初等数论 质数模的同余式

初等数论 质数模的同余式
初等数论 质数模的同余式

§4.质数模的同余式

首先考虑质数模同余式

10()0(mod ),(),(1)

n n n n f x p f x a x a x

a --≡=+++ 其中p 是质数,而an ≡0(mod p ).

定理1 同余式(1)与一个次数不超过p -1的质数模同余式等价. 证明:由多项式的带余试除法知有二整系数多项式()q x 及()r x 使 ()()()()p f x x x q x r x =-+

且()r x 的次数不超过1p -.由费马定理知,对任何整数x 来说()mod p x x p -≡. 因此(1)与()()0mod r x p ≡等价。

定理2 设k ≤n ,而x≡a i (mod p) (i=1,2…,k)是(1)的k 个不同解,则对任

何整数x 来说,

()()()()()(mod ),(2)

k k f x x x x f x p ααα≡---

其中f k (x)是n -k 次多项式,首项系数是a n

证明:由多项式带余除法得

()()11()f x x a f x r =-+,

其中()1f x 是首项系数为n a 的n-1次多项式而r 是一常数.由假设,

()()10mod f a p ≡.故0(mod )r p ≡.因此对任何整数x 都有

()()()()11mod .f x x a f x p ≡- 令()2,3,...,i x a i k ==得

()()()()110mod i i i f a a a f a p ≡≡-

但()()1mod 1,2,......i a a p i k ≡=不,而p 是质数,故

()()()10mod 2,...,i f a p i k ≡=

由此,显然可以用归纳法证明我们的定理

定理3 (1) 对任何整数x 来说,

1(1)(2)((1))(mod ).

p x

x x x p p -

-≡----

(2)(Wilson 定理)

p p -+≡

定理4 同余式(1)的解数不超过它的次数.

证明:我们用反证法。设(1)的解数不超过n 个,则(1)至少有n+1个解,设

()mod ,1,2,......, 1.i x a p i n n ≡=+

由定理2得;()()()()()12...mod n n f x a x a x a x a p ≡--- 由于()()10mod n f a p +≡

()()()()11121...0mod n n n n n a a a a a a a p +++---≡

但p 为质数,()mod n a p ≡不,故有一i a 使得()10mod n n a a p +-≡,这与假设矛盾。

补充例子:

1.解同余方程:

(ⅰ) 3x 11 + 2x 8 + 5x 4 - 1 ≡ 0 (mod 7); (ⅱ) 4x 20 + 3x 12 + 2x 7 + 3x - 2 ≡ 0 (mod 5)。

解:(ⅰ) 原同余方程等价于3x 5 + 5x 4 + 2x 2 - 1 ≡ 0 (mod 7),用x = 0,±1,±2,±3代入知后者无解; (ⅱ) 原同余方程等价于2x 4 + 2x 3 + 3x - 2 ≡ 0 (mod 5),将x = 0,±1,±2 代入,知后者有解x ≡ ±1 (mod 5)。

2.判定

(ⅰ) 2x 3 - x 2 + 3x - 1 ≡ 0 (mod 5)是否有三个解;

(ⅱ) x6+ 2x5- 4x2+ 3 ≡ 0 (mod 5)是否有六个解?

解:(ⅰ) 2x3-x2+ 3x- 1 ≡ 0 (mod 5)等价于x3- 3x2+4x- 3 ≡0 (mod 5),又x5-x = (x3- 3x2+ 4x- 3)(x2+ 3x+ 5) + (6x2- 12x+ 15),其中r(x) = 6x2- 12x+ 15的系数不都是5的倍数,故原方程没有三个解;

(ⅱ) 因为这是对模5的同余方程,故原方程不可能有六个解。

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

初等数论 第三章 同余

第三章 同 余 §1 同余的概念及其基本性质 。,所有奇数;所有偶数,例如,。 不同余,记作:对模则称;若所得的余数不同,同余,记作:对模则称所得的余数相同,与去除两个整数,称之为模。若用设)2(mod 1)2(mod 0)7(mod 18)(mod ,)(mod ,≡≡≡≡/≡∈+a a m b a m b a m b a m b a b a m m Z 定义1。 故同余关系是等价关系;(传递性),则,、若;(对称性) ,则、若;(反身性) 、:关系,它具有下列性质同余是整数之间的一种)(mod )(mod )(mod 3)(mod )(mod 2)(mod 1m c a m c b m b a m a b m b a m a a ≡≡≡≡≡≡ 。 则,,,设。 ,,即同余的充分必要条件是对模整数)(|)()(mod ,0)(|,2121212211b a m q q m b a r r m b a m r r r mq b r mq a t mt b a b a m m b a -?-=-?=?≡<≤+=+=∈+=-证明定理1Z 。 ,则若; ,则,若)(mod )(mod )2()(mod )(mod )(mod )1(21212211m b c a m c b a m b b a a m b a m b a -≡≡++≡+≡≡性质1 。 ,则特别地,若; ,则,若)(mod )(mod )(mod )(mod )(mod 21212211m kb ka m b a m b b a a m b a m b a ≡≡≡≡≡性质2 。 ,则, ;特别地,若则 ,,,若)(mod ,,2,1,0)(mod )(mod ,,2,1)(mod )(mod 0110111111 111 111m b x b x b a x a x a n i m b a m y y B x x A k i m y x m B A n n n n n n n n i i k k i i k k k k k k k k +++≡+++=≡≡ =≡≡----∑∑ΛΛΛΛΛΛΛΛΛΛΛΛαααααααααααααααα定理2。,则,,,若)(mod )(mod 1),(1111m b a m b a m d d b b d a a ≡≡===性质3

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

2013年春_西南大学《初等数论》作业及答案(共4次_已整理)

2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业 1、设n,m为整数,如果3整除n,3整除m,则9()mn。 A:整除 B:不整除 C:等于 D:小于 正确答案:A 得分:10 2、整数6的正约数的个数是()。 A:1 B:2 C:3 D:4 正确答案:D 得分:10 3、如果5|n ,7|n,则35()n 。 A:不整除 B:等于 C:不一定 D:整除 正确答案:D 得分:10 4、如果a|b,b|a ,则()。 A:a=b B:a=-b C:a=b或a=-b D:a,b的关系无法确定 正确答案:C 得分:10 5、360与200的最大公约数是()。 A:10 B:20 C:30 D:40 正确答案:D 得分:10 6、如果a|b,b|c,则()。 A:a=c B:a=-c C:a|c D:c|a

正确答案:C 得分:10 7、1到20之间的素数是()。 A:1,2,3,5,7,11,13,17,19 B:2,3,5,7,11,13,17,19 C:1,2,4,5,10,20 D:2,3,5,7,12,13,15,17 正确答案:B 得分:10 8、若a,b均为偶数,则a + b为()。 A:偶数 B:奇数 C:正整数 D:负整数 正确答案:A 得分:10 9、下面的()是模12的一个简化剩余系。 A:0,1,5,11 B:25,27,13,-1 C:1,5,7,11 D:1,-1,2,-2 正确答案:C 得分:10 10、下面的()是模4的一个完全剩余系。 A:9,17,-5,-1 B:25,27,13,-1 C:0,1,6,7 D:1,-1,2,-2 正确答案:C 得分:10 11、下面的()是不定方程3x + 7y = 20的一个整数解。 A:x=0,y=3 B:x=2,y=1 C:x=4,y=2 D:x=2,y=2 正确答案:D 得分:10 12、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。 A:0 B:1 C:2 D:3 正确答案:A 得分:10 13、使3的n次方对模7同余于1的最小的正整数n等于()。 A:6 B:2

初等数论 1 习题参考答案

附录1 习题参考答案 第一章习题一 1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b = (a)q,即a b,a b及a b。反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。 2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mn pq可知m p mq np。 3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。 4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。 5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2

不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。 第一章习题二 1. 验证当n =0,1,2,… ,11时,12|f(n)。 2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 = 3Q r12r22知r1 = r2 = 0,即3a且3b。 3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。对r=0,1,…,9进行验证即可。 4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。 5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。 6. 设给定的n个整数为a1, a2, , a n,作 s1 = a1,s2 = a1a2,,s n = a1a2a n, 如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论作业(3)答案

第三次作业答案: 一、选择题 1、整数5874192能被( B )整除. A 3 B 3与9 C 9 D 3或9 2、整数637693能被(C )整除. A 3 B 5 C 7 D 9 3、模5的最小非负完全剩余系是( D ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 4、如果)(mod m b a ≡,c 是任意整数,则(A ) A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 二、解同余式(组) (1))132(mod 2145≡x . 解 因为(45,132)=3|21,所以同余式有3个解. 将同余式化简为等价的同余方程 )44(mod 715≡x . 我们再解不定方程 74415=-y x , 得到一解(21,7). 于是定理4.1中的210=x . 因此同余式的3个解为 )132(mod 21≡x , )132(mod 65)132(mod 3 13221≡+ ≡x , )132(mod 109)132(mod 3132221≡?+≡x . (2))45(mod 01512≡+x 解 因为(12,45)=3|15,所以同余式有解,而且解的个数为3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+. 我们利用解不定方程的方法得到它的一个解是(10,3), 即定理4.1中的100=x . 因此同余式的3个解为 )45(mod 10≡x ,

)45(mod 25)45(mod 3 4510≡+≡x , )45(mod 40)45(mod 3 45210≡?+≡x . (3))321 (m od 75111≡x . 解 因为(111,321)=3|75,所以同余式有3个解. 将同余式化简为等价的同余方程 )107(mod 2537≡x . 我们再解不定方程 2510737=+y x , 得到一解(-8,3). 于是定理4.1中的80-=x . 因此同余式的3个解为 )321(mod 8-≡x , )321(mod 99)321(mod 3 3218≡+-≡x , )321(mod 206)321(mod 3 32128≡?+-≡x . (4)?? ???≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x . 解 因为(7,8,9)=1,所以可以利用定理5.1.我们先解同余式 )7(mod 172≡x ,)8(mod 163≡x ,)9(mod 156≡x , 得到)9(mod 4),8(mod 1),7(mod 4321-=-==x x x .于是所求的解为 ). 494(mod 478)494(mod 510 )494(mod 3)4(562)1(631472=-=?-?+?-?+??≡x (5)???????≡≡≡≡) 9(mod 5)7(mod 3)5(mod 2)2(mod 1x x x x . (参考上题)

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

试卷1答案 一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是(唯一的). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),(). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ). 5、b a ,的公倍数是它们最小公倍数的( 倍数 ). 6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、 求[136,221,391]=?(8分) 解 [136,221,391] =[[136,221],391] =[391,17221136?] =[1768,391] ------------(4分) = 17391 1768?

初等数论练习

作业次数:学号姓名作业成绩 第0章序言及预备知识 第一节序言(1) 1、数论人物、资料查询:(每人物写60字左右的简介) (1)华罗庚 2、理论计算与证明: (1 (2)Show that there are infinitely many Ulam numbers 3、用Mathematica数学软件实现 A Ulam number is a member of an integer sequence which was devised by Stanislaw Ulam and published in SIAM Review in 1964. The standard Ulam sequence (the (1, 2)-Ulam sequence) starts with U1=1 and U2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest integer that is the sum of two distinct earlier terms in exactly one way 。 By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct.) The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99 (1)Find the first 200 Ulam numbers (2)What conjectures can you make about the number of Ulam numbers less than an integer n? Do your computations support these conjetures?

自考初等数论试题及答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ). 6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求? ?? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)

初等数论 期末复习 同余精选例题分析

第三章同余例题分析 例1:求3406的末二位数。 解:∵(3,100)=1,∴3)100(φ≡1(mod 100) φ(100)=φ(22·52)=40,∴340≡1(mol 100) ∴3406=(340)10·36≡(32)2·32≡-19×9≡-171≡29(mod 100) ∴末二位数为29。 例2:证明(a+b )p ≡a p +b p (mod p ) 证:由费尔马小定理知对一切整数有:a p ≡a (p ),b p ≡b (P ), 由同余性质知有:a p +b p ≡a+b (p ) 又由费尔马小定理有(a+b )p ≡a+b (p ) (a+b )p ≡a p +b p (p ) 例3:设素数p >2,则2P -1的质因数一定是2pk +1形。 证:设q 是2p -1的质因数,由于2p -1为奇数,∴q ≠2, ∴(2·q )=1,由条件q|2p -1,即2p ≡1(mod q ),又∵(q ,2)=1,2p ≡1(mod q )设i 是使得2x ≡1(mod p )成立最小正整数 若1

∴13|42n +1+3n +2 例5:证明5y +3=x 2无解 证明:若5y +3=x 2有解,则两边关于模5同余 有5y +3≡x 2(mod 5) 即3≡x 2(mod 5) 而任一个平方数x 2≡0,1,4(mod 5) ∴30,1,4(mod 5) ∴即得矛盾,即5y +3=x 2无解 例6:求 50111......被7除的余数。 解:∵111111被7整除,∴ 50111......≡11(mod 7)≡4(mod 7),即余数为 4。 例7:把..0.04263化为分数。 解:设b =...360420,从而1000b=...3642, 100000b=...364263,99000b=4263-42b=990004221 ==11000469 。 当然也可用直化分数的方法做。 例8:设一个数为62XY427是9,11的倍数,求X ,Y 解:因为9|62XY427 所以9|6+2+X+Y+4+2+7,即9|21+X+Y 又因为11|62XY427,有11|(7+4+X+6-2-Y-2) 即11|(X-Y+13) 因为0≤X,Y ≤9,所以有21≤21+X+Y ≤39, 4≤X-Y+13≤22,由此可知 21+X+Y=27,X-Y+13=11

自考初等数论试题及答案

初等数论考试试卷 1 一、单项选择题(每题3分,共18分) 1、 如果 ba , ab ,则(). A a b Bab C a b Dab 2、 如果 3n , 5n ,则 15 ( ) n . A 整除 B 不整除 C 等于 D 不一定 3、 在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、 如果 a b (modm ) , c 是任意整数贝V 5、 如果(),则不定方程ax by c 有解. A (a, b)c B c(a,b) C ac D (a,b)a 6、 整数5874192能被()整除. A 3 B 3 与 9 C 9 D 3 或 9 二、填空题(每题3分,共18分) 1、 素数写成两个平方数和的方法是( )? 2、 同余式ax b 0(modm ) 有解的充分必要条件是(). 3、 如果 a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(). 4、 如果p 是素数,a 是任意一个整数,则a 被P 整除或者(). 5、 a,b 的公倍数是它们最小公倍数的 (). 6、如果a ,b 是两个正整数,则存在()整数q ,r ,使a bq r ,0 r b . 三、计算题(每题8分,共32分) 1、 求[136,221,391]=? 2、 求解不定方程9x 21y 144 . 3、 解同余式 12x 15 0(mod45) . 429 4、 求563 ,其中563是素数.(8 分) 四、证明题(第 1小题10分,第2小题11分,第3小题11分,共32分) 2 3 n n n 1证明对于任意整数n ,数3 2 6是整数. 2、 证明相邻两个整数的立方之差不能被 5整除. A ac bc(modm) B a b C ac bc(mod m) D ab

初等数论

例1 求不定方程 3x + 6y = 15的解。 解 (3, 6) = 3∣15,所以方程有解。 由辗转相除法(或直接观察), 可知x =-1,y =1是3x + 6y = 3的解, 所以x 0 = -5,y 0 = 5是原方程的一个解。由定理2,所求方程的解是 t y t x -=+-=525 例2 求不定方程3x + 6y + 12z = 15的解。 解 原方程等价于 x + 2y + 4z = 5。 (8) 由定理3,依次解方程 t + 4z = 5, x + 2y = t , 分别得到 u z u t -=+=141 v t y v t x -=+-=2 u ∈Z , (9) v ∈Z 。 (10) 将式(9)与式(10)中的t 消去,得 x=-1-4u+2v, y=1+4u-v, z=1-u u , v ∈Z 。 注:本例在解方程时,首先将原方程化为等价方程(8),这使问题简化。对例1也可以如此处理。 例3 设a 与b 是正整数,(a , b ) = 1,则任何大于ab -a -b 的整数n 都可以表示成n = ax +by 的形式,其中x 与y 是非负整数,但是n =ab -a -b 不能表示成这种形式。 解:(ⅰ)由定理2,方程 ax + by = n (11) 的解具有x=x0+bt;y=y0-at t ∈Z (12) 的形式,其中x 0与y 0满足方程(11)。 由假设条件n >ab -a -b 及式(11)与式(12),有 ax =n -by = n -b (y 0-at )>ab -a -b -b (y 0-at ) (13) 取整数t ,使得 0 ≤ y = y 0 - at ≤ a - 1, 则由式(13)得到 ax > ab - a - b - b (a - 1) = -a , x > -1,x ≥ 0, 即 n = ax + by ,x ≥ 0,y ≥ 0。 (ⅱ) 设有x ≥ 0,y ≥ 0,使得 ax + by = ab - a - b (14) 则 a (x + 1) + b (y + 1) = ab (15) 所以a ∣b (y + 1)。但是(a , b ) = 1, 于是必有 a ∣y + 1,y + 1 ≥ a 。 同理可以证明x + 1 ≥ b ,从而 a (x + 1) + b (y + 1) ≥ 2ab ,

初等数论习题

第三章 1. 解依次计算同余式 22 4,24 16,28 256,216=65536 154, 232 1542=23716 1 (mod 641)。 因此 2. 解有71 3,72 1,74 1 (mod 10), 因此,若 77 r (mod 4), 则 现在77 (1)7 1 3 (mod 4),所以由上式得到 即n的个位数是3。 3.注:一般地,若求对模m的同余,可分以下步骤进行: (ⅰ)求出整数k,使a*k 1 (mod m); (ⅱ)求出正整数r,r < k,使得b*c r (mod k); (ⅲ)a *r (mod m)。 4.例3求(25733 46)26被50除的余数。 解(25733 46)26 (733 4)26 = [7(72)16 4]26 [7( 1)16 4]26 = (7 4)26 326 = 3(35)5 3(7)5 = 37(72)2 21 29 (mod 50),即所求的余数是29。 5.证明2x2-5y2=7没有整数解. 6.例1设m > 0是偶数,{a1, a2, , am}与{b1, b2, , bm}都是模m的完全剩余系,证明: {a1 b1, a2 b2, , am bm}不是模m的完全剩余系。 7.例2设A = {x1, x2, , xm}是模m的一个完全剩余系,以 {x}表示x的小数部分,证明:若(a, m) = 1,则

8. 9.例3 设{x1, x2, …, x(m)}是模m的简化剩余系,则 (x1x2…x(m))*21(mod m)。 解记P = x1x2…x(m),则(P, m) = 1。又记yi = 1 i (m), 则{y1, y2, …, y(m)}也是模m的简化剩余系,因此 (mod m),再由Eule r定理,推出 P*2P*(m) 1 (mod m) ** 同余式可以像等式一样进行代换。 第二章 1. 利用辗转相除法求解 2.例3 设a,b,c是整数,(a, b) = 1,则在直线 ax by = c上,任何一个长度大于的线段上至少有一个点的坐标都是整数。

02013自学考试初等数论模拟试题(含答案)

02013自学考试初等数论模拟试题(含答案) 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112211mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10; C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.

(0346)《初等数论》网上作业题及答案

(0346)《初等数论》网上作业题及答案1:第一次作业 2:第二次作业 3:第三次作业 4:第四次作业 5:第五次作业 1:[论述题]数论第一次作业 参考答案:数论第一次作业答案 2:[单选题]如果a|b,b|c,则()。 A:a=c B:a=-c C:a|c D:c|a 参考答案:C 马克思主义哲学是我们时代的思想智慧。作为时代的思想智慧,马克思主义哲学主要具有反思功能、概括功能、批判功能和预测功能。 (1)“反思”是哲学思维的基本特征,是以思想的本身为内容,力求思想自觉其为思想。通过不断的反思,揭示自己时代的本质和规律,达到对事物本质和规律性的认识。 (2)概括是马克思主义哲学的重要功能,是马克思主义哲学把握人与世界总体性关系的基本思维方式。 (3)马克思主义哲学的批判功能主要是指对现存世界的积极否定。 (4)马克思主义哲学的预测功能在于预见现存世界的发展趋势。 3:[单选题]360与200的最大公约数是()。 A:10 B:20 C:30 D:40 参考答案:D数论第一次作业答案 4:[单选题]如果a|b,b|a ,则()。 A:a=b B:a=-b

C:a=b或a=-b D:a,b的关系无法确定 参考答案:C数论第一次作业答案 5:[单选题]-4除-39的余数是()。 A:3 B:2 C:1 D:0 参考答案:C数论第一次作业答案 6:[单选题]设n,m为整数,如果3整除n,3整除m,则9()mn。A:整除 B:不整除 C:等于 D:小于 参考答案:A数论第一次作业答案 7:[单选题]整数6的正约数的个数是()。 A:1 B:2 C:3 D:4 参考答案:D数论第一次作业答案 8:[单选题]如果5|n ,7|n,则35()n 。 A:不整除 B:等于 C:不一定 D:整除

相关文档
最新文档