数学-高一数学竞赛 方程理论及应用专题培训

数学-高一数学竞赛 方程理论及应用专题培训
数学-高一数学竞赛 方程理论及应用专题培训

方程理论及应用

一. 一元一次同余方程 1. 形式:0(mod ),ax b m m +=不能整除a ………………(1) 2.

讨论 0(mod )ax b m +=的解

分析:1)(,)1a m = 设1,2,,

,m x x x 是模m 的完系,因为(,)1a m =,所以1,

,m ax b ax b ++也

是模m 的完系。因此,其中必有且只有一个树与零同余,即0(mod )k ax b m +≡,即(1)有唯一解。

由(1)得:(mod )ax b m ≡-,由欧拉定理知:()1(mod )m a m ?≡,所以

()1(mod )(mod )m b

x m a b m a ?-≡-≡-?

2)(,)a m d =>1

设(1)有解,则d ︱b ;反过来,设d ︱b ,因为(,)1a m

d d

=,所以

0(mod )a b m

x d d d

+≡……(2)有解,所以(1)有解。所以,(1)和(2)是等价的。下面求(2)的解即可。但是要注意,(1)和(2)的模不同,所以(2)的相同的解不一定也是(1)的相同的解,下面我们在(2)的所有解中来求(1)的所有不相同的解。

设(2) 的唯一解为:(mod )m x d α≡,则所以形如m

t d

α+?(t 为任意

整数)的数都是(2)的解,因此这些数中所有关于模m 不同余的数就是(1)的所有解。

因为当12(mod )m m

t t m d d αα+≡+……(3)时,有120(mod )t t m m d -≡,

所以12(mod )t t d ≡;反之也成立,所以(3)成立的充要条件是12(mod )t t d ≡

因此,在所有形如m

t d

α+?

的数中只要t 取关于模d 不同余的数,所得到的数就关于模m 不同余,所以,,,(1)m m

d d d

ααα++-就是(1)的所有解。

定理1 一元一次同余方程中,

01 当(,)1a m =,有唯一解,()1(mod )m x a b m ?-≡-?

02(,)a m d =>1,0(mod )ax b m +=有解?d ︱b ,

(mod ),0,1,2,1m x t

m t d d α≡+=-, 其中(mod )m x d

α≡是0(mod )a b m

x d d d

+≡的唯一解。 定理2 (中国剩余定理)设12,,

,k m m m 两两互质,

则同余方程组

11(mod )

(mod )

k k x a m x a m ≡≡ (4)

对于模12

k m m m m =有唯一解:111

(mod )k k k

m

m

x x a x a m m m ≡

++

其中:

1(mod )i i i

m

x m m ≡,1,2,,i k =

二. 二元一次不定方程。 1.

形式:(,,)ax by c a b c Z +=∈

2.定理:(,,)ax by c a b c Z +=∈有解?(,)a b ︱c 三.例题讲解。 例1. 解同余式。 1)250(mod3)x -≡ 2)43(mod15)x ≡ 3)10357(mod 211)x ≡ 4)11175(mod321)x ≡ 例2. 解同余方程组。

1)2(mod3)

3(mod5)2(mod 7)x x x ≡≡≡ 2)21(mod 5)

34(mod 7)

x x ≡≡ 3)2(mod12)

6(mod10)1(mod15)

x x x ≡-≡≡

例3. 求出最小的正整数,它的一半是整数的平方,它的13

是整数的三

次方,它的1

5

是整数的五次方。

例4. 解二元一次不定方程。

1)275(mod12)x y +≡

2)求:3710725x y +≡的整数解

高斯函数

一. 定义。

[]y x =叫高斯函数,定义域为R ,y 是不超过x 的最大整数。 注:1) ?[],x x Z ∈ 2)[][]1x x x ≤≤+ 二. 性质。 1)

定义:{}[]x x x =-为x 的小数部分,所以{}[)0,1y x =∈

2) []y x =是不减函数,当1

2x x 时,[][]12x x ≤

3) []x 中整数部分可以外拿,[][],x m x m m Z +=+∈ 4) 12,,x x ?有[][][]1212x x x x +≤+ 5)

若120,0,x x ≥≥则[][][]1212x x x x ≤

6) ,,m Z n Z ++∈∈在1,2,,n 中,m 的倍数有n m ??

????

三. 应用技巧。 1)

充分利用[]x 的定义,根据定义,任意实数[]{}x x x =+,而0≤{}

x <1,于是,将关于任意实数x 的问题,归结到讨论区间(0,1)上的关于{}x 的问题。

2)

有意识的利用[]x 的性质,特别是前四个性质,因为这四个性质

是直接由定义派生出来的,可以说是函数[]x 的本质属性的推论。

3)

充分利用典型区间,设m=[]x ,p=[]x ,则x=m+p ,其中0≤p <1,

于是,问题归纳到在[0,1]上讨论。为此需要对区间(0,1)进行划分,分

段讨论,又常分成几个相等的小段:1,(0,2,3,)k k k n n n -??

=????,于是问题的

讨论只要在典型区间1,k k n n -??

???

?上进行即可。 四. 例题讲解

例1. 任何实数x ,y ,

求证:[][][][][]22x y x x y y +≥+++

例2. 求:{}

lim (2n n →∞

例3. 设r 是实数且满足条件:

19202191546100100100100r r r r ???????

?++++++++=??????????????

??

求:[]100r (第9届美国数学邀请赛AIME 试题) 例4. 在数列{}12

,a a ={}1,3,3,3,5,5,5,5,5,中每个奇数k 出现k 次,

设有整数p,q,r 存在,对所有正整数n ,满足n a p r =+,其中[]x 表

示不大于x 的最大整数,

求:p q r ++的值。(《数学通讯》问题征解题)

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

初中数学竞赛中常用重要定理

初中数学竞赛中常用重 要定理 Document number:WTWYT-WYWY-BTGTT-YTTYU-

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F 且D 、E 、F 三点共线,则 FB AF EA CE DC BD ??=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线 上 有点D 、E 、F ,且满足FB AF EA CE DC BD ??=1,则D 、E 、F 三点共线。 3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、 P 、 M ,则 1=??PA CP NC BN MB AM 4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的 边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。 5、 广勾股定理的两个推论: 推论1:平行四边形对角线的平方和等于四边平方和。

推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2 222221a c b -+;m b =2 222221b c a -+;m c =2 222221c b a -+ 6、 三角形内、外角平分线定理: 内角平分线定理:如图:如果∠1=∠2,则有 AC AB DC BD = 外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有 AC AB DC BD = 7、 托勒密定理:四边形ABCD 是圆内接四边形,则有 AB ·CD+AD ·BC=AC ·BD 8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线 AD 、BE 、CF 共点于P

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

高中数学竞赛定理

重 心 定义:重心是三角形三边中线的交点, 可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。求证:F 为AB 中点。 证明:根据燕尾定理, S △AOB=S △AOC , 又S △AOB=S △BOC , ∴S △AOC=S △BOC , 再应用燕尾定理即得AF=BF ,命题得证。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、三角形到三边距离之积最大的点。 5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3 外 心 定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。 外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。 设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积 1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c 重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c ) 垂 心 定义:三角形的三条高的交点叫做三角形的垂心。 性质: 锐角三角形垂心在三角形部 直角三角形垂心在三角形直角顶点 钝角三角形垂心在三角形外部

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且 满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDC D

塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1= ? ? PA CP NC BN MB AM 塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1= ? ? PA CP NC BN MB AM , 则AN、BP、CM相交于一点. 【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F, 过D作DN∥CG交BG于N,△DGL及△FGM是正三角形. 求证:△LMN为正三角形. G C L M E D F N

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

高中数学竞赛培训工作总结

高中数学竞赛培训工作总结篇一:高中数学竞赛精华(小结) 高中数学竞赛精华小结 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握):半角公式: sin 21cos 2 1cos 2 1cos1cossin 1cossin1coscos2tan 2 积化和差: sincos1sinsin 2 1cossinsinsin 2 1coscoscoscos 2 1sinsincoscos 2 和差化积: sinsin2sin

22 sinsin2cossin 22 coscos2coscos 22 coscos2sinsin 22 万能公式: cos sin22tan 21tan 1tan2cos2 21tan tan22tan 1tan2 三倍角公式: sin33sin4sin34sin60sinsin60 cos34cos33cos4cos60coscos60 二、某些特殊角的三角函数值 除了课本中的以外,还有一些 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去。 举个例子

246coscos 777 2提示:乘以2sin,化简后再除下去。 7求值:cos 求值:cos10cos50sin40sin80 来个复杂的 设n为正整数,求证22sin i1ni2n1 2n12n 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲。 四、三角不等式证明 最常用的公式一般就是:x为锐角,则sinxxtanx;还有就是正余弦的有界性。例 求证:x为锐角,sinx+tanx 设xyz 12,且xyz 2,求乘积cosxsinycosz的最大值和最小值。 注:这个题目比较难 数列 1给递推式求通项公式 (1)常见形式即一般求解方法 ①an1panq 若p=1,则显然是以a1为首项,q为公差的等差数列,若p≠1,则两边同时加上qq,变为an1p1p1qpanp1 显然是以a1q为首项,p为公比的等比数列 p1

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

高中奥林匹克数学竞赛-几个重要定理

竞赛专题讲座-几个重要定理 《定理1》正弦定理 △ABC中,设外接圆半径为R,则 证明概要如图1-1,图1-2 过B作直径BA',则∠A'=∠A,∠BCA'=90°,故 即;同理可 得 当∠A为钝角时,可考虑其补角,π-A. 当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。 《定理2》余弦定理△ABC中,有关系 a2=b2+c2-2bccosA;(*) b2=c2+a2-2cacosB; c2=a2+b2-2abcosC; 有时也用它的等价形式 a=ccosB+bcosC; b=acosC+ccosA;(**) c=acosB+bcosA. 证明简介 余弦定理的证法很多,下面介绍一种复数证法 如图建立复平面,则有 =(bcosA-c2)+(bsinθ)2即 a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。 《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线 于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。在△FBD、△CDE、△AEF中,由正弦定理,分别有

《定理4》塞瓦定理(Ceva) (塞瓦点) 设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则 证法简介 (Ⅰ)本题可利用梅内劳斯定理证明: (Ⅱ)也可以利用面积关系证明 同理 ④ ⑤ ③×④×⑤得 《定理5》塞瓦定理逆定理 在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。 证法简介 (Ⅰ)若AD∥BE(如图画5-1) 则 EA CE BD BC = 代入已知式:1=??FB AF BD BC DC BD 于是 CB DC FB AF = , 故 AD∥CF,从而AD∥BE∥CF (Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得 1='??B F AF EA CE DC BD 而已知1=??FB AF EA CE DC BD 可见FB AF B F F A ='' 则 FB AF AF B F F A F A +='+'' AB FB AF B F F A =+='+'ΘAF F A ='Θ 即F '即F ,可见命题成立 《定理6》斯特瓦尔特定理

全国初中数学知识竞赛辅导方案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 全国初中数学知识竞赛辅导方案 王选民 为了在全国数学知识竞赛中取得优异成绩,将对学生辅导方案总结如下: 一、了解掌握优生的特点 一般我们选择参加竞赛的学生都是学优生,当我们与“优生”进行面谈时,应该清醒地认识到,他们能成为“优生”,是学生家长和老师共同教育的结果。尤其要看到这些“优生”的两重性:一方面,他们的行为习惯、学习习惯、学习成绩以及各种能力比一般学生在这个年龄容易出现的毛病外,也存在着他们作为老师的“好学生”、家长的“好孩子”所特有的一些毛病。 具体说来,“优生”一般具有以下特点: 1、思想比较纯正,行为举止较文明,自我控制的能力比较强,一般没有重大的违纪现象。 2、求知欲较旺盛,知识接受能力也较强,学习态度较端正,学习方法较科学,成绩较好。 3、长期担任学生干部,表达能力、组织能力以及其它工作能力都较强,在同学中容易形成威信。 4、课外涉及比较广泛,爱好全面,知识面较广。 5、由于智力状况比较好,课内学习较为轻松,因而容易自满,不求上进。 6、长期处于学生尖子的位置,比较骄傲自负,容易产生虚心。 7、有的“优生”之间容易产生互相嫉妒、勾心斗角的狭隘情绪和学习上的

不正当竞争。 8、从小就处在受表扬、获荣誉、被羡慕的顺境之中,因而他们对挫折的心理承受能力远不及一般普通学生。 以上几点,只是就一般“优生”的共性而,当然不一定每一个“优生”都是如此。 辅导优生的具体措施 1、创设能引导学优生主动参与的教育环境。 2、了解学生在兴趣、学习偏好、学习速度、学习准备以及动机等方面的情况。这些资料为教师制定活动和计划时的依据,也是“促进学生主动地、富有个性地学习的需要”。 3、为尖子设计学习方案。学优生学习新知识时,比其他学生花的时间少,他不需要很多的练习就已经理解新知识,因此,做的练习也少。让他们做那些已经理解的题目就很多难让学生体会到智力活动的乐趣。长此以往,反而可能在一定程度上降低学生对于智力生活的敏感性。教师应该备有不同层次介绍同一主题的资料,采用向学生布置分组作业的方法,从众多的方案和活动中选取与他们的知识、技能水平相当的项目,指定他们完成。 4、解决学优生心理问题:学优生在心理状态上,易产生骄气,居高临下,听不进半点批评,心理脆弱。在价值取向上,易产生唯我独尊,以自我为中心的个性倾向和价值取向,不把其他同学的感觉、好恶、需要放在一定的位置;在行为方式上,由于始终把自己当学优生,与一般同学不一样,束缚了自己,娱乐活动不愿参加,集体劳动怕吃苦。 针对这种状况,教学中应注意: 学优生学习成绩优异,但不能“一俊遮百丑”。在鼓励保持学习上的竞争姿态和上进好胜的同时,要创造条件和环境,磨练他们的意志,培养他们的创造能力,规范他们的行为意识。

初中数学竞赛专题培训(6):代数式的求值

初中数学竞赛专题培训第六讲代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解将②式因式分解变形如下 即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1. 说明本题也可以用如下方法对②式变形: 即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy, 所以 求x2+6xy+y2的值. 分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法. 解 x2+6xy+y2=x2+2xy+y2+4xy =(x+y)2+4xy 3.设参数法与换元法求值

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

初中数学竞赛专题培训(7):根式及其运算

初中数学竞赛专题培训第七讲根式及其运算 二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析. 二次根式的性质: 二次根式的运算法则: 设a,b,c,d,m是有理数,且m不是完全平方数,则当且 仅 当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式. 例1 化简: 法是配方去掉根号,所以 因为x-2<0,1-x<0,所以 原式=2-x+x-1=1. =a-b-a+b-a+b=b-a. 说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简. 例2 化简: 分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.

解法1 配方法. 配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则 解法2 待定系数法. 例4 化简: (2)这是多重复合二次根式,可从里往外逐步化简. 分析被开方数中含有三个不同的根式,且系数都是2,可以 看成 解设 两边平方得 ②×③×④得 (xyz)2=5×7×35=352. 因为x,y,z均非负,所以xyz≥0,所以 xyz=35.⑤ ⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以 解设原式=x,则

解法1 利用(a+b)3=a3+b3+3ab(a+b)来解. 将方程左端因式分解有 (x-4)(x2+4x+10)=0. 因为 x2+4x+10=(x+2)2+6>0, 所以x-4=0,x=4.所以原式=4. 解法2 说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法. 例8 化简: 解(1) 本小题也可用换元法来化简. 解用换元法. 解直接代入较繁,观察x,y的特征有 所以

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。 4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD,∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同一 直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不出 现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点连 线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 A 1 A 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速前 进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相等; 又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

相关文档
最新文档