九年级数学动点问题1

合集下载

九年级数学动点问题1

九年级数学动点问题1
手机在线电影
手机在线电影 怎么剪切电影片段 手机在线电影 无损剪切电影片段的方法~ 手机在线电影 狸涡无损切割软件 手机在线电影 1、点击打开按钮将电影添加进来,你可以选择同等大小的分割:选择该分割的朋友,可以随意设定一个合理的数字,把添加的文件切割成多个片段文件。亦或者选择下一点的自定义切割方式来切割电影片段,然后点击“立即分割”按钮。2、选择输出路径。3、接着我们就可以看到 手机在线电影 如何转换电影视频格式 手机在线电影 爱看电影的朋友总会接触到不同的电影格式,不同的格式不同的播放器,不同的格式不同的播放工具,不同的格式不同的பைடு நூலகம்晰度,不同的格式不同的下载速度等等。或者网上有很多转码器,但总会担心有插件或者是病毒,这些总会困扰一些人,到底怎样转换这些格式才最方便有效 手机在线电影 电脑格式工厂暴风影音方法一1、我们先来意看评论,尽量选择8分以上的,由于各种限制,这里我不便给出下载地址。接下来我们进入正题,首先,我们打开格式工厂,在左侧“”目录 手机在线电影 如何使用图片制作微电影 手机在线电影 拍摄的方法自不必说,手机、相机都可以拍出高清电影,这里我跟大家分享如何使用静态,制作微电影,其中涉及到的多种编辑技巧,希望对你有所帮助。 手机在线电影 MovieMaker 手机在线电影 1、首先启动MovieMaker电影制作软件,单击导入按钮。2、导入一组。为了节省时间,可以全部选中,一次性导入。3、选中所有,右击,选择添加到时间线,这样所有都跑到时间线上了。4、单击世界线两张的交界处,单击任务窗格里的查看过渡,选择一种效果,右击,选择添加

九年级动点问题知识点

九年级动点问题知识点

九年级动点问题知识点动点问题是九年级数学中的重要知识点之一,主要涉及到对平面图形与运动的关系进行分析与计算。

本文将从定义、性质和解题方法三个方面进行论述,并结合示例详细说明。

以下是对九年级动点问题知识点的介绍。

1. 定义动点问题是指在平面直角坐标系中,通过对点在平面中的位置与运动进行分析和计算来解决具体问题的数学问题。

动点可以沿直线、曲线或者其他规定的路线进行运动。

2. 性质(1)运动的方向:动点的运动可以有向上、向下、向左、向右等不同的方向。

(2)运动的速度:动点的运动速度可以是恒定的、变化的或者被规定的。

(3)运动的路径:动点可以在平面上运动,其路径可以是直线、曲线或者特定的图形。

(4)坐标的变化:动点在运动过程中,其坐标会发生相应的变化。

3. 解题方法(1)建立坐标系:根据题意,建立合适的平面直角坐标系。

(2)确定动点的位置:根据题目的描述,确定动点在平面上的初始位置和运动规律。

(3)列方程或函数:根据动点在平面上的位置与运动规律,利用代数方法列出方程或函数。

(4)解方程或函数:对所列出的方程或函数进行求解,得到动点的位置或相关数据。

(5)分析解答:根据求解结果,结合问题的要求进行分析和答题。

以下是一个例子,通过该例子来说明动点问题的解题方法。

【示例】小明在操场上做直线运动,他从一端A出发,以每秒6米的速度向另一端B跑去,到达B后立即折返,以每秒8米的速度返回A。

已知AB的长度为80米,请问他什么时候回到起点A?解答过程:(1)建立坐标系:以A点为原点,假设横坐标表示时间,纵坐标表示距离。

(2)确定动点的位置:小明从A点出发,向B点跑去,然后又返回A点。

(3)列方程或函数:假设小明运动的时间为t秒,则小明到达B点的距离为6t米,小明从B点返回到A点的时间为80/8=10秒,所以小明到达A点的距离为6t-8*10=80-6t米。

(4)解方程或函数:根据所列的方程6t=80-6t,解得t=5秒。

初中数学数轴动点问题经典

初中数学数轴动点问题经典

初中数学数轴动点问题经典数轴是初中数学中一个重要的图形工具,它可以帮助我们更好地理解和解决各种数学问题。

在数轴上,我们经常遇到动点问题,即运动的点根据一定的规律在数轴上移动。

本文将介绍数轴动点问题的基本概念和解法,希望能够帮助读者更好地理解和应用数轴动点问题。

一、数轴的基本概念在开始介绍数轴动点问题之前,我们首先来了解一下数轴的基本概念。

数轴是由一条直线上的点组成的,这些点和原点之间的距离与它们在数轴上的位置一一对应。

数轴通常有正数部分和负数部分,它们分别位于原点的两侧。

原点是数轴上的起点,我们用0表示。

正数部分向右延伸,负数部分向左延伸。

数轴上的单位长度是相等的,通常我们以1为单位进行刻度。

二、数轴动点问题的分类数轴动点问题可以分为两类:匀速运动和变速运动。

1. 匀速运动:当动点在数轴上以相同的速度移动时,我们称之为匀速运动。

匀速运动的特点是动点在数轴上的移动是均匀的,即每隔相同的时间间隔,动点走过的距离相同。

对于匀速运动的动点问题,我们可以通过计算速度和时间,来计算动点在数轴上的位置。

2. 变速运动:当动点在数轴上以不同的速度移动时,我们称之为变速运动。

变速运动的特点是动点在数轴上的移动是不均匀的,即每隔相同的时间间隔,动点走过的距离不同。

对于变速运动的动点问题,我们需要通过给定的条件来确定动点的运动规律,并根据运动规律来计算动点在数轴上的位置。

三、数轴动点问题的解法解决数轴动点问题的关键是确定动点的位置和运动规律。

在解题时,我们可以采取以下步骤:1. 分析题目:仔细阅读题目,理解题目所给的条件和要求。

确定动点的初始位置和运动规律。

2. 建立数轴模型:根据题目中所给的条件,在纸上绘制出数轴模型。

标明动点的初始位置和运动规律。

3. 计算运动结果:根据给定的条件,计算动点在数轴上的位置。

对于匀速运动,我们可以通过速度和时间的关系来计算。

对于变速运动,我们则需要借助给定的运动规律来计算。

4. 检查答案:将计算得到的结果代入题目中,检查答案是否符合题目所给的条件和要求。

中考数学总复习动点问题专题试题

中考数学总复习动点问题专题试题

卜人入州八九几市潮王学校中考复习之动点问题1、如图6所示,一艘轮船以20里/时的速度由西向东航行,途中接到台风警报,台风中心正以40里/时的速度由南向北挪动,距台风中心2010里的圆形区域〔包括边界〕都属台风区.当轮船到A 处时,测得台风中心移到位于点A 正南方向B 处,且AB=100里.〔1〕假设这艘轮船自A 处按原速度继续航行,在途中会不会遇到台风?假设会,试求轮船最初遇到台风的时间是;假设不会,请说明理由;〔2〕现轮船自A 处立即进步船速,向位于东偏北300方向,相距60里的D 港驶去.为使台风到来之前,到达D港,问船速至少应进步多少〔进步的船速取整数,1336≈.〕?2、如图10,在菱形ABCD 中,AB =10,∠BAD =60°.点M 从点A 以每秒1个单位长的速度沿着AD 边向点D 挪动;设点挪动的时间是为t 秒(100≤≤t).(1)N 点为BCM 挪动过程中,线段MN 是否一定可以将菱形分割成面积相等的两局部,并说明理由;(2)N 点从点B (与点M 出发的时刻一样)以每秒2个单位长的速度沿着BC 边向点C 挪动,在什么时刻,梯形ABNM 的面积最大并求出面积的最大值;(3)点N 从点B (与点M 出发的时刻一样)以每秒)2(≥a a 个单位长的速度沿着射线BC 方向〔可以超越C 点〕挪动,过点M 作MP ∥AB ,交BC 于点P .当MPN ∆≌ABC ∆时,设∆MPN 与菱形表示S 的关系式,并求当0=S 时a 的值.3、如图12,在矩形ABCD 中,AB =12厘米,BC =6厘米.点P 沿AB 边从点A 开场向点B 以2厘米D 开场向点A 以1厘米/秒的速度挪动.假设P 、Q 同时出发,用t (秒)表示挪动的时间是(0≤t ≤6),那么: (1) 当t 为何值时,QAP ∆为等腰直角三角形? (2) 求四边形QAPC 的面积;提出一个与计算结果有关的结论; (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与ABC ∆相似?4、如图12,A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN =∠POQ =α〔α为锐角〕.当∠MAN 以点A 为旋转中心,AM 边从与AO 重合A B图10BP图12A的位置开场,按逆时针方向旋转〔∠MAN 保持不变〕时,M 、N 两点在射线OP 上同时以不同的速度向右平行挪动.设OM =x ,ON =y 〔y >x ≥0〕,△AOM 的面积为S .假设cos α、OA 是方程2z 2-5z +2=0的两个根.〔1〕当∠MAN 旋转30°〔即∠OAM =30°〕时,求点N 挪动的间隔; 〔2〕求证:MN ON AN ⋅=2;〔3〕求y 与x 之间的函数关系式及自变量x 的取值范围; 〔4〕试写出S 随x 变化的函数关系式,并确定S 的取值范围.5、:如图12,等边三角形ABC 的边长为6,点D ,E 分别在边AB ,AC 上,且AD =AE =2.假设点F 从点B 开场以每秒1个单位长的速度沿射线BC 方向运动,设点F 运动的时间是为t 秒.当t >0时,直线FD 与过点A 且平行于BC 的直线相交于点G ,GE 的延长线与BC 的延长线相交于点H ,AB 与GH 相交于点O . 〔1〕设△EGA 的面积为S ,写出S 与t 的函数关系式;〔2〕当t 为何值时,AB ⊥GH ; 〔3〕请你证明△GFH 的面积为定值;〔4〕当t 为何值时,点F 和点C 是线段BH 的三等分点.6、如图12,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21.动点P 从点D 出发,沿射线DA 的方向以每秒2个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停顿运动.设运动时间是为t 〔秒〕. 〔1〕设△BPQ 的面积为S ,求S 与t 之间的函数关系式;〔2〕当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形? 〔3〕当线段PQ 与线段AB 相交于点O ,且2AO =OB 时,求∠BQP 的正切值;〔4〕是否存在时刻t ,使得PQ ⊥BD ?假设存在,求出t 的值;假设不存在,请说明理由.7、如图10所示,一段的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ.建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N .小亮从成功街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮.〔1〕请你在图10中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置〔用点C 标出〕;〔2〕:MN =20 m ,MD =8 m ,PN =24 m ,求〔1〕中的点C 到成功街口的间隔CM .PONMA图12Q BFC H图12AB C DPQ 图128、如图13,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿ACQ 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 停顿运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间是为t 〔秒〕.〔1〕设四边形PCQD 的面积为y ,求y 与t 的函数关系式; 〔2〕t 为何值时,四边形PQBA 是梯形?〔3〕是否存在时刻t ,使得PD ∥AB ?假设存在,求出t 的值;假设不存在,请说明理由;〔4〕通过观察、画图或者折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?假设存在,请估计t 的值在括号中的哪个时间是段内〔0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4〕;假设不存在,请简要说明理由.9、如图16,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开场运动,当点P 与点C 重合时停顿运动,点Q 也随之停顿.设点P 、Q 运动的时间是是t 秒〔t >0〕. 〔1〕当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; 〔2〕当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?〔3〕设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的函数关系式;〔不必写出t 的取值范围〕 〔4〕△PQE 能否成为直角三角形?假设能,写出t 的取值范围;假设不能,请说明理由.10、如图15,在Rt △ABC 中,∠C =90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,BC 的中点.点以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4BC -CA 于点G .点P ,Q 同时出发,当点P 绕行一周回到点D 时停顿运动,点Q 也随之停顿.设点P ,Q 运动的时间是是t 秒〔t >0〕.〔1〕D ,F 两点间的间隔是;〔2〕射线QK 能否把四边形CDEF 分成面积相等的两局部?假设能,求出t 的值.假设不能,说明理由; 〔3〕当点P 运动到折线EF -FC 上,且点P 又恰好落在射线QK 上时,求t 的值;图13PCQB图P N图10Q〔4〕连结PG ,当PG ∥AB 时,请直接..写出t 的值. 12、如图16,在Rt △ABC 中,∠C =90°,AC =3,AB =5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立即以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停顿运动,点P 也随之停顿.设点P 、Q 运动的时间是是t 秒〔t >0〕.〔1〕当t =2时,AP =,点Q 到AC 的间隔是;〔2〕在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;〔不必写出t 的取值范围〕〔3〕在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?假设能,求t 的值.假设不能,请说明理由;〔4〕当DE 经过点C 时,请直接..写出t 的值. 13、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=6,BC=8,AB =33,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立即以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停顿运动,点Q 也随之停顿.设点P ,Q 运动的时间是是t 秒〔t >0〕.〔1〕设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式〔不必写t 的取值范围〕;〔2〕当BP=1时,求△EPQ 与梯形ABCD 重叠局部的面积;〔3〕随着时间是t 的变化,线段AD 会有一局部被△EPQ 覆盖,被覆盖线段的长度在某个时刻会到达最大值,请答复:该最大值能否持续一个时段?假设能,直接写出t 的取值范围;假设不能,请说明理由.14、如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE=EF=FB=5,DE=12动点P 从点A 出发,沿折线AD-DC-CB 以每秒1个单位长的速度运动到点B 停顿.设运动时间是为t 秒,y=S △EPF ,那么y 与t 的函数图象大致是〔〕ACBPQED图1615、如图151-和图152-,在ABC △中,51314cos .13AB BC ABC ===,,∠ 探究在如图151-,AH BC ⊥于点H ,那么AH =_______,AC =_______,ABC △的面积ABC S △=___________.拓展如图152-,点D 在AC 上〔可与点A C ,重合〕,分别过点A C ,作直线BD 的垂线,垂足为E F ,.设.BD x AE m CF n ===,,〔当点D 与点A 重合时,我们认为ABC S △=0.〔1〕用含x m ,或者n 的代数式表示ABD S △及CBD S △;〔2〕求()m n +与x 的函数关系式,并求()m n +的最大值和最小值. 〔3〕对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现请你确定一条直线,使得A B C ,,三点到这条直线的间隔之和最小〔不必写出过程〕,并写出这个最小值.16、一透明的敞口正方体容器ABCD-A ′B ′C ′D ′装有一些液体,棱AB 始终在程度桌面上,容器底部的倾斜角为α〔∠CBE=α,如图1所示〕.探究 如图1,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示. 解决问题:〔1〕CQ 与BE 的位置关系是,BQ 的长是dm ;〔2〕求液体的体积;〔参考算法:直棱柱体积V 液=底面积S △BCQ ×高AB 〕 〔3〕求α的度数.〔注:sin49°=cos41°=43,tan37°=34〕 拓展:在图1的根底上,以棱AB 为轴将容器向左或者向右旋转,但不能使液体溢出,图3或者图4是其正面示意图.假设液面与棱C ′C 或者CB 交于点P ,设PC=x ,BQ=y .分别就图3和图4求y 与x 的函数关系式,并写出相应的α的范围. 延伸:A .B .C .D .在图4的根底上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板〔厚度忽略不计〕,得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否到达4dm3.17、某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车〔上、下车的时间是忽略不计〕,两车速度均为200米/分.探究:设行驶吋间为t分.〔1〕当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2〔米〕与t〔分〕的函数关系式,并求出当两车相距的路程是400米时t的值;〔2〕t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间是内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K〔不与点B,C重合〕处候车,准备乘车到出口A,设CK=x米.情况一:假设他刚好错过2号车,便搭乘即将到来的1号车;情况二:假设他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?〔含候车时间是〕决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P 〔不与点D,A重合〕时,刚好与2号车迎面相遇.〔1〕他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:〔2〕设PA=s〔0<s<800〕米.假设他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?。

初中数学动点问题大全

初中数学动点问题大全

初中数学动点问题大全动点问题一直是中考热点题型,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数值、线段或面积的最值问题等,下面就此问题的常见题型作简单介绍。

题型一动点形成的面积问题1.面积公式:三角形面积用12S ah =来表示,利用未知数的代数式来表示底和高。

2.面积比等于相似比的平方:面积无法用底和高表示时,利用相似三角形的面积比等于相似比的平方来求解,只需要知道相似比和另一个三角形面积即可表示。

3.相似三角形:当面积公式和面积比等于相似比的平方不能有效解题时,利用相似三角形的比例关系求解。

角度1:利用公式法解决动点面积问题例题1:在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点30A (,)和23B (,).过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC ADC S S ∆∆=时,求点D 的坐标.变式1:如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线O 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且//AB x 轴,//AC y 轴.(1)当点P 横坐标为6,求直线AO 的表达式;(2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP S S ∆∆的值;如果变化,请说明理由.O x y (备用图)O xy解析:(1)∵反比例函数12y x=的图像经过横坐标为6的点P ,∴点P 的坐标为(6,2).设直线AO 的表达式为y kx =(0k ≠).将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,得4x =.∴B 坐标为(4,3).∵AB =BO ,∴224(40)(30)a -=-+-9a =.∴点A 坐标为(9,3).(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.∵点C 坐标为(a ,12a ).∴6CEO S ∆=,同理6BDO S ∆=,∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.同理ACP ACO S AP S AO ∆∆=.∴1ABP ACP S S ∆∆=.即当a 变化时,ABP ACPS S ∆∆的值不变,且恒为1变式2:如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作//PM BC 交射线AC 于点M ,联结CP ,若CPM ∆的面积为2,则请求出点P 的坐标;解析:(1)设这条抛物线的解析式为2(0)y ax bx c a =++≠它的顶点坐标为16(1,)3(2)过点P 作PH AC ⊥,垂足为H .∵P 点在x 轴的正半轴上,∴设0P x (,).∵A )0,1(-,∴1PA x =+.∵在Rt AOC ∆中,222OA OC AC +=;又∵14OA OC ==,∴17AC =90sin 117PH PH PHA CAO AP x ∠=︒∴∠===+ 17PH =//BP CM PM BC AB AC ∴= ;300B P x (,),(,)1点P 在点B 的左侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)12217x -=解得110x .P =∴(,)2点P 在点B 的右侧时,3BP x =-,∴3417x -=17(3)x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)122417x -=解得11x =+,21x =-(不合题意,舍去)∴P(1+0).综上所述,P 的坐标为(1,0)或(1+0)角度2:利用面积比等于相似比的平方解决动点面积问题例题2:如图,已知在梯形ABCD 中,//AD BC ,5AB DC ==,4AD =.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且//ME DN ,//MF AN ,联结EF .(1)如图1,如果//EF BC ,求EF 的长;(2)如果四边形MENF 的面积是ADN ∆的面积的38,求AM 的长;解析:(1)∵AD //BC ,EF //BC ,∴EF //A D .又∵ME //DN ,∴四边形EF DM 是平行四边形.∴EF =DM .同理可证,EF =AM .∴AM =DM .∵AD =4,∴122EF AM AD ===.(2)∵38ADN MENF S S ∆=四边形,∴58AME DMF ADN S S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.∵ME //DN ,∴△AME ∽△AN D .∴22AME ADN S AM S AD∆∆=.同理可证,△DM F ∽△DN A .即得22DMF ADN S DM S AD ∆∆=.设AM =x ,则4DM AD AM x =-=-.∴22(4)516168x x -+=.即得2430x x -+=.解得11x =,23x =.∴AM 的长为1或3.A B CD M N EF (图1)AB C D M N E F变式3:已知直线1l 、2l ,12//l l ,点A 是1l 上的点,B 、C 是2l 上的点,AC BC ⊥,60ABC ∠=︒,4AB =,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合.(1)如图1,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图2,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.解析:变式4:如图1,在梯形ABCD 中,//AD BC ,对角线BC AC ⊥,4AD =cm ,︒=∠45D ,3=BC cm .(1)求B ∠cos 的值;(2)点E 为BC 延长线上的动点,点F 在线段CD 上(点F 与点C 不重合),且满足ADE AFC ∠=∠,如图2,设x BE =,y DF =,求y 关于x 的函数解析式,并写出函数的定义域;(3)点E 为射线BC 上的动点,点F 在射线CD 上,仍然满足ADE AFC ∠=∠,当AFD ∆的面积为2cm 2时,求BE 的长.解析:(1)∵//AD BC ,∴ACB DAC ∠=∠.∵AC BC ⊥,∴90ACB ∠=︒.∴90DAC ∠=︒.∵45D ∠=︒,∴45ACD ∠=︒.∴AD AC =.∵4AD =,∴4AC =.∵3=BC ,∴5AB ==.∴3cos 5BC B AB ∠==.(2)∵//AD BC ,∴ADF DCE ∠=∠.∵AFC FDA FAD ∠=∠+∠,ADE FDA EDC ∠=∠+∠,又AFC ADE ∠=∠,∴FAD EDC ∠=∠.∴ADF DCE ∆~∆.∴AD DF DC CE =.在Rt ADC ∆中,222AC AD DC +=,又4==AC AD ,∴24=DC .∵x BE =,∴3-=x CE .y DF =,∴3244-=x y .22322-=x y .定义域为113<<x .(3)当点E 在BC 的延长线上,由(2)可得:ADF DCE ∆~∆,∴2(DC AD S S DCE ADF =∆∆.∵2AFD S ∆=,4=AD ,24=DC ,∴4=∆DCE S .∵AC CE S DCE ⨯⨯=∆21,∴44)3(21=⨯-⨯BE ,∴5BE =.当点E 在线段BC 上,同理可得:44)3(21=⨯-⨯BE .∴1BE =.所以BE 的长为5或1.角度3:利用锐角三角比法解决动点面积问题例题3:已知在平面直角坐标系xoy (如图)中,抛物线212y x bx c =++经过点(4,0)A 、点(0,4)C -,点B 与点A 关于这条抛物线的对称轴对称;(1)用配方法求这条抛物线的顶点坐标;(2)联结AC 、BC ,求ACB ∠的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为(0)m m >,过点P 作y 轴的垂线PQ ,垂足为Q ,如果QPO BCO ∠=∠,求m 的值;解析:变式5:已知在平面直角坐标系xoy 中,抛物线2(0)y ax bx c a =++>与x 轴相交于(1,0),(3,0)A B -两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12.(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.解析:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =∵90ACD ∠=︒,1tan 2ADC ∠=,∴4CD =,∵0a >,∴()1,4D -(2)设()214y a x =--将1,0x y =-=代入上式,得,1a =所以,这条抛物线的表达为223y x x =--(3)过点F 作FH x ⊥轴,垂足为点H设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==∵223FH x x =--,1AH x =+,∴223112x x x --=+解得172x =,21x =-(舍),∴79,24F ⎛⎫ ⎪⎝⎭巩固1:如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且OBC OAB ∠=∠,3AC =.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF OA ⊥,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 的坐标.解析:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=a a x ,∴OC =1,OA =OC +AC =4,∴点A (4,0).∵∠OBC =∠OAB ,∴tan ∠OAB =tan ∠OBC ,∴OBOC OA OB =,∴OB OB 14=,∴OB =2,∴点B (0,2),∴⎩⎨⎧+-==,8160,2c a a c ∴⎪⎩⎪⎨⎧=-=.2,41c a ∴此抛物线的表达式为221412++-=x x y .(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,设m OF =,得m AF -=4,221412++-=m m DF ,由FG //OB ,得OA AF OB FG =,∴24m FG -=,∴2:524:)22141(2=-++-m m m ,∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45)巩固2:如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD DAF ∆∆∽;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒A C BO yx∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,∴BCD ∆∽DAF∆(2)∵BCD ∆∽DAF ∆,∴BC CD AD AF=∵1BC =,设CD x =,AF y =,∴11x x y=-,∴()201y x x x =-<<(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∴BE BF BC BD=,∵BE BD =,1BC =,∴2BE BF =∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,∴279BE BF ==,∴29AF =∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCDS BE S BC ∆∆==∵1BC =,BE BD =,∴279BD =过点B 作BH AC ⊥于点H ,∵60C ∠=︒,∴BH =16DH =,12CH =当点D 在线段CH 上时,111263CD CH DH =-=-=当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=综上所述,当13x =或23时,79BEF BCD S S ∆∆=.巩固3:在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上一动点,将三角板直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断EAP ∆与PDC ∆一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是EAP ∆周长等于PDC ∆周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.解析:(1)△EAP ∽△PDC①当P 在AD 边上时,如图(1):∵矩形ABCD ,==90D A ∠∠ ,∴1+2=90∠∠据题意=90CPE ∠ ∴3+2=90∠∠ ,∴1=3∠∠,∴△EAP ∽△PDC②当P 在AD 边上时,如图(2):同理可得△EAP ∽△PDC(2)若点P 在边AD 上,据题意:PD x =6PA x =-4DC =AE y =又∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴22613442x x y x x -==-+()06x <<若点P 在边DA 延长线上时,据题意PD x =,则6PA x =-,4DC =,AE y =,∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴()2664x x y x -=>(3)假如存在这样的点P ,使△EAP 周长等于PDC ∆的2倍①若点P 在边AD 上∵△EAP ∽△PDC ∴():6:4EAP PDC C C x =- ,∴()6:42x -=,∴2x =-不合题意舍去;②若点P 在边DA 延长线上,同理得()6:42x -=,∴14x =综上所述:存在这样的点P 满足题意,此时14PD =巩固4:如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.解析:(1)∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C ∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴这个抛物线的解析式为:2142y x x =--顶点为9(1,)2-(2)如图:取OA 的中点,记为点N ∵OA =OC =4,∠AOC =90°∴∠ACB =45°∵点N 是OA 的中点∴ON =2又∵OB =2∴OB =ON又∵∠BON =90°∴∠ONB =45°∴∠ACB =∠ONB∵∠OMB +∠OAB =∠ACB ∠NBA +∠OAB =∠ONB ∴∠OMB =∠NBA1°当点M 在点N 的上方时,记为M 1∵∠BAN =∠M 1AB ,∠NBA =∠OM 1B ,∴△ABN ∽△AM 1B ∴1AN AB AB AM =又∵AN =2,AB =∴110AM =又∵A (0,—4)∴1(0,6)M 2°当点M 在点N 的下方时,记为M 2,点M 1与点M 2关于x 轴对称,∴2(0,6)M -综上所述,点M 的坐标为(0,6)或(0,6)-题型二动点形成的相切问题1.直线和圆相切:圆心到直线距离等于半径构造直角三角形,利用三角比、勾股定理等来表示圆心到直线距离及半径,建立等量关系2.圆和圆相切:两圆半径和等于圆心距.利用平行线分线段成比例、勾股定理、三角比、相似等表示相关线段,建立等量关系角度4:直线与圆相切问题例题4:如图,在ABC ∆中,10,12,AB AC BC ===点E F 、分别在边BC AC 、上(点F 不与点A 、C 重合)//EF AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设FC x =.(1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE DF 、分别交AB 于M 、N ,若MN y =,求y 关于x 的函数关系式并写出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的E 与边AC 1没有公共点时,求x 的取值范围.2一个公共点时,求x 的取值范围.3两个公共点时,求x 的取值范围.AE CB FA B D GC EF变式6:已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AFG AB x S y ∆==,,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.解析:(1)∵点F 为AD 中点,且AD =BC =6,∴AF =3∵矩形ABCD 中,∠ABC =90°,BG ⊥AC 于点E ,∴∠ABE +∠EBC =90°,∠AC ∠EBC =90°∴∠ABE =∠ACB ,∴△ABF ∽△BCF ,∴AB AF BC AB =∴AB =23(2)由(1)可得△ABF ∽△BCF ∴AB AF BC AB =∵AB =x ,BC =6∴AF =62x ;同理可得:CG =x36①当F 点在线段AD 上时DG =CG -CD =x x x x 23636-=-∴S ⊿AFG =1236213x x CG AF -=⋅。

人教版九年级数学上册中考《动点问题》

人教版九年级数学上册中考《动点问题》

F
E
改 一变类为三角a厘形米?/(秒,按经角的过
(P)
(P)
D (Q)
3大秒小后分,类P、)Q分别到达E、
F两点,若△BEF与题
(1)中的△APQ相似, (F) C 综上:当a=2或6或12时,
试求a的值.
△BEF与△APQ相似
开始沿折线A—B—C—D以4厘米/秒的速度移动,⊙Q从点C
开始沿CD以1厘米/秒的速度移动,如果⊙P和⊙Q分别从点A、
C同时出发,当其中一个圆心到达D点时,另一圆也随之停止
运动.设运动时间为t(秒). (2)如果⊙P和⊙Q半径都是2厘米,那么当t为何值时
,⊙P和⊙Q相外切?
20
D
QC
4
A
B
P
当t=4秒、20秒、28秒时20,⊙P和⊙Q相外切
A
的等边三角形,质点P从点A沿AB—BD作
匀速运动,质点Q从点D同时出发沿DC— 3a Q
CB—BA作匀速运动.源自3a(12)如果质问点题(P、1Q)运中 B F
的 动质的点速度P、分Q分别是别同4厘时米沿/
原 秒、路5返厘回米,/秒质点,请P的说速出 度 经不过变12,秒质后点△QAP的Q速 是度哪 3a
防风暴指挥中心发现在O处的热带风暴中心正以100 千米/时的速度沿北偏东30°的OC方向运动,风暴中 心周围200千米内要受影响,现知在O处正北方向320 千米有一城市A,你能否帮指挥中心预测一下:A市 受影响吗?若受影响,受影响的时间为多长 ?
A
C
O
中考专题之——
动态问题探究(一)
例1如图,边长为10cm的正方形ABCD,有一点P 从A出发沿A→B→C→D作匀速运动。求△ADP面 积y与点P移动的距离x之间的函数关系式。

初中数学动点问题归纳

初中数学动点问题归纳动点问题是数学中常见的问题类型之一,它涉及到点在一定规律下的运动轨迹及相关的计算。

在初中数学学习过程中,学生们大多会接触到动点问题,并掌握解决此类问题的方法和技巧。

本文将对初中数学动点问题进行归纳总结,帮助初中学生更好地理解和解决这类问题。

1. 直线运动问题直线运动问题是最基本的动点问题之一。

在这类问题中,点按照直线路径运动,常涉及到时间、距离和速度的关系。

解决直线运动问题时,可以使用速度等于位移除以时间的公式来计算,即 v = s/t。

例子1:小明从家里骑自行车到学校,全程15公里,用时1小时。

求小明的平均速度。

解析:根据公式,平均速度 v = s/t = 15/1 = 15 km/h例子2:小红开车从A市到B市,全程200公里,平均时速60km/h。

求小红从A市到B市的行驶时间。

解析:根据公式,时间 t = s/v = 200/60 = 3.33 小时≈ 3小时20分2. 圆周运动问题圆周运动问题中,点按照圆形轨迹运动。

这类问题通常涉及到半径、圆周长和角度的计算与关系。

解决圆周运动问题时,需要掌握圆周长的计算公式,即 c = 2πr,其中 r 为半径。

例子1:一个半径为5米的圆,它的周长是多少?解析:根据公式,周长c = 2πr = 2 × 3.14 × 5 ≈ 31.4米例子2:一辆汽车在圆形赛道上行驶,赛道半径为100米,驾驶员开车一圈需要用时50秒。

求汽车的平均速度。

解析:首先计算圆周长c = 2πr = 2 × 3.14 × 100 = 628米然后计算平均速度v = c/t = 628/50 ≈ 12.56 m/s3. 直角三角形运动问题直角三角形运动问题是指点在直角三角形内运动,涉及到时间、速度和直角三角形边长的关系。

解决直角三角形运动问题时,可以利用勾股定理或三角函数来计算相关的未知量。

例子1:一个直角三角形的两条边长分别为3米和4米,角度为90度。

九年级数学上册复习专题05一元二次方程围栏问题与动点问题(1)

专题05围栏问题与动点问题【1】围栏问题解题技巧:围墙问题与面积问题相比,因存在围墙的原因,多一个判断未知数取值范围的过程,具体步骤为:①根据题意,列等量关系式;②设未知数;(一般设垂直于墙的边为x,另一半为总长减去垂直于墙的边数乘以x)③列方程;④求解方程;⑤依据围墙的限制,求未知数的取值范围;(0<水平墙的长度≤墙长)⑥根据未知数的取值范围,确定答案。

【2】动点问题解题技巧:解决动点问题的一般方法为:设运动的时间或路程为x,再用含x的代数式表示相关的线段或几何关系,从而建立方程或函数关系。

方法:①首先找出动点的路程所表示线段;②设时间为x(或t);③表示出动点的路程(路程=动点速度×时间x);④表示出剩下的线段长;⑤由题目中的等量关系列方程(面积或者勾股定理列方程);1.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.【答案】详解见解析;不能,理由见解析【解析】【分析】设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,可根据长方形的面积公式即可列方程进行求解.【详解】解:设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,由题意得x(20﹣2x)=50,解得:x1=x2=5,(20﹣2×5)=10(m).围成一面靠墙,其它三边分别为5m,10m,5m的矩形.答:不能围成面积52m2的矩形ABCD场地.理由:若能围成,则可列方程x(20﹣2x)=52,此方程无实数解.所以不能围成一个面积为52m2的矩形ABCD场地.【点睛】本题主要考查了一元二次方程及其实际应用,其中根据题目信息列出相应的方程式是解题的关键.2.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m 长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【答案】30m,20m【解析】【分析】设当茶园垂直于墙的一边长为xm时,则另一边的长度为(69+1﹣2x)m,根据茶园的面积为600m2,列出方程并解答.【详解】设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键.3.如图,要建一个面积为150平方米的长方形仓库,仓库的一边靠墙,这堵墙的长为18米,在与墙平行的一边,要开一扇3米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库与墙垂直的一边应长多少米?【答案】10米【解析】【分析】设垂直于墙的一边长为x 米,结合题意可得到平行于墙的一边长为3223x -+米,再通过面积150平方米列出等式,从而计算得到答案.【详解】设垂直于墙的一边长为x 米,则平行于墙的一边长为()3223x -+米,由题意得()3223150x x ⨯-+=∴22351500x x -+= ∴1152x =,210x = 当10x =时,32231518x -+=< 当152x =时,32232018x -+=>(152x =不符合题意,舍去) ∴这个仓库与墙垂直的一边应长10米.【点睛】本题考察了二元一次方程的知识;求解的关键是熟练掌握二元一次方程并运用到实际问题的求解过程中,即可得到答案.4.如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).()1每个生态园的面积为48平方米,求每个生态园的边长;()2每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.【解析】【分析】(1)设每个生态园垂直于墙的边长为x 米,根据题意可知围栏总长33m ,所围成的图形是矩形,可得平行于墙的边长为()33+1.523x ⨯- 米,由此可得方程为()33+1.523482x x ⨯-=⨯,解方程即可.(2)由(1)可知生态园的面积为:()33+1.523S x x =⨯-,把每个生态园的面积为108平方米代入解析式,然后根据根的判别式来得出答案.【详解】(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣,解得:1=4x 、2=8x (不合题意,舍去),∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米.(2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-< ∴原方程无实数根∴每个生态园的面积不能达到108平方米.故答案为:不能.【点睛】本题主要考查一元二次方程的实际应用,关键是通过题意设出未知数得到平行于墙的边长,要注意每个生态园开有1.5m 的门,然后根据题意列出一元二次方程即可;在解第二问时要注意利用一元二次方程根的判别式来分析. 5.如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的长方形花圃.(1)设花圃的一边AB 为xm ,则BC 的长可用含x 的代数式表示为______m ;(2)当AB 的长是多少米时,围成的花圃面积为63平方米?【答案】(1)30-3x ;(2)7【解析】【分析】(1)由AB 的长为xm ,结合长为30m 的篱笆即可表示出BC 的长为:(30﹣3x )m ;(2)根据AB 及BC 的长可表示出花圃的面积,令该面积等于63,求出符合题意的x 的值,即是所求AB 的长.【详解】解:(1)由题意得:BC =30﹣3x ,故答案为:30﹣3x ;(2)由题意得:﹣3x 2+30x =63.解此方程得x 1=7,x 2=3.当x =7时,30﹣3x =9<10,符合题意;当x =3时,30﹣3x =21>10,不符合题意,舍去;故当AB 的长为7m 时,花圃的面积为63m 2.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.6.某农场要建一个饲养场(长方形ABCD ),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD )的宽为a 米(1)饲养场的长为________米(用含a 的代数式表示)(2)若饲养场的面积为2882m ,求a 的值【答案】(1)603a -;(2)12【解析】【分析】(1)用总长减去3a 后加上三个1米宽的门即为所求;(2)根据矩形的面积公式列出一元二次方程,解方程即可,注意a 的范围讨论.【详解】(1)∵如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,∴饲养场的长为57133603a a +⨯-=-,故答案为:603a -;(2)根据(1)的结论,饲养场面积为()603288a a -=,解得12a =或8a =;当8a =时,60360243627a -=-=>,故8a =不全题意,舍去,当12a =时,6032427a -=<,则12a =;答:a 的值为12.【点睛】本题考查了列代数式、一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.如图,现有长度100米的围栏,要利用一面墙(墙长为25米)建羊圈,BC 的长度不大于墙长。

初中数学相交与平行-动点问题含答案

相交与平行-动点问题一.解答题(共20小题)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.2.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.3.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=______°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为______秒.4.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.5.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.6.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是______°;②当∠BAD=∠ABD时,x=______°;③当∠BAD=∠BDA时,x=______°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.7.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A =∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.8.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.9.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?10.如图①,已知直线l1、l2,直线l3和直线l1、l2交于点C和D,在直线l3上有动点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.(1)问题发现:如果点P在C、D之间运动时,且满足∠1+∠3=∠2,请写出l1与l2之间的位置关系______;(2)拓展探究:如图②如果l1∥l2,点P在直线l1的上方运动时,试猜想∠1+∠2与∠3之间关系并给予证明;(3)问题解决:如果l1∥l2,点P在直线l2的下方运动时,请直接写出∠P AC、∠PBD、∠APB之间的关系.11.已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=______.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.12.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.13.如图,是我们生活中经常接触的小刀,由刀片和刀柄组成,在刀柄ABCD中,∠A和∠B都是直角,在刀片EFGH中,EF∥GH.转动刀片时会形成∠1、∠2,试判断∠1与∠2的度数和是一个定值吗?若是,请求出∠1与∠2的度数和;若不是,请说明理由14.已知直线a∥b,点A在直线a上,点B、C直线b上,点D在线段BC上.(1)如图,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠1=∠2;(2)若点F为线段AB上不与A、B重合的一动点,点H在AC上,FQ平分∠AFD交AC于Q,设∠HFQ=x°,(此时点D为线段BC上不与点B、C重合的任一点),问当α、β,x之间满足怎样的等量关系时,FH∥a?并以此为条件证明FH∥a.15.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过______秒后边OC与边ON互相垂直.(直接写出答案)16.将一副三角板如图所示位置摆放.(1)直接写出∠AOC与∠BOD的大小关系,不需证明;(2)图1中的三角板AOB不动,将三角板COD绕点O旋转至CO∥AB(如图2),判断DO与AB的位置关系,并证明.(3)在(2)的条件下,三角板COD绕点O旋转的过程中,能否使CD⊥AB?若能,求出此时∠AOC的度数;若不能,请说明理由.17.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为______,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为______.(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=______.②猜想∠EPF与∠EQF的数量关系,并说明理由;③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F 满足怎样的数量关系?(直接写出结果)18.如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,求∠ACB的度数;若不存在,请说明理由;(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE 位置关系.19.已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=19°48′,求∠EOC与∠FOD的度数.(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.20.已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=______度;∠FOD=______度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.相交与平行-动点问题参考答案与试题解析一.解答题(共20小题)1.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠G=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.2.解:(1)①∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴=∠ECQ=40°;②∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°又∵∠EGC﹣∠ECG=40°,∴∠EGC=60°,∠ECG=20°∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(80°﹣40°)=20°,∵PQ∥CE,∴∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,①当点G、F在点E的右侧时,则∠ECG=∠PCF=∠PCD=x,∵∠ECD=80°,∴4x=80°,解得x=20°,∴∠CPQ=3x=60°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°﹣3x,∠GCQ=80°+x,∴180°﹣3x=80°+x,解得x=25°,∴∠FCQ=∠ECF+∠ECQ=50°+80°=130°,∴,∴∠CPQ=∠ECP=65°﹣50°=15°.3.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠CBP=t,又∵∠ACB=120°∴∠ACB=∠CAN+∠CBP=120°=180°﹣2t+t,解得:t=60,此时AC与BC共线,不符合题意,或120=2t﹣180+t,解得t=100,如图4中,当∠ACB=120°时,∵∠ACB=∠MAC+∠QBC,∴120°=360°﹣2t+180°﹣t,∴t=140,综上所述,满足条件的t的值为140或100.故答案为:140或100.4.解:(1)如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EM平分∠BEF,FM平分∠EFD,∴∠FEM=∠BEF,∠EFM=∠DFE,∴∠FEM+∠EFM=×180°=90°,∴∠EMF=90°.(2)如图2中,由题意可以假设:∠BEN=4x,∠EFN=3x,∵∠EMF=90°,∠FEM=∠MEB=4x,∴∠EFM=90°﹣4x,∴NFM=∠NFD=3x﹣(90°﹣4x)=7x﹣90°,∵∠MFE=∠MFD,∴90°﹣4x=2(7x﹣90°),∴x=15°,∴∠MFN=15°,∴∠N=90°﹣15°=75°(3)如图3,∵GQ⊥FM,∴∠GFQ+∠FGQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠GFQ=90°﹣∠FGQ.∵FG平分∠HFE,FM平分∠EFD,又∵∠GFQ=∠GFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠GFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠GFQ=180°﹣2(90°﹣∠FGQ)=2∠FGQ,即无论点H在何处都有∠EHF=2∠FGQ.5.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.6.解:(1)如图1,①∵∠MON=48°,OE平分∠MON,∴∠AOB=∠BON=24°,∵AB∥ON,∴∠ABO=24°;②当∠BAD=∠ABD时,∠BAD=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°×3=108°;当∠BAD=∠BDA时,∵∠ABO=24°,∴∠BAD=78°,∠AOB=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°﹣24°﹣78°=54°,故答案为:①24°;②108,54;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=48°,OE平分∠MON,∴∠AOB=24°,∠ABO=66°,①当AC在AB左侧时:若∠BAD=∠ABD=66°,则∠OAC=90°﹣66°=24°;若∠BAD=∠BDA=(180°﹣66°)=57°,则∠OAC=90°﹣57°=33°;若∠ADB=∠ABD=66°,则∠BAD=48°,故∠OAC=90°﹣48°=42°;②当AC在AB右侧时:∵∠ABE=114°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=(180°﹣114°)=33°,则∠OAC=90°+33°=123°.综上所述,当x=24、33、42、123时,△ADB中有两个相等的角.7.解:(1)∵AM∥BN,∴∠A+∠ABC=180°.∴∠ABC=180°﹣∠A=180°﹣108°=72°.(2)与∠ABC相等的角是∠ADC、∠DCN.∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°.∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.∴∠DCN=72°.∴∠ADC=∠DCN=∠ABC.(3)不发生变化.∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.∵BD平分∠EBC,∴∠DBC=∠EBC,∴∠ADB=∠AEB,∴=.8.解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°.9.解:(1)证明:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2,即∠CPD=∠PCA+∠PDB;(2)∠CPD=∠PCA﹣∠PDB.理由:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠EPC,∵∠3=∠EPC﹣∠EPD,∴∠3=∠1﹣∠2,即∠CPD=∠PCA﹣∠PDB;(3)∠CPD=∠PDB﹣∠PCA.证明:如图3,设直线AC与DP交于点F,∵∠PF A是△PCF的外角,∴∠PF A=∠1+∠3,∵a∥b,∴∠2=∠PF A,∴∠2=∠1+∠3,∴∠3=∠2﹣∠1,即∠CPD=∠PDB﹣∠PCA.10.证明:(1)如图①,延长BP交AC于E,∵∠2=∠1+∠3,∠2=∠1+∠AEP,∴∠3=∠AEP,∴l1∥l2,故答案为:l1∥l2;(2)如图②所示,当点P在线段DC的延长线上时,∠1+∠2=∠3,理由是:∵l1∥l2,∴∠CEP=∠3∵∠CEP=∠1+∠2,∴∠1+∠2=∠3;(3)如图③所示,当点P在直线l2的下方运动时,∠APB+∠PBD=∠P AC.理由:过点P作PF∥l1,∠FP A=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠FP A=∠2+∠FPB=∠2+∠3;即∠APB+∠PBD=∠P AC.11.解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.12.解:(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°.又∵∠COD=90°,∴∠AOD=∠AOC+∠COD=30°+90°=120°.(2)∵∠AOB+∠COD+∠BOC+∠AOD=360°,∠AOB=90°,∠COD=90°,∠BOC=70°,∴∠AOD=360°﹣∠AOB﹣∠COD﹣∠BOC=360°﹣90°﹣90°﹣70°=110°.(3)猜想:∠AOD+∠BOC=180°.理由:如图①∵∠AOD=∠AOC+∠COD=∠AOC+90°,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∠AOC=∠BOD,∴∠AOD+∠BOC=180°.13.解:∠1与∠2的度数和是一个定值,∠1+∠2=90°.如图,过点B作BP∥EF,则∠1=∠ABP.∵EF∥GH,∴BP∥GH,∴∠2=∠PBC,∵∠ABP+∠PBC=90°,∴∠1+∠2=90°.14.(1)证明:∵a∥b,∴∠2=∠ABD.∵AB平分∠MAD,AC平分∠NAD,∴∠BAC=90°.∵DE⊥AC,∴∠DEC=90°,∴AB∥DE,∴∠ABD=∠1,∴∠2=∠1;(2)解:当β﹣α=4x时,FH∥a.理由:∵a∥b,∴∠α=∠ABD.∵∠AFD是△BDF的外角,∴∠ABD+∠β=∠AFD,即α+β=∠AFD.∵FQ平分∠AFD交AC于Q,∴∠AFQ=∠DFQ=(α+β).∵∠AFQ=∠AFH+x=∠DFH﹣x,∴∠DFQ﹣∠AFH=2x.∵β﹣α=4x,∴α+β﹣∠AFH=β﹣α,∴∠AFH=α,∴FH∥a.15.解:(1)在△CEN中,∠CEN=180°﹣30°﹣45°=105°;(2)如图②,∵∠CON=5∠DOM∴180°﹣∠DOM=5∠DOM,∴∠DOM=30°∵∠OMN=60°,∴MN⊥OD,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(3)如图③,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷5°=15秒,或t=255°÷5°=51秒;所以,在旋转的过程中,三角板MON运动15秒或51秒后直线MN恰好与直线CD平行.(4)MN⊥CD时,旋转角的角度差上90°,所以90°÷(20°﹣10°)=9秒,故答案为:9.16.(1)解:如图1,∠AOC=∠BOD,理由是:∵∠DOC=∠AOB=90°,∴∠DOC﹣∠AOD=∠AOB﹣∠AOD,∴∠AOC=∠BOD;(2)如图2,DO⊥AB,证明:∵CO∥AB,∠COD=90°,∴∠NMD=∠COD=90°,∴DO⊥AB;(3)如图3,解:能使CD⊥AB,理由是:∵CD⊥AB,∴∠ANQ=90°,∵∠A=30°,∴∠AQN=180°﹣90°﹣30°=60°,∴∠CQO=∠AQN=60°,∵∠C=45°,∴∠AOC=180°﹣∠CQO﹣∠C=180°﹣60°﹣45°=75°.17.解:(1)如图1,过点P作PH∥AB,则∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,故答案为:∠EPF=∠AEP+∠PFC;同理可得:∠AEP+∠EPF+∠PFC=360°,故答案为:∠AEP+∠EPF+∠PFC=360°;(2)①∠EPF=60°,则∠EQF=150°,由(1)知∠PEA+∠PFC=∠P=60°,而∠PFC+2β=180°,∠PEA+2α=180°,故α+β=150°=∠EQF,故答案为150°;②如图3,QE,QF分别平分∠PEB和∠PFD,设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),∠Q=α+β,即:∠EPF+2∠EQF=360°;③同理可得:∠Q1=(α+β),∠Q2=(α+β),∠Q2018=()2018(α+β),故:∠EPF+22019•∠EQ2018F=360°.18.解:(1)存在,有两种情况:①当BC平分∠ABO时,如图1,∵∠AOB=90°,∴∠BAO+∠ABO=90°,∵AC平分∠BAO,BC平分∠ABO,∴∠BAC=,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠BAO+∠ABO)=45°,∴∠ACB=180°﹣45°=135°;②如下图,当CB平分∠ABN时,∵∠ABN=90°+∠BAO,∵AC平分∠BAO,∴2∠ABE=90°+2∠CAB,∴∠ABE=45°+∠CAB,∴∠ACB=∠ABE﹣∠CAB=45°,综上,∠ACB的度数为45°或135°;(2)如图②,∵∠AOB=∠P=90°,∴∠OAP+∠OBP=180°,∴∠OAP+∠OBP=90°,∵AD平分∠OAP,BE平分∠OBP,∴∠OAD=∠OAP=90°﹣,∠OBE=∠OBP,∵∠OBE+∠OEB=90°,∴∠OEB=90°﹣∠OBE=90°﹣∠OBP,∴∠OAD=∠OEB,∴AD∥BE;(3)∵∠AOB=∠APB=90°,∴点P一直在以AB为直径的圆上,当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE,理由是:∵∠OAP=∠OBP,∵AD平分∠OAP,BE平分∠OBP,∴∠P AD=∠OAP,∠DBE=∠OBP,∴∠P AD=∠DBE,∵∠ADP=∠BDG,∴∠APB=∠AGB,∴AD⊥BE.19.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°﹣19°48′=89°60°﹣19°48′=70°12′,∠AOD=180°﹣19°48′=160°12′,∵OF平分∠AOD,∴∠FOD=∠AOD=×160°12′=80°6′;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t﹣4t=360﹣150,t=35,答:当射线OE与射线OF重合时至少需要35秒;(3)设射线OE转动的时间为t秒,由题意得:10t+90+4t=360﹣150或10t﹣(360﹣150)+4t=90或360﹣10t=4t﹣120,t=或或.答:射线OE转动的时间为t=秒或秒或秒.20.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=或或或.答:射线OE'转动的时间为秒或秒或秒或秒.。

初中数学数轴动点问题经典

初中数学数轴动点问题经典
初中数学中的数轴动点问题是一个常见的问题类型,主要考察学生对于数轴、坐标系以及速度、时间等概念的理解和应用。

以下是一些经典的数轴动点问题:
1. 相遇问题:两个动点在数轴上分别从A、B两点同时向对方移动,求何时何地相遇。

示例:点A从原点出发,以每秒3个单位的速度向左移动,点B从
表示数2的点出发,以每秒1个单位的速度向右移动,求A、B两点相遇的点。

2. 追及问题:一个动点追赶另一个动点,求何时追上。

示例:点A从表示数-1的点出发,以每秒2个单位的速度向右移动,点B从表示数5的点出发,以每秒1个单位的速度向左移动,求A追上B
的时间和位置。

3. 速度与加速度问题:一个动点在数轴上移动,其速度随时间变化,求某时刻的位置或某段时间内的位移。

示例:点A从表示数-3的点出发,初始速度为每秒2个单位,并在接下来的2秒内,速度每秒增加1个单位,求2秒末A的位置。

4. 周期性移动问题:一个动点在数轴上按照某种周期性规律(如正弦、余弦函数)移动,求某时刻的位置或某段时间内的位移。

示例:点A从表示数0的点出发,按照正弦函数的规律上下移动,求5秒内A经过的路径长度。

5. 角度与距离问题:一个动点在数轴上以某个角度和速度移动,求某时刻的位置或某段时间内的位移。

示例:点A从表示数1的点出发,以每秒30°的速度顺时针旋转,求3秒后A移动的距离。

解决这类问题的关键是理解并应用数轴上的距离、速度和时间的关系,以及速度、加速度等物理概念在数学上的表达。

同时,还需要有一定的几何直觉和代数运算能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档