制冷剂介绍

合集下载

制冷剂汇总超详细

制冷剂汇总超详细

制冷剂汇总超详细制冷剂是用于制冷和空调系统中的介质,它们在循环中吸收和释放热量,从而实现温度调节。

制冷剂通常应具有低沸点和高热导率,以便在制冷过程中快速吸收和释放热量。

以下是一些常见的制冷剂以及对它们的详细说明:1.氯氟烃(CFCs):氯氟烃是一类危险的制冷剂,如R-11,R-12和R-114、它们在过去广泛使用,但是已经在大部分国家被禁止,因为它们对大气臭氧层的破坏,导致臭氧空洞的形成。

2.羟氟烃(HCFCs):羟氟烃是氯氟烃的替代品,如R-22和R-141b。

它们的臭氧破坏潜力较低,但仍然有一定的破坏作用。

由于对大气臭氧层的影响,羟氟烃正在逐渐被其他更环保的制冷剂所取代。

3.氢氟烃(HFCs):氢氟烃是羟氟烃的替代品,如R-410A和R-134a。

它们的臭氧破坏潜力非常低,所以成为了许多制冷和空调系统的首选制冷剂。

然而,氢氟烃是强效温室气体,对全球气候变化有一定的贡献。

4.氨(NH3):氨是一种环保的制冷剂,具有良好的制冷性能和高热传导性。

它被广泛应用于工业和商业制冷系统中,特别是在冷冻食品和制冷仓储中。

但是,氨具有较高的毒性,需要谨慎操作。

5.二氟甲烷(R-32):二氟甲烷是一种低碳制冷剂,其温室气体排放比其他制冷剂低。

它具有良好的制冷性能和热传导性,所以逐渐被用于家用空调系统中。

6.丙烷(R-290):丙烷是一种天然制冷剂,具有良好的制冷性能和低环境影响。

它是一种低碳化合物,几乎无温室气体排放。

丙烷被广泛应用于超市商业冷冻和冷藏设备中。

7.二氧化碳(CO2):二氧化碳是一种环保的制冷剂,具有良好的制冷性能和零臭氧破坏潜力。

它是一种天然气体,在大气中自然循环,并且可被完全回收。

二氧化碳通常应用于商业和工业制冷系统中。

总之,随着对环境保护意识的增强,制冷剂的选择变得越来越重要。

环保制冷剂,如氨、二氧化碳、丙烷和二氟甲烷,正在逐渐取代对大气臭氧层和全球气候变化具有负面影响的化学制冷剂。

这些环保制冷剂在制冷性能和热传导性上也能满足不同的应用需求。

各种制冷剂的参数

各种制冷剂的参数

各种制冷剂的参数制冷剂是制冷系统中的重要组成部分,它们的参数直接影响着制冷效果和能耗。

本文将从不同制冷剂的参数方面介绍它们的特点和适用范围。

一、氨(NH3)氨是一种常用的制冷剂,具有较高的制冷效果和热导率。

氨的气体比热容较大,故制冷剂氨的冷却过程需要较大的冷却面积。

此外,氨的气体密度较大,对管道和设备的安全性要求较高,需要采取一定的安全措施。

二、氟利昂(Freon)氟利昂是一种常见的氢氟碳化物,作为制冷剂具有较低的毒性和燃烧性。

氟利昂具有较低的沸点和蒸发潜热,能够提供较大的制冷量。

然而,由于氟利昂对臭氧层有破坏作用,逐渐被禁止使用。

三、丁烷(n-Butane)丁烷是一种天然气制冷剂,具有较低的臭氧层破坏潜力和较高的制冷效果。

丁烷的燃烧热值较高,需要采取一定的安全措施。

由于丁烷是可再生资源,对环境友好,近年来得到了广泛应用。

四、二氧化碳(CO2)二氧化碳是一种环保型制冷剂,具有较低的全球变暖潜势和臭氧层破坏潜力。

二氧化碳的制冷效果较差,需要较高的工作压力和较大的制冷功率。

由于二氧化碳在大气中易于获取和排放,成本较低,近年来在商业和家用制冷领域得到了广泛应用。

五、氟里昂替代品(HFC)氟里昂替代品是指替代氟里昂的一类新型制冷剂,具有较低的全球变暖潜势和对臭氧层的破坏潜力。

氟里昂替代品制冷效果较好,但部分种类的制冷性能会受到环境温度和压力的影响。

六、直链烷烃(n-Alkanes)直链烷烃是一类天然气制冷剂,具有较低的臭氧层破坏潜力和较高的制冷效果。

直链烷烃的热导率较低,需要较长的传热路径,从而增加了制冷设备的体积。

由于直链烷烃是可再生资源,对环境友好,逐渐得到了应用。

七、氟烷(Fluorocarbons)氟烷是一类含氟有机化合物,作为制冷剂具有较低的臭氧层破坏潜力和较高的制冷效果。

氟烷的热导率较低,需要较大的冷却面积。

由于氟烷具有较高的化学稳定性,能够在广泛的温度范围内工作。

八、硫化氢(H2S)硫化氢是一种具有刺激性气味的气体,作为制冷剂使用较少。

制冷剂组成

制冷剂组成

制冷剂组成制冷剂,顾名思义,是用于制造制冷设备的物质。

它可以通过吸热、蒸发、压缩和冷凝的循环过程,将热能从一个物质中转移到另一个物质,从而使得被冷却的物体降温。

制冷剂在冷冻、空调和其他制冷设备中均起着重要的作用。

本文将详细介绍制冷剂的组成、种类以及未来的发展。

制冷剂主要由以下几种成分组成:氟化氢类化合物、氯化氟烃类化合物和氯化碳烃类化合物。

这些化合物由氢、氟、碳和氯等元素组成,具有较低的沸点和较高的蒸发潜热。

这使得它们在制冷循环中可以吸收热量并很快蒸发,从而实现降温的效果。

在制冷剂的选择上,有几个关键的因素需要考虑。

首先是制冷剂的热力性质,包括其沸点、蒸发潜热和热导率。

较低的沸点和较高的蒸发潜热可以提高制冷效果,而较高的热导率可以加快热量的传导,提高制冷速度。

其次是制冷剂的环境性能,包括其对臭氧层和温室效应的影响。

由于一些早期的制冷剂(如氯氟烃)会破坏臭氧层,导致大规模的环境问题,因此近年来出现了更加环保的制冷剂。

氟化氢类化合物是一种常见的制冷剂。

它们具有良好的制冷性能,且对环境影响较小。

其中比较常见的氟化氢类化合物有氟利昂(Freon)系列,如氟利昂12(R12)和氟利昂22(R22)。

然而,由于它们的臭氧破坏潜力较高,现在已经逐渐被淘汰。

取而代之的是一些新型的氟化氢类制冷剂,如氟利昂134a(R134a)和氟利昂410a(R410a),它们的环境性能更好,被广泛应用于空调和冷冻设备中。

氯化氟烃类化合物是早期广泛使用的制冷剂,例如氯氟烃12(CFC-12)和氯氟烃22(CFC-22)。

然而,由于这些化合物会破坏臭氧层,导致温室效应,因此在1987年蒙特利尔议定书的约束下逐步被淘汰。

氯化氟烃类制冷剂的代表性物质是氟利昂502(R502),它由氟利昂22(R22)和氯氟烃115(R115)的混合物组成。

由于其环保性能较差,在现代制冷设备中使用较少。

氯化碳烃类化合物也是一种常见的制冷剂。

它们具有较低的沸点和较高的蒸发潜热,因此在制冷循环中使用较多。

制冷剂的种类及特性

制冷剂的种类及特性

制冷剂的种类及特性制冷剂是用于制冷系统中的介质,通过循环往复地进行蒸发和冷凝来实现对空气或物体的冷却。

制冷剂的种类和特性会对制冷系统的性能、环境影响以及安全性产生重要影响。

下面将介绍常见的制冷剂及其特性。

1.氨气(NH3):氨气是一种无色、有刺激气味的气体,具有优秀的制冷性能和热物理性质,因此被广泛应用于工业制冷系统。

它的优点包括高制冷效率、环境友好和广泛的温度范围。

但氨气有毒性和易燃性,对人体和环境的危害较大,因此在使用氨气时需要采取严格的安全措施。

2.氟利昂(CFCs、HCFCs和HFCs):氟利昂是一类化学物质,包括三氟甲烷(CFC-11)、二氟二氯甲烷(CFC-12)和全氟丙烷(HFC-134a)等。

它们具有优异的制冷性能和热力学性质,被广泛应用于商业和家用制冷设备。

然而,由于氟利昂会破坏臭氧层,导致臭氧空洞的产生,对环境造成严重影响。

因此,国际公约已经限制了氟利昂的使用。

3. 羟基乙基和羟基丙基(Glycols):羟基乙基和羟基丙基是水基制冷剂,由水和一种有机化合物混合而成,常用于低温制冷系统。

它们具有良好的热传导性能和化学稳定性,且无毒无味,因此在一些特殊应用中被广泛使用。

然而,其制冷性能较差,需要较高的能源消耗。

4.二氧化碳(CO2):二氧化碳是一种天然制冷剂,广泛存在于大气中,无毒无味。

它具有良好的环境友好性,不对臭氧层产生破坏,并具有零臭氧臭粒(ODP)和弱温室气体效应(GWP)。

因此,二氧化碳被视为一种可持续发展的制冷剂。

然而,由于其低临界温度和高压力要求,对系统压力容器的要求较高,限制了其应用范围。

5.碳氢化合物:碳氢化合物是一种有机化合物,如丙烷和丁烷,可用作替代氟利昂的制冷剂。

它们具有较低的环境影响,且在低温范围内具有良好的性能。

然而,由于其易燃性,对操作和安全性提出了更高的要求。

6.混合制冷剂:混合制冷剂是由两个或多个制冷剂混合而成,以实现理想的制冷性能。

比如,R404A是由R125、R143a和R134a等制冷剂混合而成。

制冷剂品种规格(3篇)

制冷剂品种规格(3篇)

第1篇一、引言制冷剂是制冷系统中传递热量的介质,它通过吸收热量并释放热量,实现制冷循环。

制冷剂品种繁多,规格各异,不同的制冷剂适用于不同的制冷系统。

本文将对制冷剂的品种和规格进行详细介绍。

二、制冷剂品种1. 按照制冷剂的化学成分,可以分为以下几类:(1)无机制冷剂:如氨(NH3)、二氧化碳(CO2)等。

无机制冷剂具有无毒、不易燃、热稳定性好等优点,但缺点是腐蚀性强,对金属有较强的腐蚀作用。

(2)有机制冷剂:如氟利昂(CFCs)、氢氟烃(HFCs)、全氟烃(PFCs)等。

有机制冷剂具有无毒、低腐蚀性、热稳定性好等优点,但缺点是温室效应和臭氧层破坏问题。

(3)混合制冷剂:如R407C、R410A等。

混合制冷剂是将两种或两种以上的制冷剂按一定比例混合而成,具有各自优点,且在一定程度上可以克服单一制冷剂的缺点。

2. 按照制冷剂的物理状态,可以分为以下几类:(1)气态制冷剂:如氨、二氧化碳、R22等。

气态制冷剂在常温常压下为气态,具有较高的蒸发潜热,适用于大型制冷系统。

(2)液态制冷剂:如R134a、R404A等。

液态制冷剂在常温常压下为液态,具有较高的冷凝潜热,适用于小型制冷系统。

(3)液气两相制冷剂:如R410A、R407C等。

液气两相制冷剂在常温常压下既可存在于液态,也可存在于气态,具有较宽的使用温度范围,适用于多种制冷系统。

三、制冷剂规格1. 制冷剂的压力规格:制冷剂的压力规格是指制冷剂在不同温度和压力下的物理性质。

常见的制冷剂压力规格包括:(1)饱和压力:指制冷剂在饱和状态下的压力,单位为MPa。

(2)临界压力:指制冷剂从液态转变为气态的临界压力,单位为MPa。

(3)蒸发压力:指制冷剂在蒸发温度下的压力,单位为MPa。

(4)冷凝压力:指制冷剂在冷凝温度下的压力,单位为MPa。

2. 制冷剂的热力学性质规格:制冷剂的热力学性质规格主要包括以下几项:(1)蒸发潜热:指制冷剂在蒸发过程中吸收的热量,单位为kJ/kg。

r600a制冷剂

r600a制冷剂

r600a制冷剂R600a制冷剂导言:随着环境保护意识的增强和温室气体排放的限制,环保制冷剂的需求越来越大。

R600a制冷剂作为一种环保的替代品,被广泛应用于制冷行业。

本文将介绍R600a制冷剂的定义、特性、应用领域以及与其他制冷剂的比较。

一、定义R600a制冷剂,又称为异丙烷,是一种无色、无臭的天然制冷剂。

它是一种单一组分的气体,不含氯氟烃(CFCs)或氢氟碳化物(HCFCs)等对臭氧层有害的化学物质。

R600a具有优良的冷却性能和环保特性,因此被视为制冷行业的理想选择。

二、特性1. 高效能:R600a具有较高的比热容和潜热,使其在制冷过程中能够快速吸热和释放热量,从而提高制冷效率。

2. 环保性:R600a不含任何对臭氧层有害的化学物质,对环境没有污染和破坏性。

3. 安全性:R600a具有较低的爆炸限制和较高的燃烧温度,因此在合适的使用条件下是安全的。

4. 耐腐蚀性:R600a制冷剂对制冷系统的材料具有良好的兼容性,不会引起腐蚀和损坏。

三、应用领域1. 家用制冷设备:R600a制冷剂广泛应用于家用制冷设备,如冰箱、冷柜等。

它可以提供稳定的制冷效果,并能够降低能耗和环境污染。

2. 商业制冷设备:R600a制冷剂也被用于商业制冷设备,如超市冷柜、冷藏柜等。

其高效能和环保性能使商家能够降低能源消耗和运营成本。

3. 汽车空调系统:R600a制冷剂用于汽车空调系统中,取代传统的制冷剂,减少对环境的影响。

4. 工业制冷设备:许多工业领域,如化工、制药等,需要大规模的制冷设备。

R600a制冷剂作为一种高效能和环保性能的制冷剂,也被广泛应用于工业制冷领域。

四、与其他制冷剂的比较1. R134a制冷剂:R600a和R134a都是环保的制冷剂,但R600a 在能耗方面具有更高的效率,并且对环境的影响更小。

2. R22制冷剂:R600a相比于R22制冷剂,不含氯氟烃,对臭氧层没有破坏,因此更具环保性。

3. R410a制冷剂:R410a是一种混合制冷剂,与R600a相比,其使用条件更为复杂,需要较高的工作压力。

制冷剂汇总超详细

制冷剂汇总超详细制冷剂是用于冷冻和空调系统中的工质,主要用于吸热、压缩、冷凝和膨胀过程,实现制冷和空调效果。

它起着传热媒介的作用,使空调和冷冻设备的运行更加高效和可靠。

以下是对制冷剂的详细汇总,包括常见的制冷剂种类、特性和应用。

1.氨氨是一种无色气体,广泛用于工业制冷和冷冻设备中。

它具有良好的制冷性能,具有高制冷效果和潜热,适用于大型冷冻设备。

2.氟利昂系列氟利昂是一类重要的氟化碳类制冷剂,如R-12、R-22、R-134a等。

它们具有高制冷效率和热力性能稳定,适用于各种冷冻和空调设备,但由于其含有氯,可能对臭氧层产生破坏,逐渐被淘汰。

3.羟氟烷类羟氟烷类包括R-32、R-125等,它们是现代环保型制冷剂,不含氯,可有效减少对臭氧层的破坏,适用于中高温冷冻设备和空调系统。

4.二氧化碳二氧化碳是一种环保型制冷剂,具有零臭氧破坏潜力和很高的换热性能。

它被广泛用于商用和家用制冷设备,如超市制冷设备和汽车空调。

5.烃类制冷剂烃类制冷剂如丁烷和异戊烷,具有低环境影响和良好的性能。

它们适用于小型制冷设备和家用空调,但由于易燃,需谨慎使用。

6.混合制冷剂混合制冷剂是由两种或多种制冷剂混合而成,以获得更好的性能和适应性。

如R-404a是由R-143a、R-125、R-134a组成的混合制冷剂,适用于超市冷冻和制冷设备。

7.吸收式制冷剂吸收式制冷剂通过以低温升华液体来完成制冷循环。

它们常用于工业制冷和特定的应用,如太阳能冷冻系统。

在选择制冷剂时,需要考虑以下因素:1.制冷效率:制冷剂的传热性能和制冷效果要符合要求。

2.环保性:应选择对臭氧层具有较低破坏潜力的制冷剂。

3.安全性:制冷剂应无毒、无燃性,并符合相关安全标准。

4.成本:制冷剂的价格和可用性也是选择的考虑因素。

5.应用需求:根据制冷设备和系统的工作条件和要求选择合适的制冷剂。

总结:选择适合需求的制冷剂是实现高效和可靠冷冻和空调系统的关键。

广泛应用的制冷剂包括氨、氟利昂系列、羟氟烷类、二氧化碳、烃类和混合制冷剂等。

制冷剂 co2

制冷剂co2摘要:1.制冷剂CO2的概念2.CO2作为制冷剂的优点3.CO2制冷技术的发展历程4.CO2制冷在我国的应用现状与前景5.CO2制冷技术的挑战与展望正文:制冷剂CO2,即二氧化碳,作为一种环保、节能的制冷剂,近年来在我国得到了广泛关注和应用。

本文将详细介绍CO2作为制冷剂的概念、优点、发展历程、应用现状与前景,以及面临的挑战与展望。

1.制冷剂CO2的概念制冷剂CO2,化学式为CO2,是一种无色、无味、不可燃的气体。

在大气中,二氧化碳占有一定比例,是生物体呼吸过程中产生的废气。

近年来,科学家们发现,CO2具有较好的制冷性能,可作为一种环保型制冷剂替代传统的氟利昂等制冷剂。

2.CO2作为制冷剂的优点CO2作为制冷剂具有以下优点:(1)环保:CO2在自然界的循环过程中,不会产生破坏臭氧层的作用,对环境友好;(2)节能:CO2制冷系统在制冷过程中,具有较高的制冷系数,能够实现节能;(3)安全:CO2的毒性较低,且不易燃,使用安全可靠。

3.CO2制冷技术的发展历程CO2制冷技术起源于19世纪,经过百余年的发展,已经历了四个阶段:自然循环制冷、高压CO2制冷、中压CO2制冷和低压CO2制冷。

随着技术的不断进步,CO2制冷系统已逐渐趋于完善。

4.CO2制冷在我国的应用现状与前景近年来,我国对CO2制冷技术的研究与应用取得了显著成果。

目前,CO2制冷技术已广泛应用于商业制冷、工业制冷、制冷空调等领域。

随着国家对环保、节能等方面的要求日益严格,CO2制冷技术在我国的应用前景将更加广阔。

5.CO2制冷技术的挑战与展望尽管CO2制冷技术具有诸多优点,但在实际应用中,仍面临一定的挑战,如系统压力高、设备成本较高等问题。

制冷剂的种类及特性

制冷剂的种类及特性制冷剂是用于冷冻和空调系统中的液体或气体,用于吸收和排放热量来产生冷空气。

制冷剂的种类有多种,下面将介绍几种常见的制冷剂以及它们的特性。

1.氯氟烃(CFCs)氯氟烃是最早用作制冷剂的物质之一,如R11和R12、这些化合物由氯、氟和碳原子组成,它们在大量情况下都已被禁止使用。

CFCs在大气层中的存在会破坏臭氧层,对环境造成长期的危害。

因此,CFCs已经被其他制冷剂所替代。

2.氢氟碳化物(HCFCs)HCFCs是一类含有氢、氟、氯和碳原子的化合物,例如R22和R123、与CFCs相比,HCFCs具有较低的危险性,对臭氧层的破坏作用较小。

然而,由于它们仍然具有一定的潜在危害,各国正在逐步淘汰使用这些化合物。

3.氢氟烷(HFCs)HFCs是一类不含氯原子的制冷剂,例如R134a和R410a。

这些化合物在大气中的存在时间较短,对臭氧层的破坏影响较小。

HFCs的使用量大幅增加是由于对CFCs和HCFCs的限制。

然而,它们在温室气体的排放和全球变暖方面扮演了重要角色。

4.碳氢化合物(HCs)HCs是一类只含有碳和氢原子的制冷剂,如R290(丙烷)和R600a (异丁烷)。

在化学结构上,它们比上述制冷剂更简单且环保。

这些制冷剂具有较低的温室效应和零臭氧破坏潜能。

然而,它们的易燃性较高,需要采取相应的安全措施。

5.无机化合物无机制冷剂主要是氨(NH3)和二氧化碳(CO2)。

氨制冷剂具有高效率和较低的温室效应,但它具有强烈的腐蚀性和刺激性气味,需要谨慎使用和处理。

二氧化碳制冷剂在环境友好和节能方面具有优势,且广泛用于商业和家用制冷系统中。

总结起来,制冷剂的类型和特性主要由其化学成分和物理性质决定。

重要的是,任何制冷剂都应在使用和处理过程中考虑其对环境和人类健康的潜在影响。

逐渐替代和采用更环保的制冷剂有助于减少可能的负面影响,促进可持续的冷却和加热解决方案的发展。

制冰机所用制冷剂介绍

广州科勒尔制冷设备有限公司 Guangzhou Koller Refrigeration Equipment Co., Ltd
制冰机所用制冷剂介绍
制冰机制冷系统用制冷剂主要有:R22 和 R-404A,下面进行一些介绍。 一、R22 制冷剂 R22 制冷剂学名二氟一氯甲烷,英文名 Chlorodifuoromethane,化学分子式 CHClF2,为 HCFC 型制冷剂,在常温下为无色,近似无味的气体,不燃烧、无腐蚀、毒 性极微,加压可液化为无色透明的液体。 R22 制冷剂通常为钢瓶包装,22.5 公斤/瓶(50 磅/DAC) 。 R-22 的化学稳定性和热稳定性均很高, 特别是在没有水份存在的情况下, 在 200 ℃ 以下与一般金属不起反应。 R22 制冷剂因为其优秀的热力学性能使得其被广泛应用在各个领域的制冷系统上,是 在世界上应用最为广泛的制冷剂。 R22 制冷剂因使用范围广,价格较低,所以其使用和维护方便、费用较低。 但 R22 制冷剂的一个缺点是对大气臭氧层有破坏作用, 现在世界上已经有很多国家在 新设备上开始禁用,中国是 2016 年开始在新设备上禁用,2030 年后全面淘汰。 R22 制冷剂为单一成分的制冷剂,所以无论是液态充注或气态充注都没有问题,不会 改变其热力学性能。 二、R-404A 制冷剂 R-404A 制冷剂是由 HFC-125( 44 %) 、 HFC-134a( 4 %)及 HFC-143a ( 52 %)三种制冷剂混合而成的制冷剂,为替代 R-502 工业标准 HFC 型制冷剂,它对大气臭氧层没有破坏作用。 R-404A 适用于中低温的新型商用制冷设备、交通运输制冷设备、或更新设备,所以适 用在我们公司所有制冰机和冷库机组上。
11
广州科勒尔制冷设备有限公司 Guangzhou Koller Refrigeration Equipment Co., Ltd
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、制冷剂的种类和编号
¾ 根据制冷剂的分子结构可将制冷剂分为无机化合物和有机化合物
¾ 根据制冷剂的组成可分为单一制冷剂和混合制冷剂
¾ 根据制冷剂的物理性质可将制冷剂分为高温(低压)、中温(中压)、低温(高
压)制冷剂。
无机化合物:氨、水、二氧化碳
卤代烃:氟利昂 碳氢化合物:甲烷、乙烷、丙烷
混合制冷剂:共沸和非共沸
Global Warming Potential
是衡量制冷工质对气候变暖影响的指标值。当选用 CFC-11的值作为基准值1.0时,称为HGWP。近年 来人们将作用100年的CO2作为基准,并将CO2的 温室效应潜能值订为1.0,称为GWP或GWP100
TEWI (Total Equivalent Warming Impact )
(4)混合制冷剂
为什么要使用混合工质?
----调节沸点
共沸工质:混合后沸点高于和低于各组分沸点 非共沸工质:混合沸点在各组分之间
----调节热力性能
高沸点组分中加入低沸点组分,qv提高 反之,COP提高
已经商品化的共沸制冷剂,依应用先后在R500 序号中顺次地规定其编号: R500R12/R152a(73.8/26.2mass%) R502R22/R115(48.8/51.2mass%)
R130a R131 R132a R133a R134a
C2HCl5 C2HCl4F C2HCl3F2 C2HCl2F3 C2HClF4 C2HF5
R120 R121 R122 R123 R124 R125
C2Cl6 C2Cl5F C2Cl4F2 C2Cl3F3 C2Cl2F4 C2ClF5 C2F6
2, 实用性 制冷剂的化学稳定性和热稳定性好,在制冷循环过程中不分解,不 变质。无毒,无害。来源广,价格便宜。
3, 环境可接受性 应满足保护大气臭氧层和减少温室效益的环境保护要求,制 冷剂的臭氧破坏指数必须为 0,温室效益指数应尽可能小。
R110 R111 R112 R113 R114 R115 R116
CFC 96.1.1全面限制
HFC ODP=0 PFC ODP=0
HCFC 2030.1.1全面限制 HCC 有毒
PCC 强毒
氟利昂的性质
氟利昂的性质(2)பைடு நூலகம்
(3)碳氢化合物
饱和碳氢化合物制冷剂中甲烷、乙烷、丙烷的 编号方法与卤代烃相同。例如乙烷的分子式为 C的2H编6号,为编R号6为00R,1异70丁。烷丁的烷编编号号为特R殊6,00正a。丁烷 非饱和碳氢化合物制冷剂主要有乙烯、丙烯等 烯烃,它们的编号规则中,字母R后面的第一 位的数字定为1,接着的数字编制与卤代烃相 同C代3H。碳6例氢,如化编乙合号烯物分、的别丙编为烯号R1的方15分法0、子与R式此12分相70别同。为。非C饱2H和4、卤
R13,R14,R503,烷,烯
举 1 离心式制冷机的空调系统 例 2 普通单级压缩和双级压缩的活塞式制冷系统,-60 °C以上
3 覆叠式装置的低温级
(1)无机化合物
无机化合物用序号700表示,化合物的分 子量(取整数部分)加上700就得出其制冷 剂的编号。例如,氨的分子量为17,其编 号为R717 。二氧化碳和水的编号分别为 R744和R718。
(2)卤代烃-氟利昂
C关m系H式nF为pC2lmqB+r2r,=n其+p原+子q+数r。m、n、p、q、r之间的
C命2H名2F:4为RR(134m,-1C)F3(Brn为+R11)3Bp1B。r,如:CF2Cl2为R12 , 环状衍生物的编号的规则相同,只在字母R后加 一个字母C,如C4F8为RC318。 同分异构体相同编号,而随着同分异构变得愈来 编愈编号号不为为对RR称11,5522a;附。它加的小同写分a、异b、构c体等分。子如式C为H2CFHCHF22CFH,3,
可使压缩机排气温度降低
化学稳定性比单工质好
全封闭压缩机的电机绕组 温升小
一定情况下可增大COP
泄漏时组分不变
非共沸制冷剂在一定压力 下蒸发或冷凝时温度是变 化的,能适应于变温热源
增大制冷量(或COP)
降低循环压比,使单级压 缩获得更低的温度
较少量的高沸点组分与较 多量的低沸点组分混合, 与低沸点工质相比,可提 高COP,但制冷量会减小。 反之可增加制冷量,而 COP减小
2010 HCFC-22 to be phased out for new equipment.
2020 HCFC-22 production to be phased out.
为什么要进行CFC替代?
Ozone Depletion Potential
以CFC-11的值1.000作基准,来表示制冷剂消耗大气 臭氧分子潜能的程度
已经商品化的非共沸制冷剂,依应用先后在 R400序号中顺次地规定其编号。混合制冷剂的 组分相同,比例不同,编号数字后接大写A、B、 C等字母加以区别。
R404AR125/143a/134a(44.0/52/4.0) R407CR32/125/134a(23.0/25.0/52.0)
共沸与非共沸混合物
卤代烃-氟利昂(3)
¾CFC,氯氟烃
¾性能稳定,可进入平流层 ¾只有受紫外线照射方分解出Cl离子 ¾对臭氧层破坏作用较大
¾HCFC,氢氯氟烃
¾相对不稳定,到达平流层前已经分解 ¾对臭氧层破坏作用较小
(4)甲烷族氟利昂 甲烷
CH4 R50
CH3Cl CH3F R40 R41
CH2Cl2 CH2ClF CH2F2 R30 R31 R32
《制冷原理与技术》讲义
陈江平 上海交通大学制冷研究所
第三讲 制冷剂
制冷系统中循环流动的工作介质叫制冷剂 (又称制冷工质),它在系统的各个部件间 循环流动以实现能量的转换和传递,达到 制冷机向高温热源放热;从低温热源吸热, 实现制冷的目的。
1、制冷剂发展历史
1834年美国人珀金斯发明世界上第一台制冷机,采用的制冷剂 为乙醚(CH3OCH3)。
1995 It is unlawful to vent alternate (substitute) refrigerants.
1996 Phaseout of CFCs includes production and importing.
1996 HCFC production levels capped. 1997 Kyoto Protocol is established in response to global warming concerns. HFC
乙烷 C2H6 R170
C2H5Cl C2H5F
R160 R161
C2H4Cl2 C2H4ClF C2H4F2
R150 R151 R152
C2H3Cl3 C2H3Cl2F C2H3ClF2 C2H3F3
R140a R141b R142b R143a
C2H2Cl4 C2H2Cl3F C2H2Cl2F2 C2H2ClF3 C2H2F4
1990 The Clean Air Act (CAA) signed in the U.S. calls for reductions in refrigerant production, recycling, and emissions, as well as the eventual phaseout of CFCs and HCFCs.
1866年二氧化碳(CO2)被用作制冷剂。 1872年波义耳发明以氨(NH3)为制冷剂的压缩机。 1876年使用二氧化硫(SO2)为制冷剂。 氯甲烷(CH3Cl)在1878年开始使用。到20世纪30年代,一系列
的卤代烃,美国杜邦公司称其为卤代烃(Freon)的制冷剂相继 问世。卤代烃12(即R12)于1931年,R11于1932年,R114于 1933年,R113于1934年,R22于1936年,R13于1945年,R14 于1955年陆续出现。
1992 It is unlawful to vent CFCs and HCFCs into the atmosphere.
1994 Technician certification is required for purchasing and handling of CFCs and HCFCs.
是综合反映一台机器对全球变暖所造成影响的指标值。
其计算方法如下:
TEWI=m•l•GWP•n+E•n•β
(k其g),中l,为工G质W的P是年以泄C漏O率2为(%基),准n,
m是系统中工质总质量 指系统运行年限(年),E
代表系统每年的能耗(kWh),β (kg/kW h)。
体现每度电CO2的释放量
TEWI包括直接排放效应和间接排放效应。前者指
Zeotropic & Azeotropic Blends
T P=定值
1
气相区 C
2 Bl
B
Bg
A
液相区
0
X
1
非共沸
Azeotropes
T P=定值
1
气相区
共沸点 2
液相区
0
X
1
共沸
Zeotropes
非共沸与共沸制冷剂的特点
共沸制冷剂在一定压力下 蒸发时有一定的蒸发温度, 且比单组分低
在一定的蒸发温度下,单 位容积制冷量比单一工质 容积制冷量大
泄漏时组分发生变化
非共沸混合制冷剂的制冷循环图
(5)其它烃类
其它各种有机化合物规定按600序号 编号,其编号是任选的。
3、制冷剂的选用原则
1, 制冷性能 我们期望制冷剂的冷凝压力不太高,蒸发压力在大气压以上或不 要比大气压低的太多,压力比较适中,排气温度不太高,单位容积制冷量大, 循环的性能系数高。传热性好。
相关文档
最新文档