷菜单中选择Copy命令和Paste命令 | 5.已知仿真模型如图12-41(a)所示,示波器的输出结果如图12-41(b)所示。 (a)仿真模型

(b )示波器输出结果 图12-41 习题仿真模型及仿真结果 则XY Graph 图形记录仪的输出结果是( )。C A .正弦曲线 B .余弦曲线 C .单位圆 D .椭圆 】 二、填空题 1.Simulink (能/不能)脱离MATLAB 环境运行。 2.建立Simulink 仿真模型是在 窗口进行的。模型编辑窗口 3.Simulink 仿真模型通常包括 、系统模块和 三种元素。 信号源(Source ),信宿(Sink ) 4.由控制信号控制执行的子系统称为 ,它分为 、 和 。 条件执行子系统,使能子系统,触发子系统,使能加触发子系统。 5.为子系统定制参数设置对话框和图标,使子系统本身有一个独立的操作界面,这种操作称为子系统的 。封装(Masking ) % 三、应用题 1.利用Simulink 仿真来实现摄氏温度到华氏温度的转换:9325f c T T = +。 2.利用Simulink 仿真)5cos 2513cos 91(cos 8)(2t ωt ωt ωπ A t x ++= ,取A=1,ω=2π。 3.设系统微分方程为 '(1)2y x y y =+??=? 试建立系统模型并仿真。 4.设计一个实现下面函数模块的子系统并对子系统进行封装。 Output = (Input1+ I nput2)×Input3-Input4

PID控制系统的Simulink仿真分析

实验报告 课程名称:MATLAB语言与控制系统仿真 实验项目:PID控制系统的Simulink仿真分析专业班级: 学号: 姓名: 指导教师: 日期: 机械工程实验教学中心

注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页; 3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一 种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递 函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++==)1 1()() ()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积分时间常数; p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积 分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调 节时间。 三、实验使用仪器设备(名称、型号、技术参数等) 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在 Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的 传递函数构建出如下模型:

simulink仿真实验报告

电机与拖动控制实验及其MATLAB仿真: 《电机与拖动控制实验及其MATLAB仿真》是2014年11月18日清华大学出版社出版的图书,作者是曹永娟。 内容简介: 本书分上、下两篇。上篇为电机与拖动控制实验教程,针对MCL 系列电机实验教学系统进行介绍,包括变压器、同步电机、异步电机、直流电机以及直流调速系统、交流调速系统拖动控制实验内容。 目录: 上篇电机与拖动控制实验 第1章电机实验装置和基本要求 1.1MCLⅡ型电机教学实验台 1.2实验装置和挂件箱的使用 1.2.1MCLⅡ型电机实验装置交流及直流电源操作说明 1.2.2仪表的使用 1.2.3挂件箱的使用 1.2.4交直流电机的使用 1.2.5导轨、测速发电机及转速计的使用 第2章电机与拖动控制实验基本要求和安全操作规程 2.1实验基本要求 2.2实验前的准备 2.3实验的进行 2.4实验报告

2.5实验安全操作规程 第3章变压器实验 3.1单相变压器 3.1.1实验目的 3.1.2预习要点 3.1.3实验项目 3.1.4实验设备及仪器 3.1.5实验方法 3.1.6实验报告 3.2三相变压器 3.2.1实验目的 3.2.2预习要点 3.2.3实验项目 3.2.4实验设备及仪器 3.2.5实验方法 3.2.6实验报告 3.3三相变压器的连接组和不对称短路3.3.1实验目的 3.3.2预习要点 3.3.3实验项目 3.3.4实验设备及仪器 3.3.5实验方法

3.3.6实验报告 3.3.7附录 3.4三相变压器的并联运行3. 4.1实验目的 3.4.2预习要点 3.4.3实验项目 3.4.4实验设备及仪器 3.4.5实验方法 3.4.6实验报告 第4章同步电机实验 4.1三相同步发电机的运行特性4.1.1实验目的 4.1.2预习要点 4.1.3实验项目 4.1.4实验设备及仪器 4.1.5实验方法 4.1.6实验报告 4.1.7思考题 4.2三相同步发电机的并联运行4.2.1实验目的 4.2.2预习要点 4.2.3实验项目

Simulink系统仿真

班级:通信工程 姓名:曾浩 学号:201007302123 实验四 Simulink系统仿真 一、实验目的 1、熟悉SIMULINK工作环境及特点 2、掌握SIMULINK 的建模与仿真方法 4、掌握Simulink模型的建立及系统仿真方法。 二实验基本知识 1.了解SIMULINK模块库中各子模块基本功能

2. SIMULINK 的建模与仿真方法 (1)打开模块库,找出相应的模块。鼠标左键点击相应模块,拖拽到模型窗口中即可。 (2)创建子系统:当模型大而复杂时,可创建子系统。 (3)设置仿真控制参数。 三、实验内容 (1)系统的仿真与分析 1.创建一个正弦信号的仿真模型 在MATLAB 的命令窗口运行simulink 命令单击工具栏上的图标或选择菜 单“File”——“New”——“Model”,新建一个名为 “untitled”的空白模型窗口。 添加模块 仿真

2.建立二阶系统的仿真模型。 方法一: 输入信号源使用阶跃信号,系统使用开环传递函数s s 6.012 ,接受模块使用示波器来 构成模型。 (1) 在“Sources ”模块库选择“Step ”模块,在“Continuous ”模块库选择“Transfer Fcn ”模 块,在“Math Operations ”模块库选择“Sum ”模块,在“Sinks ”模块库选择“Scope ”。 (2) 连接各模块,从信号线引出分支点,构成闭环系统。 仿真并分析 单击工具栏的“Start simulation ”按钮,开始仿真,在示波器上就显示出阶跃响应。 在 Simulink 模型窗口,选择菜单“Simulation ”——“Simulation parameters …”命令,在 “Solver ”页将“Stop time ”设置为15,然后单击“Start simulation ”按钮,示波器显示的就到15 秒结束。

ADAMS与Matlab联合仿真

7.1机械夹紧机构建模使用实例 机械系统建模实例将创建一种机械夹紧机构模型,是阿波罗登月计划中用于夹紧登月舱和宇宙飞船的十二个夹紧机构之一。夹紧机构包括:摇臂(Pivot)、手柄(Handle)、锁钩(Hook)、连杆(Slider)和固定块(ground Block)等物体。 夹紧机构的工作原理是:如图7-1所示,在夹紧机构手柄(Handle)处施加一个作用力,驱动机构运动,使其锁钩(Hook)处产生十倍于作用力的夹紧力,用于夹紧登月舱和宇宙飞船。 夹紧机构的设计要求是:至少产生800N的夹紧力;施加在手柄上的力应不大于80N;释放手柄的力应最小;在振动环境中夹紧机构应安全可靠。 手柄Handle 锁钩Hook 图7-1 夹紧机构三维模型图 以下将从创建几何构件、添加约束、添加载荷及结果后处理等几个方面详细介绍机械夹紧机构模型的建立。通过本实例的学习,能够详细了解ADAMS软件设计流程及使用方法。 7.1.1创建几何构件 1、创建新模型 本实例将使用ADAMS/View的零件库、约束库和力库创建夹紧机构模型。 首先打开ADAMS/View,选择“Create a new model”,模型名称(Model Name):Latch,点击OK,创建新模型完毕。其它设置如图7-2所示:

图7-2 创建新模型 2、设置工作环境 选择菜单栏【Settings】→【Units】命令,设置模型物理量单位,如图7-3所示: 图7-3设置模型物理量单位 选择菜单栏【Settings】→【Working Grid】命令,设置工作网格,如图7-4所示:

图7-4设置工作网格 3、创建设计点 设计点是几何构件形状设计和位置定位的参考点。本实例将通过设计点列表编辑器创建几何构件模型所需要的全部设计点。 选择并点击几何模型库(Geometric Modeling)中的点(Point),下拉菜单选择(Add to Ground)、(Don’t Attach),并单击Point Table列表编辑器,创建并生成Point_1、Point_2等六个设计点,如图7-5、图7-6所示: 图7-5设计点列表编辑器

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

计算机仿真实验5 基于Simulink三相电路仿真

实验5 基于Simulink三相电路仿真 5.1实验目的 1)掌握Simulink的工作环境及SimPowerSystems功能模块库的应用; 2)掌握Simulink的电路系统建模和仿真方法; 3)掌握Simulink仿真数据的输入与输出方法; 4)掌握三相电源及负载的连接方式,了解三相负载不同连接方式对线路电压、电流和负载功率的影响; 5)了解不对称负载作星形连接时对中点电压的影响; 5.2实验内容与要求 5.2.1 实验内容 三相工频电路如图 5.1所示。三相工频电源为对称三相电源,其中 。为线路电阻。三相负载为对称三相负载,其中 ,。三相开关在时间时刻合闸。在有中线和无中线条件下,分析电路在负载对称和不对称工作状态下的线(相)电压、线(相)电流、中线电压和电流以及负载有功功率与无功功率,并给出其瞬时值曲线及电路稳态时负载相电压和电流的幅值和相角值。 图5.1 三相对称电路 5.2.2 实验要求

1)利用Simulink系统建模与系统仿真的方法,完成系统仿真分析实验; 2)利用simulink库和SimPowerSystems库中的元件模型建立三相电路的有功功率、无功功率、电压与电流的幅值与相角及瞬时功率测量系统。对组建的测量系统进行封装,建立其子系统; 3)仿真输出结果若为时间曲线,则利用Scope模块显示结果。仿真输出结果若为数值,则利用Display模块显示结果。测量数据的传递,利用From与Goto 模块完成; 4)将三相电路的相同物理量(如电压)显示在同一坐标系中,并在Scopy显示界面中标注显示的物理量名称及符号。 5.3实验原理与方法 5.3.1系统的仿真电路图 5.3.2实验仿真曲线 参数设置如下: ,,, ○1三相电路的电压

(完整word版)CarSim、Simulink联合仿真

CarSim 与Simulink 联合仿真 1 软件介绍 在MATLAB 中,Simulink 是用来建模、仿真和分析动态多维系统的交互工具。可以使用Simulink 提供的标准模型库或者自行创建模型库,描述、模拟、评价和精化系统行为,同时,Simulink 和MATLAB 之间的联系十分便捷,可以使用一个灵活的操作系和应用广泛的分析和设计工具。最后,除了可以使用Simulink 建模和仿真之外,还可以通过其他软件联合来完成更多的分析任务,如CarSim 、ADAMS 、AMEsim 等许多软件。 CarSim 是专门针对车辆动力学的仿真软件,CarSim 模型在计算机上运行的速度比实时快3-6 倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim 可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。CarSim 软件的主要功能如下:适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV ;可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性;可以通过软件如MA TLAB ,Excel 等进行绘图和分析;可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠;软件可以实时的速度运行,支持硬件在环,CarSim 软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL 仿真;先进的事件处理技术,实现复杂工况的仿真;友好的图形用户界面,可快速方便实现建模仿真;提供多种车型的建模数据库;可实现用户自定义变量的仿真结果输出;可实现与simulink 的相互调用;多种仿真工况的批运行功能; 2 CarSim 与Simulink 联合仿真 2.1 Simulink 接口 1)变量由Simulink 导入CarSim (导入变量) 可由Simulink 导入到CarSim 中的变量可达160 多个,主要分为以下几部分:控制输入

相关文档
最新文档