乱谈磁控溅射

乱谈磁控溅射
乱谈磁控溅射

磁控溅射技术是目前最重要的工业化大面积真空镀膜技术之一。溅射技术的历史发展如图3-1所示,从中可以看出发展的驱动力主要来自:降低工艺成本、解决工艺难题和满足进一步提高薄膜性能的工艺参数优化。前者关注于靶材利用率、沉积速率、薄膜均匀性以及溅射过程稳定性等方面的问题;后者由于低能离子轰击在薄膜沉积过程中的重要作用,主要要求增加溅射原子离化率和能独立控制/调节微观等离子体工艺参数等,以更好地满足实际镀膜工艺中的多种需求。

其中,HIPIMS:高功率脉冲磁控溅射high power impulse magnetron sputtering,MFMS:中频磁控溅射middle frequency magnetron sputtering,CFUBMS:闭合场非平衡磁控溅射closed field unbal anced magnetron sputtering,UBMS:非平衡磁控溅射unbalanced magnetron sputtering,IBAMS:离子束辅助磁控溅射ion beam aiding magnetron sputtering,HCM:空心阴极磁控溅射hollow cath ode sputtering,ICPMS:感应耦合等离子磁控溅射inductively coupled plasma magnetron sputterin g。

(一)磁控溅射工艺原理

相对于其它的制备工艺(如CVD、PLD、Spray pyrolysis等),磁控溅射是目前制备薄膜最为常用的方法之一。概括起来磁控溅射主要具有如下优点[20]:

●??????? 较低的制备温度(可室温沉积);

●??????? 较高的成膜质量,与衬底附着力好;

●??????? 可控性好,具有较高的沉积速率;

●??????? 可溅射沉积具有不同蒸汽压的合金与化合物;

●??????? 成本较低,重复性好,可实现规模化大面积生产。

本贴对一般性溅射过程原理部分从略,其详细介绍可参考文献[147-150],而主要结合制备AZO薄膜的情况,重点对磁控靶构造、磁路设计和部分表观工艺参数(external paramet ers)与微观/等离子体参数(plasma parameters)的关系做一简要评述。

按照构造的不同,磁控溅射靶可以分为圆柱靶和平面靶两类,制备AZO薄膜通常使用的是平面靶,所以以下重点讨论平面靶。磁控溅射技术的主要原理就是:同时应用一定强度的磁场(~50-200mT,能显著影响电子运动但不影响离子的运动)和电场(负偏压,约几百V),可以将等离子体(主要是电子)约束在靶面附近(形成非均匀等离子体),增加碰撞几率,提高了离化效率,因而能在较低的工作气压(~0.1-10Pa)和电压下就能起弧/维持辉光放电,而且同时减少了电子对基片的轰击,利于实现低温沉积[149];另一方面,这种非均匀等离子体也本质上决定了靶面的非均匀刻蚀以及沉积粒子流量(大致表现为薄膜沉积速率)和能量分布的空间非均匀性,但这可以通过优化磁控靶结构构造、磁场位形强度分布和移动基片等措施,在一定程度上予以改善弥补或尽量达到所需参数。

等离子体微观工艺参数

磁控溅射通常选择“异常辉光放电区”为工作区域,辉光放电典型的等离子体参数如图1(a)所示[20]。其中重要的等离子参数/微观工艺参数主要有: 离子流量/能量/角度分布(Ion flu x/energy/angle distribution)、中性溅射原子流量/能量/角度分布(neutral sputtered atom flu x/energy/angle distribution)、电子温度/密度(Electron temperature/density)、j i /j n比、以及电场电势分布(如图1(b)所示:鞘层压降V dc、等离子体空间电位V p、基片浮点电位V 等)等等。这些参数直接影响决定了沉积薄膜生长、结构性能。

fl

比如典型地,对于反应溅射AZO薄膜,当阴极压降在300~500V,工作气压在10-1~10Pa 时,背景气体Ar平均能量为~0.026eV,密度为1019-1020m-3,鞘层Ar+平均能量在~0.733 V dc[155];氧气压在~10-2量级,密度为1018-1019m-3;电子温度2-5eV;溅射出的原子多数是呈中性的,能量在~1-10eV量级,在基片处的密度在1016-1017m-3量级。

准确的测量出各种等离子体微观工艺参数比较复杂和需要专门的检测仪器[152-153](如Lang muir probes, optical emission spectroscopy, mass and energy spectroscopy)。简化处理,多数研究者表征粒子流量分布采用j i /j n比值这个参数(其中j i值可以用Langmuir探针测得的离子电流密度来推测到,j n值可以根据沉积速率、薄膜密度、原子量计算出来[185]);离子能量分布一方面除了采用专用仪器直接测得,另一方面简单的根据Langmuir探针测得等离子体空间电位和基底浮点电位(或零点位或偏压),取其差值就是近似的平均离子能量[154];而实验难以测量的中性溅射原子能量/流量分布主要可以通过Monte Carlo程序模拟计算得到[155]。

磁控阴极的非平衡度(The unbalance level of a magnetron)

等离子体参数显著地影响着沉积薄膜的生长、显微组织结构及其性能,研究磁控阴极的等离子体特性是非常必要的。重要的等离子参数主要包括基片处饱和离子电流密度J i、电子温度以及电场电势分布(如鞘层压降V dc、等离子体空间电位V p、基片悬浮电位V fl)等。已有研究表明磁控阴极的等离子体特性与其磁场位形分布密切相关。磁控阴极按照磁场位形分布不同,大致可分为平衡态和非平衡磁控阴极[151]。平衡态磁控阴极内外磁钢的磁通量大致相等,两极磁力线闭合于靶面,很好地将电子/等离子体约束在靶面附近,增加碰撞几率,提高了离化效率,因而在较低的工作气压和电压下就能起辉并维持辉光放电,靶材利用率相对较高,但由于电子沿磁力线运动主要闭合于靶面,基片区域所受离子轰击较小,通常J i在~10-1mA/cm2量级。另一方面,鉴于已有研究表明低能离子轰击对薄膜生长具有非常重要的作用[213],因此,在某些情况下为了得到更佳质量的薄膜,需要进一步增强基片区域的离子轰击强度以及反应气体的离化率。为此在1986年Window等[151]提出了非平衡磁控溅射技术概念,即让磁控阴极外磁极磁通大于内磁极,两极磁力线在靶面不完全闭合,部分磁力线可沿靶的边缘延伸到基片区域,从而部分电子可以沿着磁力线扩展到基片,增加基片区域的等离子体密度和气体电离率,通常J i可以达到~1-10 mA/cm2量级[1 52]。此技术在制备硬质薄膜如TiN等领域得到广泛应用,但同时由于靶面磁力线约束电子能力减弱,等离子体阻抗增加,起辉溅射电压上升;此外,相对地靶材刻蚀跑道变窄,靶材利用率较低。

磁场零点位置和磁场强度分布共同决定磁体系统的非平衡程度。衡量磁控阴极非平衡程度用系数K评价[152];但为方便起见,如图3-2和表3-1所示:常简单地采用几何非平衡度系数K G来度量,即:K G =2Z0/W,其中,Z0为磁场零点(null point)到磁铁上表面的距离,W为两外围磁铁之间距离。

研究[152,153]表明,K G或K与等离子体参数之间存在一定关系。主要结论有:1)

基片处饱和离子电流密度J i随着K G减小(K增大)而增大(其中一定范围内随K是线性增加的),从~10-1mA/cm2

量级增加到~1-10 mA/cm2

量级;2)

空间电位V p、悬浮电位V f也可能随之改变,相应的改变入射粒子能量。这样可以根据镀膜所需J i等等离子体参数确定相应所需的K G或K系数,然后调整磁控阴极的磁路分布即可实现。但需要说明地是,K G的变化即磁场位形变化,同时也影响着磁控阴极伏安特性和靶材的刻蚀跑道范围。

磁控阴极非平衡度的改变主要可通过两种途径:1)改变磁控阴极磁路分布,如磁控阴极内外永磁铁磁场强度比值、形状、几何尺寸、排列位置等,或者用电磁线圈代替磁钢;2)外加电磁线圈,可以放置在磁控阴极的附近或基片处等[152],通过改变电磁线圈电流/位置来控制。实际应用中常采用相关磁场软件模拟来迅捷确定设计所需某一特定非平衡度要求的磁控阴极磁路结构。

磁控溅射过程模拟

近年来一些工作者[161-164]对磁控溅射过程进行了模拟,试图一方面得到等离子体参数/微观工艺参数,如基片处离子流量/能量分布、以及通过实验方法难以测量的中性溅射原子的能量/流量/入射角度分布数据等,以期对溅射薄膜沉积生长得以更深刻的理解;或另一方面作为强有力的设计工具对磁控溅射系统进行优化设计,如改善大面积沉积薄膜均匀性、靶材利用率和控制基片处的等离子参数等。

磁控溅射过程主要分为磁控管磁场位型模拟、等离子体模拟、溅射模拟、粒子输运过程模拟四部分。其中磁场位型模拟主要采用有限元方法(FEM)[161];等离子体模拟常采用Particle-in-cell/Monte Carlo collision (PIC/MCC)方法[162];溅射可以采用MD或者Mo nte Carlo[163]方法;粒子输运过程模拟采用Monte Carlo[155]方法进行模拟。

磁控阴极的靶材利用率

磁控阴极前闭合磁场使得辉光强等离子体约束在闭合磁力线以下,这本征上决定了靶材表面的非均匀刻蚀,即较低的靶材利用率(典型地<30%),随之溅射出的沉积粒子流量和能量的空间不均匀分布,导致沉积薄膜厚度和性能的空间不均匀分布。当前提高磁控阴极靶材利用率的原理主要基于改变靶面闭合磁场位形,方法上大致分为静态方法和动态方法,如图3-3所示:

静态方法主要有优化磁控阴极的结构和“分流设计”(Shunted Design)技术[155]。前者主要包括:1)调整常规磁控阴极的各部分参数[153];2)采用新的磁控阴极结构。如S.Ejima 等[156]提出了一种“磁拱顶”(Magneti c Dome)结构,它能在整个圆形靶面范围内实现靶材的均匀刻蚀,缺点是磁钢排布困难。后者分流设计是通过在靶材和磁极之间一定位置处放置尺寸一定的磁导率薄片,使得靶面附近的磁场分布更加均匀,以提高靶材利用率,延长靶的寿命,并使得溅射过程更加稳定。但这种设计会降低靶面的水平磁场强度,溅射速率会有所下降;同时,导磁片结构参数和安装位置的确定也有一定难度。

动态方法主要是通过移动磁轭和移动磁钢两种方法,其中移动模式又分为旋转和往复移动两种方式。主要原理都是动态地变换靶面闭合磁场分布,以改变靶面强局域等离子体的刻蚀区域,拓宽靶材刻蚀跑道,提高靶材利用率和薄膜均匀性,但是这种方法同时也增加了磁控阴极的结构复杂性以及制造难度。

比如如下图移动磁钢的:

磁控阴极的磁路模拟

如前所说,理想设计流程大致可由上图确定,首先确定设计结构,计算磁控管磁路分布;然后模拟等离子体分布,进而对整个溅射和沉积输运过程进行模拟;最后根据模拟结果(靶面刻蚀轮廓、膜厚均匀性和磁控管的阻抗特性等反馈信息)来分析该设计结构的合理性。若模拟结果合理,则作为最终设计;反之,修改相应的结构参数并重复以上过程。其中首要地就是磁控阴极磁路分布的设计模拟。鉴于目前准确模拟磁控辉光等离子体比较困难,因此很多是采用直接通过FEM磁路模拟结果再加上实际经验来定性判断设计结构的合理性。

磁控阴极的特性很大程度上取决于阴极磁路分布。虽然原理上可以通过特斯拉计测量磁控靶面的磁场分布,但事实上由于存在较大测量误差以及很大的工作量(理想的需要借助三维特斯拉计),因此主要采用磁控阴极电磁场模拟结果来分析设计。电磁场由一组麦克斯韦方程组描述,电磁场的分析/求解也就是寻求麦克斯韦方程组的解。电磁场模拟主要采取两种方法:有限差分法和有限元法。其中有限元法更为常用,有限元(FEM)的基本原理:把求解的区域划分成若干小区域,这些小区域称为“单元”或“有限元”,从而采用线形/非线形方法求解每个小区域,然后把各个小区域的结果总和便得到整个区域的解。目前有很多可以对电磁场进行有限元分析的软件,但多数是比较容易进行2D FEM 模拟,实际要得到准确的信息,理想的需要3D FEM模拟,这个就通常需要就现有的软件进行二次开发。

比如2D FEM模拟示意图

3D FEM模拟示意图

磁场模拟过程中,材料特性取值的选择对模拟结果的准确性具有重要影响。此外其实从技术难度上来说,模拟出常见磁控阴极的磁场分布是比较简单的,没什么值得保密的。关键是知道什么样的磁路分布好,在什么样的工艺条件下需要什么样的磁路分布,具体工艺的考量,这点在要想得到好用合适的磁控阴极的设计制造都需要考虑的。这方面需要很多实践经验外,还需要后续的其他模拟,此外,对工艺方面的深入理解,也是需要的(个人观点)。现在国外有的公司能做到根据软件模拟,不需要每次都实际实践,很快捷的直接得出想要得到的特定阴极设计目标。

比如英国GENCOA,可以做到根据磁场模拟,不经等离子体实际测试,直接计算就可以得到不同状态下的信息,比如溅射靶材刻蚀跑道形貌。个人猜想在模拟软件的编写过程中,应当是以之前大量实践经验做一定修正反馈为前提的:

从上面的帖子内容也可以一定看出,磁控阴极远不是我们以前想象的那么简单,就是几块磁钢加靶体,能点燃辉光,大致溅射跑道比较宽就完了,其中的细节和需要考虑因素很多,才能做出一个好的合适的磁控阴极,这也是一个好的磁控阴极价值所在,也是很多厂家并不怕他人仿造的原因,因为很多东西没有完全理解,是很难仿造成功,换一个工艺条件,用途,另一个尺寸,就会相应的改变一些,而磁路设计等差之毫厘,实际结果就谬以千里了。但是,好像国内大家都对磁控阴极不是太重视;下周将继续就镀膜工艺方面对磁控阴极设计方面的需要大致说说自己的浅显理解,权当抛砖引玉,也望XDJM们就自己的实际感受,谈些这方面的经验和心得,否则自己一个人胡言乱语也不好玩了呵呵。

关于绝缘薄膜的溅射沉积与磁控阴极的设计。

绝缘薄膜的沉积,以前通常是采用RF射频溅射沉积,但是存在一个RF电源昂贵、最大功率、沉积速率、辐射等方面的缺点。所以,人们想到了用反应溅射的方法,采用单质导电靶材加反应气体溅射得到绝缘化合物薄膜,比如氧化物sio2、TiO2、Al2O3等薄膜.。主要目的是,提高沉积速率和可以采用便宜的DC电源。但是在实际应用中,面临着很多棘手的问题,如:

阳极消失问题。

靶中毒问题。

局部打火arcing问题。

沉积速率稳定控制问题。

薄膜组分化学计量比控制问题。

长期工艺薄膜质量重复性问题。

等等。

首先,看阳极消失问题;所谓阳极消失,就是通常我们在溅射过程中,把真空腔体接地做为阳极,磁控靶是阴极,当沉积一段时间后,腔体内表面覆盖上一层绝缘的薄膜后,阳极不导电了,整个电路回路中断了,因此溅射过程不能持续,产生断辉。解决方法,这个现在我们都比较熟悉了,以前有采用隐藏阳极,现在多数自90年代中期德国公司推出中频技术后,采用中频技术可以很好的解决这个问题。如下图示意所示,大家都很熟悉,不再啰嗦。这个主要是电源角度来解决的。

靶中毒问题。当反应气体过量,靶表面,化合物形成的速度高于被溅射的速度时,单质靶面逐渐就会被一层化和物所覆盖,产生所谓靶中毒现象,后果就是辉光不稳定,靶面打火arcing、严重时辉光熄灭,此外,沉积速率也变为非常低,甚至降一个数量级。解决方法,是除了采用脉冲电源有一定的作用外,关键的就是控制反应气体的进量了。对不同的化合物薄膜不一样,这个涉及到气体反馈控制方面才能精确的控制,待后再予以阐述。

打火arcing问题。这里的打火arcing是主要指在使用了中频电源,以及排除靶中毒引起的之外,很多时候仍然发现阴极靶面仍然时常有少量的打火arcing现象。这个产生的原因是:中频电源技术只是解决了阳极消失和磁控靶面刻蚀跑到区电荷释放的问题,而我们知道通常靶面大部分地方是没有被刻蚀的,而这部分同样随着溅射过程的进行,未刻蚀区表面覆盖一层绝缘薄膜,而在上面同样会形成电荷累计,当到一定程度后就会释放,而这个释放

过程表现出来就是arcing打火。这个后果是什么呢,就是沉积所得的薄膜在微观电镜下发觉表面有大颗粒,有点类似电弧离子镀产生的大颗粒一样,示意图可以见下面所示。另一方面,也会造成电源数值的波动,引起工艺的波动,这在需要较高薄膜质量时是要考虑的问题。而这个是大家通常忽略的。

那么它的解决方法呢。这方面就需要从磁控阴极设计的方面考虑了,单纯是采用中频电源技术是不能完全解决的。比如拓宽靶面的刻蚀跑道,采用全靶面刻蚀,如下图所示。或者关注阳极方面的设计,在此不再阐述。

采用全靶面刻蚀,磁控靶面图片:

辉光照片:

靶材刻蚀照片:

以下是引用jack_wl1123

在2007-12-15 21:13:0

0的发言:

兄弟看到你的贴子的确很

好,那小弟有个问题请教一

下,在溅镀过程中时间过久

的话会有一些膜屑脱落,那

个人想法用什么办法可以

将靶材边框和阴极绝缘掉,

中间可以使用什么材料。

谢谢!!

请问你说的边框是指什

么?压条边框吗,就我看到

的通常是和靶材一样都是

处于负电位,有屏蔽罩的情

况下通常不会产生边框溅

射。请问你所使用的阳极部

分是怎么设计的?

溅镀过程中时间过久的话会有一些膜屑脱落,可能需要定时清理和采用立式的构造或许能减少这个影响。

以下是引用r1533在2007-12-17 9:35:00的发言:

仁兄幸苦了,呵呵,我们讨论一下你前面说的话题(平衡溅射和非平衡溅射),用简单的话描述一下就是逃逸出磁场束缚区的二次电子(带能量的)数量的多少,来区分平衡和非平衡的。如果我们采用同样一个磁控靶(不论是平衡还是非平衡的),改变靶面和基片的距离,是否可以得到平衡溅射和非平衡溅射,这是我个人的观点,如有不对的地方还请仁兄指正。

的确,非平衡的效果或初衷是增强基片处的离子轰击强渡。基片靠近磁控阴极靶面也相对的轰击密度增强,但是,很多情况需要考虑薄膜的膜厚均匀性等方面,太近后通常均匀性会显著变差,鱼和熊掌不可兼得,如何确定是个多因素平衡的结果。此外,只是靠调整靶基距,这样所达到增强基片轰击的倍数也是有限的。而调节磁场通常可以在一到两个数量级的变化。关注一个参数,这个是容易的,关键在于知道做什么膜系的时候需要知道什么样的非平衡度比较适合,此外就是如何多方面的性能参数近可能的兼顾,比如通常调非平衡后,磁控阴极的伏安特性、溅射靶材利用率、基片薄膜均匀性等等方面都有所变化或逊色,假如不采取其他措施的话,实际设计时应该需要全面考虑的,当然通常很多用户似乎也没有这个意识,不关心或重视细节这些方面,所有经常性的产生换一台设备就觉得工艺可能大相径庭,很大部分原因就是在此。愚解。

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

磁控溅射制膜技术的原理及应用和发展-郭聪

磁控溅射制膜技术的原理及应用和发展 郭聪 (黄石理工学院机电工程学院黄石 435000) 摘要:磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。探讨了磁控溅射技术在非平衡磁场溅射、脉冲磁控溅射等方面的进步,说明利用新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:非平衡磁控溅射脉冲磁控溅射薄膜制备工艺应用 中图分类号:O484.1 0 前言 薄膜是指存在于衬底上的一层厚度一般为零点几个纳米到数十微米的薄层材料。薄膜材料种类很多,根据不同使用目的可以是金属、半导体硅、锗、绝缘体玻璃、陶瓷等。从导电性考虑,可以是金属、半导体、绝缘体或超导体;从结构考虑,可以是单晶、多晶、非晶或超晶格材料;从化学组成来考虑,可以是单质、化合物或无机材料、有机材料等。制备薄膜的方法有很多,归纳起来有如下几种:1)气相方法制模,包括化学气相淀积(CVD),如热、光或等离子体CVD和物理气相淀积(PVD),如真空蒸发、溅射镀膜、离子镀膜、分子束外延、离子注入成膜等; 2)液相方法制膜,包括化学镀、电镀、浸喷涂等; 3)其他方法制膜,包括喷涂、涂覆、压延、印刷、挤出等。[1] 而在溅射镀膜的发展过程中,新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等。辉光等离子体溅射的基本过程是负极的靶材在位于其上的辉光等离子体中的载能离子作用下,靶材原子从靶材溅射出来,然后在衬底上凝聚形成薄膜;在此过程中靶材表面同时发射二次电子,这些电子在保持等离子体稳定存在方面具有关键作用。溅射技术的出现和应用已经经历了许多阶段,最初,只是简单的二极、三极放电溅射沉积;经过30多年的发展,磁控溅射技术已经发展成为制备超硬、耐磨、低摩擦系数、耐蚀、装饰以及光学、电学等功能性薄膜的一种不可替代的方法,脉冲磁控溅射技术是该领域的另一项重大进展。利用直流反应溅射沉积致密、无缺陷绝缘薄膜尤其是陶瓷薄膜几乎难以实现,原因在于沉积速度低、靶材容易出现电弧放电并导致结构、组成及性能发生改变。利用脉冲磁控溅射技术可以克服这些缺点,脉冲频率为中频10~200kHz,可以有效防止靶材电弧放电及稳定反应溅射沉积工艺,实现高速沉积高质量反应薄膜。 1 基本原理 磁控溅射(Magnetlon Sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射镀膜采用在靶材表面设置一个平行于靶表面的横向磁场,磁场由置于靶内的磁体产生。在真空室中,基材端接阳极极,靶材端接阴极,阴极靶的下面即放置着一个强力磁铁。溅射时持续通入氩气,使之作为气体放电的载体(溅射气体),同时通入氧气,作为与被溅射出来的锌原子发生反应的反应气体。在真空室内,电子e在电场E的作用下,在加速飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子(二次电子)e。Ar+计在电场作用下加速飞向阴极靶,以高能量轰击Zn靶表面使其发生溅射,溅射出来的锌原子吸收Ar离子的动能而脱离原晶格束缚,飞往基材方向,途中与O 2 发生反应并释放部分能量,最后反应产物继续飞行最终沉积在基材表面。我们需要通过不断的实验调整工艺参数,从而 使得溅射出来的历原子能与O 2 充分反应,制得纯度较高的薄膜。另一方面,二次电子在磁场的作用下围绕靶面作回旋运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在

磁控溅射技术进展及应用

摘要:近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:磁控管溅射率非平衡磁控溅射闭合场非平衡磁控溅射自溅射 引言 磁控溅射技术作为一种十分有效的薄膜沉积方法,被普遍和成功地应用于许多方面 1~8,特别是在微电子、光学薄膜和材料表面处理领域中,用于薄膜沉积和表面覆盖层制备。1852年Grove首次描述溅射这种物理现象,20世纪40年代溅射技术作为一种沉积镀膜方法开始得到应用和发展。60年代后随着半导体工业的迅速崛起,这种技术在集成电路生产工艺中,用于沉积集成电路中晶体管的金属电极层,才真正得以普及和广泛的应用。磁控溅射技术出现和发展,以及80年代用于制作CD的反射层之后,磁控溅射技术应用的领域得到极大地扩展,逐步成为制造许多产品的一种常用手段,并在最近十几年,发展出一系列新的溅射技术。 一、磁控溅射镀膜原理及其特点 1.1、磁控溅射沉积镀膜机理磁控溅射系统是在基本的二极溅射系统发展而来,解决二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应明显的问题。磁控溅射系统在阴极靶材的背后放置100~1000Gauss强力磁铁,真空室充入011~10Pa压力的惰性气体(Ar),作为气体放电的载体。在高压作用下Ar原子电离成为Ar+离子和电子,产生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域内,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的结构的溅射相比,离化率迅速增加10~100倍,因此该区域内等离子体密度很高。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶源阳极上。而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材表面的原子吸收Ar+离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的表面飞向基片,并在基片上沉积形成薄膜。溅射系统沉积镀膜粒子能量通常为1~10eV,溅射镀膜理论密度可达98%。比较蒸镀011~

磁控溅射技术的基本原理

张继成吴卫东许华唐晓红 中国工程物理研究院激光聚变研究中心绵阳 材料导报, 2004, 18(4): 56-59 介绍磁控溅射技术的基本原理、装置及近年出现的新技术。 1 基本原理 磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。 磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高。 2 基本装置 (1) 电源 采用直流磁控溅射时,对于制备金属薄膜没有多大的问题,但对于绝缘材料,会出现电弧放电和“微液滴溅射”现象,严重影响了系统的稳定性和膜层质量。为了解决这一问题,人们采用了射频磁控溅射技术,这样靶材和基底在射频磁控溅射过程中相当于一个电容的充放电过程,从而克服了由于电荷积累而引起的电弧放电和“微液滴溅射”现象的发生。 (2) 靶的冷却 在磁控溅射过程中,靶不断受到带电粒子的轰击,温度较高,其冷却是一个很重要的问题,一般采用水冷管间接冷却的方法。但对于传热性能较差的材料,则要在靶材与水冷系统的连接上多加考虑,同时需要考虑不同材料的热膨胀系数的差异,这对于复合靶尤为重要(可能会破裂损坏)。 (3) 磁短路现象 利用磁控溅射技术溅射高导磁率的材料时,磁力线会直接通过靶的内部,发生刺短路现象,从而使磁控放电难以进行,这时需要在装置的某些部分做些改动以产生空间凝

镀膜问题总汇

真空镀膜工艺问题汇总 1.Al2O3打底已增加粘贴性,怎样镀Al2O3溅射镀怎么镀?请问旋转靶磁场加在哪里? 2.一.多弧离子镀做TiAIN膜1.靶材,材质?尺寸?2.偏压,—脉冲,直流对膜有无影响?二.高建钢材质刀具,1.立铣刀的锋利与镀膜前的酸洗工艺存在矛盾。三.多弧炉中结合了磁控柱靶在TiAIN膜制作过程中,可采用或利用其磁控靶的优点进行,四.用高偏压加氢气的辉光放电,是否用对硬膜的形成不利,会影响其硬度吗?是否用离子轰由(加热)来取代此工艺吗?五.靶材中Ti的纯度,对膜质(硬度,外观,粗糙毒等)有无关系?Ti是否对工具镀膜来说是否足够? 六.《真空》杂志中有文章介绍,多弧离子镀中用部分铬靶使TiN膜层中含有铬成分,有助于提高膜的硬度和外观的光亮度等那么能否采用钛铬合金靶,达到其效果?七.TiAl拔能否使其合金化,是否合金化后,在蒸发靶材时,清除或减少熔滴的产生?使其多弧离子镀,并产出的TiAIN膜质光亮,致密。 3.相对来说磁控溅射技术比较深奥些,听的不是太懂之前中设接触过磁控技术书面知识比较理论看不透彻,因为专业知识有限喜欢听笼统一点通俗易懂的。 4.1.如何防止靶的电弧放电问题 2.Si靶Ti靶的氧气是否一定要用压电阀来控制吗? 3.做高反射钳时Si靶Ti 靶的氩气,氧气的比例是多少?4.靶的电弧放电与亮孔是否有联系?5.在同样的工艺条件下,为什么有些会出现膜脱落,有时会出现SiTi膜脱落。 5.镀铝制镜,基片两头打弧,为什么?怎么解决?镀过铝后如何保护? 6.1.由于重复使用的玻璃进行了多次镀膜以后在玻璃表面残存物沉积且由于多次清洗造成玻璃表面划痕增加,最终造成散射光增加反射率降低,如何在不抛光的情况下,改善(提高)反射率?在镀膜工艺上有何可行性的解决方案等!为了增加铅膜和玻璃的粘合度,一般采用什么方法?如果镀一层介质膜,可采用什么材料,不影响反射率?

磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例(薄膜物理大作业论文) 班级:1035101班 学号:1101900508 姓名:孙静

一、前言 镀膜玻璃是一种在玻璃表面上镀一层或多层金属氧化物薄膜,使其具有一种或多种功能的玻璃深加工产品。自七十年代开始,在世界发达国家和地区,传统的单一采光材料—普通建气琳璃,已逐步为具有节能、控光、调温、改变墙体结构以及具有艺术装饰效果的多功能玻璃新产品所替代,如茶色玻璃、中空玻璃、镀膜玻璃等,其中又以镀膜玻璃尤汐引人注目,发展也颇为迅速,如欧洲共同体国家在1985年建筑玻璃总量的三分之二用的是镀膜玻璃,美国镀膜玻璃的市场在八十年代就已达5000万平方米/年,在香港、新加坡、台湾等经济崛起的东南亚国家和地区,镀膜玻璃的使用也日渐盛行。镀膜玻璃作为一种新型的建筑装饰材料已得到了人们普遍的肯定和喜爱。 目前生产镀膜玻璃所采用的方法大体上可分为浸渍法、化学气相沉积法、真空蒸发法、磁控溅射法以及在线镀膜等五种方法。 浸渍法是将玻璃浸人盛有金属有机化合物溶液的槽中,取出后送人炉中加热,去除有机物,从而形成了金属氧化物膜层。由于浸渍法使玻璃两边涂膜,且低边部膜层较厚,同时可供水解盐类不多,因而在国内未得到很好推广。 化学气相沉积法是将金属化合物加热成蒸汽状,然后涂到加热后的玻璃表面上。这种方法由于受到所镀物质的限制,且在大板上也难 真空蒸发法是在真空条件下,通过电加热使镀膜材料蒸发,由固相转化为气相,从而沉积在玻璃表面上,形成稳定的薄膜。此法的不足之处是所镀膜层不太均匀、有疵点、易脱落。只能生产单层金属镀膜玻璃,颜色也难以控制。 磁控溅射法是在真空条件下电离惰性气休,气体离子在电场的作用下,轰击金属靶材使金属原子沉积到玻璃表面上。 在线镀膜一般是在浮法玻璃生产线上进行,如电浮法、热喷涂等方法,目前我国较少使用。 在这些方法中,磁控溅射镀膜法是七十年代末期发展起来的一种先进的工艺方法,它的膜层由多层金属或金属氧化层组成,允许任意调节能量通过率、能量反射率,具有良好的外观美学效果,它克服了其它几种生产方法存在的一些缺点,因而目前国际上广泛采用这一方法。磁控溅射镀膜玻璃已越来越多地被运用于现代建筑并逐渐在民用住宅、汽车、电子等域使用,具有广阔的发展前景。 二、磁控溅射镀膜工艺 (一)工艺原理及特点 磁控溅射是一种新型的高速、低温溅射镀膜方法,它是在专门的真空设备中,借助于高压直线溅射装置进行的。磁控溅射镀膜工艺的原理是:将玻璃送人设有磁控阴极和溅射气体(氮气、氮气或氧气)的真空室内,阴极加负电压,在真空室内辉光放电,产生等离子体,由于金属靶材带负电,等离子体中带正电的气体离子被加速,并以相当于靶极位降U的能量撞击靶面,将金属靶的原子轰出来,使之沉淀在玻璃表面上而形成金属膜。工艺原理如下图所示:

磁控溅射

磁控溅射 1、磁控溅射 磁控溅射是一个磁控运行模式的二极溅射。它与二~四极溅射的主要不同点:一是,在溅射的阴极靶后面设置了永久磁钢或电磁铁。在靶面上产生水平分量的磁场或垂直分量的磁场(例如对向靶),由气体放电产生的电子被束缚在靶面附近的等离子区内的特定轨道内运转;受电场力和磁场力的复合作用,沿一定的跑道作旋轮转圈。靶面磁场对荷电粒子具有约束作用,磁场愈强束缚的愈紧。由于电磁场对电子的束缚和加速,电子在到达基片和阳极前,其运动的路径也大为延长,使局部Ar气的碰撞电离几率大大增加,氩离子Ar+在电场作用下加速,轰击作为阴极的靶材。把靶材表面的分子、原子及离子及电子等溅射出来,提高了靶材的飞溅脱离率。被溅射出来的粒子带有一定的动能,沿着一定的方向射向基体,最后沉积在基体上成膜。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶电源阳极上。 工作气体电离几率的增加和靶材离化率的提高,使真空气体放电时内阻减小,故磁控靶发生溅射沉积时的工作电压较低(多数在4-600V之间),有的工作电压略高(例如>700V),有的工作电压较低(例如300V左右)。磁控溅射发生时,其溅射工作电压主要降落在磁控靶的阴极位降区上。 由于磁控溅射沉积的膜层均匀、致密、针孔少,纯度高,附着力强,可以在低温、低损伤的条件下实现高速沉积各种材料薄膜,已经成为当今真空镀膜中的一种成熟技术与工业化的生产方式。磁控溅射技术在科学研究与各行业工业化生产中得到了迅速发展和广泛应用。

总之,磁控溅射技术就是利用电磁场来控制真空腔体内气体“异常辉光放电”中离子、电子的运动轨迹及分布状况的溅射镀膜的工艺过程。 2、产生磁控溅射的三个条件 磁控气体放电进而引起溅射,必须满足三个必要而充分的条件: (1)第一,具有合适的放电气体压强P:直流或脉冲中频磁控放电,大约在0. 1 Pa~10Pa 左右),典型值为5×10-1Pa;射频磁控放电大约在10-1~10-2Pa。 (2)第二,磁控靶面具有一定的水平(或等效水平)磁场强度B(大约10mT~100mT),典型值为30~50mT,最低也要达到10~20 mT(100~200高斯)。 (3)第三,真空腔体内,具有与磁场正交(或等效正交)的电场V,典型值500~700V。 我们通称以上三条为P-B-V条件。 3、磁控溅射离子镀 (1)在基体和工件上是否施加(直流或脉冲)负偏压,利用负偏压对离子的吸引和加速作用,是离子镀与其它镀膜类型的一个主要区别。蒸发镀时基体和工件上加有负偏压就是蒸发离子镀;多弧镀时基体和工件上加有负偏压就是多弧离子镀;磁控溅射时基体和工件上加有负偏压就是磁控溅射离子镀,这是磁控溅射离子镀技术的一个重要特点。 (2)磁控溅射离子镀是把磁控溅射和离子镀结合起来的技术。在同一个真空腔体内既可实现氩离子对磁控靶材的稳定溅射,又实现了高能靶材离子在基片负偏压作用下到达基片进

磁控溅射玻璃镀膜电源

磁控溅射玻璃镀膜电源 Dr. Dirk Ochs HüTTINGER Elektronik GmbH + Co KG, Freiburg, Germany 黄新盈 深圳市微普真空系统集成有限公司 介绍: 近年来,建筑玻璃市场对Low‐e镀膜玻璃产生了巨大的需求。特别是经济快速增长的中国,印度和东欧地区。目前高档Low‐e主要采用磁控溅射方式镀膜,关于镀膜设备,Low‐E 制造商们关注的是溅射速率,薄膜质量和生产成本。在Low‐E生产中,连续镀膜系统常用的是30‐200KW的直流和中频磁控溅射电源[1,2,3,4]。 对于建筑玻璃镀膜所使用的电源,则要求高精度的过程控制能力,配备强大的打弧管理系统,并提供可调整的参数。能使生产过程中的干扰最大程度的减少,获得最优化的膜层。为了保证溅射速率和产量,生产过程中对电源的打弧管理提出了很高的要求。比如反应溅射低熔点材料,打弧非常容易在靶面上造成孔洞。快速先进的打弧管理,能预防靶面产生的缺陷并且获得更高的功率,意味着安全可靠的获得更高的溅射速率。 应用: 建筑玻璃的主要应用是阳光控制膜,低辐射膜和减反膜。图1是典型的阳光控制膜系。玻璃基板首先沉积了一层厚度在10‐100nm的SnO2。膜厚从10nm从增加到100nm时,颜色则从银色渐变为青铜色,最后是蓝色。在SnO2上还需要沉积CrNx和SnO2膜。一个典型的低辐射膜系图2,开始也是先在玻璃基板上沉积SnO2,起到减反的作用。然后是反射红外线的银层,再沉积阻挡层NiCrOx,和减反层SnO2。

减反的膜系(图3)由一个高折射系数材料和一个低折射系数的材料交替组合而成。常用的高折射系数的材料有ZrO2,Ta2O5和TiO2。低折射系数材料如MgF2,SiO2,或Al2O3。 金属膜通常是用直流电源驱动单个磁控靶溅射。而氧化物和氮化物膜层则使用中频电源,配合孪生磁控靶进行反应溅射。磁控溅射原理如图4所示 首先是工艺气体通入到已经抽空的腔体中。在靶材上施加几百伏的负高压后,在靶面前方产生辉光放电的(起辉)等离子体,工艺气体的离子(通常是氩气)被靶的负高压吸引而撞向靶材,碰撞后将靶材溅射出来。溅射出的材料则沉积在与靶相对的基板上。而对于介质材料的镀膜,如氧化物或氮化物则需要对等离子体额外通入氧气或氮气。孪生靶的两个阴极各自连接到电源的一极。这样的话,当其中一个阴极处于负压溅射状态时,另一个处于正压可以看作是阳极。以一定频率(中频)交替互为阴阳极 。 对于所有的镀膜过程而言,都要对打弧现象进行控制尤其是在高功率密度下,以增加溅

磁控溅射镀膜技术的发展及应用_马景灵

溅射镀膜过程主要是将欲沉积成薄膜的材料制成靶材,固定在溅射沉积系统的阴极上,待沉积薄膜的基片放在正对靶面的阳极上。溅射系统抽至高真空后充入氩气等,在阴极和阳极之间加几千伏的高压,阴阳极之间会产生低压辉光放电。放电产生的等离子体中,氩气正离子在电场作用下向阴极移动,与靶材表面碰撞,受碰撞而从靶材表面溅射出的靶材原子称为溅射原子,溅射原子的能量一般在一至几十电子伏范围,溅射原子在基片表面沉积而后成膜。溅射镀膜就是利用低气压辉光放电产生的氩气正离子在电场作用下高速轰击阴极靶材,把靶材中的原子或分子等粒子溅射出而沉积到基片或者工件表面,形成所需的薄膜层。但是溅射镀膜过程中溅射出的粒子的能量很低,导致成膜速率不高。 磁控溅射技术是为了提高成膜速率在溅射镀膜基础上发展起来的,在靶材表面建立与电场正交的磁场,氩气电离率从0.3%~0.5%提高到了5%~6%,这样就解决了溅射镀膜沉积速率低的问题,是目前工业上精密镀膜的主要方法之一[1]。可制备成磁控溅射阴极靶材的原料很广,几乎所有金属、合金以及陶瓷材料都可以制备成靶材。磁控溅射镀膜在相互垂直的磁场和电场的双重作用下,沉积速度快,膜层致密且与基片附着性好,非常适合于大批量且高效率的工业化生产。 1磁控溅射的工艺流程 在磁控溅射过程中,具体工艺过程对薄膜性能影响很大,主要工艺流程如下[2]:(1)基片清洗,主要是用异丙醇蒸汽清洗,随后用乙醇、丙酮浸泡基片后快速烘干,以去除表面油污;(2)抽真空,真空须控制在2×104Pa以上,以保证薄膜的纯度;(3)加热,为了除去基片表面水分,提高膜与基片的结合力,需要对基片进行加热,温度一般选择 在150℃~200℃之间;(4)氩气分压,一般选择在0.0l~lPa范围内,以满足辉光放电的气压条件;(5)预溅射,预溅射是通过离子轰击以除去靶材表面氧化膜,以免影响薄膜质量;(6)溅射,氩气电离后形成的正离子在正交的磁场和电场的作用下,高速轰击靶材,使溅射出的靶材粒子到达基片表面沉积成膜;(7)退火,薄膜与基片的热膨胀系数有差异,结合力小,退火时薄膜与基片原子相互扩散可以有效提高粘着力。 2磁控溅射镀膜技术的发展 近年来磁控溅射技术发展非常迅速,代表性方法有非平衡磁控溅射、反应磁控溅射及高速溅射等等。 平衡磁控溅射技术:即最传统的磁控溅射技术,将永磁体或电磁线圈放到在靶材背后,在靶材表面会形成与电场方向垂直的磁场。在高压作用下氩气电离成等离子体,Ar+离子经电场加速轰击阴极靶材,靶材二次电子被溅射出,且电子在相互垂直的电场及磁场作用下,被束缚在阴极靶材表面附近,增加了电子与气体碰撞的几率,即增加了氩气电离率,使氩气在低气体下也可维持放电,因而磁控溅射既降低了溅射气体压力,同时也提高了溅射效率及沉积速率[3]。但传统磁控溅射有一些缺点,比如:低气压放电产生的电子和溅射出的靶材二次电子都被束缚在靶面附近大约60mm的区域内,这样工件只能被安放在靶表面50~100mm的范围内。这样小的镀膜区间限制了待镀工件的尺寸,较大的工件或装炉量不适合传统方法。 非平衡磁控溅射技术:这种磁控溅射方法部分解决了平衡磁控溅射的不足,是将靶面的等离子体引到靶前200~300mm的范围内,使阳极基片沉浸在等离子体中,减少了粒子移动的距离,离子束起到辅助沉积的作用[4]。然而单独的非平衡磁控靶在基片上很难沉积出均匀的薄膜层, 为此研究人员开发出了多靶非平衡磁控溅射镀膜系统,弥补了单靶非平衡磁控溅射的不足。 反应磁控溅射:随着表面工程技术的发展,越来越多地用到各种化合物薄膜材料。可以直接使用化合物材料制作的靶材通过溅射来制备化合物薄膜,也可在溅射金属或合金靶材时,通入一定的反应气体,通过发生化学反应制备化合物薄膜,后者被称为反应磁控溅射。一般来说纯金属作为靶材和气体反应较容易得到高质量的化合物薄膜,因而大多数化合物薄膜是用纯金属为靶材的反应溅磁控射来制备的[5]。 中频磁控溅射:这种镀膜方法是将磁控溅射电源由传统的直流改为中频交流电源。在溅射过程中,当系统所加电压处在交流电负半周期时,靶材被正离子轰击而溅射,而处于正半周期时,靶材表面被等离子体中的电子轰击而溅射,同时靶材表面累积的正电荷被中和,打弧现象得到抑制。中频磁控溅射电源的频率通常在10~80kHz之间,频率高,正离子被加速的时间就短,轰击靶材时的能量就低,溅射沉积速率随之下降。中频磁控溅射系统一般有两个靶,这两个靶周期性轮流作为阴极和阳极,一方面减小了基片溅伤;另一方面也消除了打弧现象。 高速溅射与自溅射:随着工业发展和表面工程的需求,高速溅射与自溅射等新型磁控溅射成膜方法成为镀膜领域新的发展趋势。高速溅射能够缩短镀膜时间,提高沉积速率,当溅射速率非常高,以至于在没有惰性气体氩气的情况下也能维持辉光放电,这种溅射方法称为自溅射[6]。高速溅射与自溅射中,被溅射材料的离子、电子化以及减少甚至取消惰性气体,都明显影响薄膜的形成机理,因此,可以制备出特殊性能的薄膜材料。 ①基金项目:河南科技大学实验技术开发基金(SY1112008); 科研创新能力培育基金(2012ZCX017)。  作者简介:马景灵(1970—),女,河南科技大学副教授,博士,E-mail:majingling.student@sina.com。 磁控溅射镀膜技术的发展及应用① 马景灵 任风章 孙浩亮 (河南科技大学材料科学与工程学院 河南洛阳 471023) 摘 要:近年来,随着新材料的开发,尤其是薄膜材料的发展和应用,带动磁控溅射沉积技术的飞速发展,在科学研究领域和工业生产中有着不可替代的重要作用。本文主要介绍了磁控溅射沉积技术的工艺过程及其发展情况,各种主要磁控溅射镀膜技术的特点,并介绍磁控溅射技术在各个领域的主要应用。关键词:磁控溅射 镀膜 辉光放电中图分类号:G4文献标识码:A文章编号:1673-9795(2013)10(b)-0136-02 (下转138页)

磁控溅射镀膜简介

磁控溅射镀膜简介 溅射薄膜靶材按其不同的功能和应用可大致分为机械功能膜相物理功能膜两大类。前者包括耐摩、减摩、耐热、抗蚀等表面强化薄膜材料、固体润滑薄膜材料, 后者包括电、磁、声、光等功能薄膜材料靶材等, 具体应用在玻璃涂层(各种建筑玻璃、ITO透明导电玻璃、家电玻璃、高反射后视镜及亚克力镀膜), 工艺品装饰镀膜, 高速钢刀具镀膜, 切削刀具镀膜, 太阳能反光材料镀膜, 光电、半导体、光磁储存媒体、被动组件、平面显示器、微机电、光学组件、及各类机械耐磨、润滑、生物医学, 各种新型功能镀膜(如硬质膜、金属膜、半导体膜、介质膜、碳膜、铁磁膜和磁性薄膜等) 采用Cr,Cr-CrN等合金靶材或镶嵌靶材,在N2,CH4等气氛中进行反应溅射镀膜,可以在各种工件上镀Cr,CrC,CrN等镀层。纯Cr的显微硬度为425~840HV,CrN为1000~350OHV,不仅硬度高且摩擦系数小,可代替水溶液电镀铬。电镀会使钢发生氢脆、速率慢,而且会产生环境污染问题。 用TiN,TiC等超硬镀层涂覆刀具、模具等表面,摩擦系数小,化学稳定性好,具有优良的耐热、耐磨、抗氧化、耐冲击等性能,既可以提高刀具、模具等的工作特性,又可以提高使用寿命,一般可使刀具寿命提高3~10倍。 TiN,TiC,Al2O3等膜层化学性能稳定,在许多介质中具有良好的耐蚀性,可以作为基体材料保护膜。溅射镀膜法和液体急冷法都能制取非晶态合金,其成分几乎相同,腐蚀特性和电化学特性也没有什么差别,只是溅射法得到的非晶态膜阳极电流和氧化速率略大。

在高温、低温、超高真空、射线辐照等特殊条件下工作的机械部件不能用润滑油,只有用软金属或层状物质等固体润滑剂。常用的固体润滑剂有软金属(Au,Ag,Pb,Sn等),层状物质(MoS2,WS2,石墨,CaF2,云母等),高分子材料(尼龙、聚四氟乙烯等)等。其中溅射法制取MoS2膜及聚四氟乙烯膜十分有效。虽然MoS2膜可用化学反应镀膜法制作,但是溅射镀膜法得到的MoS2膜致密性好,附着性优良。MoS2溅射膜的摩擦系数很低,在0.02~0.05范围内。MoS2在实际应用时有两个问题:一是对有些基体材料如Ag,Cu,Be等目前还不能涂覆;二是随湿度增加,MoS2膜的附着性变差。在大气中使用要添加Sb2O3等防氧化剂,以便在MoS2表面形成一种保护膜。 溅射法可以制取聚四氟乙烯膜。试验表明,这种高分子材料薄膜的润滑特性不受环境湿度的影响,可长期在大气环境中使用,是一种很有发展前途的固体润滑剂。其使用温度上限为5OoC,低于-260oC时才失去润滑性。 MoS2、聚四氟乙烯等溅射膜,在长时间放置后性能变化不大,这对长时间备用、突然使用又要求可靠的设备如防震、报警、防火、保险装置等是较为理想的固体润滑剂。 内容来源:宝钢代理商https://www.360docs.net/doc/fe15266084.html, 欢迎多多交流!!!

光伏材料

光伏材料——硫化锌 邱德鹏 ZnS是II-VI族化合物,为直接带隙半导体材料,室温下带隙约为3.7eV,具有较高的激子束缚能(40meV)[1]。ZnS的研究历史比较长,自从1866年法国化学家Theodore Sidot发现荧光ZnS材料以来,对ZnS的研究已有140多年的历史,但早期的研究主要侧重于ZnS发光及稀磁特性上,对ZnS的制备、掺杂以及将其应用到太阳电池的研究都较少[2]。近年来由于II-VI族二元和三元化合物半导体在太阳电池方面的应用,特别是随着CdS/CdTe薄膜太阳电池转换效率的迅速提高,ZnS薄膜吸引了人们极大的注意,研究人员围绕ZnS薄膜的制备和掺杂开始进行大量的研究工作,并希望能将其集成到太阳电池中,形成新的光电转换器件或是提高现有太阳电池的光电特性[3]。 硫化锌具有两种变形体:高温变体α-ZnS和低温变体β-ZnS,其相变温度为1020℃。α-ZnS为纤锌矿结构,六方晶系,晶格常数为a=0.384nm,c0=0.5180nm,z=2;β-ZnS是闪锌矿结构,面心立方,晶格常数为a=0.546nm,z=4,如图1所示。在自然界中稳定存在的是β-ZnS,常温下很难找到α-ZnS[4]。 图1:硫化锌的两种晶格结构 ZnS的密度为4.30g/cm3,熔点为1050℃,无毒无害,对环境十分友好,其组成元素Zn与S在地球上的储量都较为丰富,开采合成成本低,ZnS具有大规模工业化生产的优势。ZnS作为一种重要的化合物半导体材料,其光电性能优良,禁带宽度较大,使其在短波长半导体激光器、紫外光电探测器等短波处光电器件领域具有巨大的潜在应用价值,被广泛地应用于各种光学和光电器件中,如平板显示器、红外光学窗口材料、发光二极管及太阳电池等领域[5]。 实现ZnS材料n型和p型的高效稳定掺杂,是其在短波长光电器件领域应用的关键。然而,ZnS是一种极性较强的宽禁带半导体,容易产生比较多的施主性本征缺陷(如空位S)。从能带结构看,ZnS的价带顶较低,通常受主能级较深,加上本征施主性缺陷的补偿,高效稳定的p型掺杂不易实现。此外,ZnS的导带底比较高,通常施主能级也偏深,实现低阻n型ZnS掺杂也比较困难。正是由于宽禁带半导体掺杂的这种不对称性和强烈的自补偿效应,使得低阻n型和p型ZnS掺杂非常困难,强烈制约了ZnS在短波长光电器件领域的应用,目前仍没有很好的解决方案[6]。 在太阳电池领域,ZnS主要应用在铜铟镓硒(CIGS)薄膜太阳电池中。近年来,国内外研究人员发现,ZnS可以替代CdS,在CIGS薄膜电池中充当缓冲层,且更有助于提高电池的光电转换效率和太阳电池寿命[7]。Cd、Zn同属IIB 族元素,其化学性质相似,导致其S化物ZnS和CdS的性质也极为相似,但是它们之间性质最明显的不同在于ZnS的光学带隙为3.7eV,高于CdS的2.4eV;从能带匹配的角度说,CdS无疑更具优势,但由于ZnS的禁带宽度更高,因此以ZnS为缓冲层的薄膜在厚度相同的情况下,将比CdS薄膜具有更高的光学透

磁控溅射问题及解决

磁控溅射镀膜工艺六大常见问题点及改善对策: 1.膜层灰暗及发黑 (1)真空度低于0.67Pa。应将真空度提高到0.13-0.4Pa。 (2)氩气纯度低于99.9%。应换用纯度为99.99%的氩气。 (3)充气系统漏气。应检查充气系统,排除漏气现象。 (4)底漆未充分固化。应适当延长底漆的固化时间。 (5)镀件放气量太大。应进行干燥和封孔处理 2.膜层表面光泽暗淡 (1)底漆固化不良或变质。应适当延长底漆的固化时间或更换底漆。 (2)溅射时间太长。应适当缩短。 (3)溅射成膜速度太快。应适当降低溅射电流或电压 3.膜层色泽不均 (1)底漆喷涂得不均匀。应改进底漆的施涂方法。 (2)膜层太薄。应适当提高溅射速度或延长溅射时间。 (3)夹具设计不合理。应改进夹具设计。 (4)镀件的几何形状太复杂。应适当提高镀件的旋转速度 4.膜层发皱、龟裂 (1)底漆喷涂得太厚。应控制在7—lOtan厚度范围内。 (2)涂料的粘度太高。应适当降低。 (3)蒸发速度太快。应适当减慢。 (4)膜层太厚。应适当缩短溅射时间。 (5)镀件温度太高。应适当缩短对镀件的加温时间 5.膜层表面有水迹、指纹及灰粒 (1)镀件清洗后未充分干燥。应加强镀前处理。

(2)镀件表面溅上水珠或唾液。应加强文明生产,操作者应带口罩。 (3)涂底漆后手接触过镀件,表面留下指纹。应严禁用手接触镀件表面。 (4)涂料中有颗粒物。应过滤涂料或更换涂料。 (5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。应更换除尘器,并保持工作环境的清洁 6.膜层附着力不良 (1)镀件除油脱脂不彻底。应加强镀前处理。 (2)真空室内不清洁。应清洗真空室。值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。 (3)夹具不清洁。应清洗夹具。 (4)底涂料选用不当。应更换涂料。 (5)溅射工艺条件控制不当。应改进溅射镀工艺条件

JGP磁控溅射仪操作步骤

JGP –650型双室超高真空多功能磁控溅射系统操作步骤 一、开机前的准备工作: 1、开动水阀,接通冷水,检查水压是否足够大,水压控制器是否起作用,保证水路畅通。 2、检查总供电电源配线是否完好,地线是否接好,所有仪表电源开关是否处于关闭状态。 3、检查分子泵、机械泵油是否到标注线。 4、检查系统所有的阀门是否全部处于关闭状态,确定磁控溅射室完全处在抽真空前封闭状态。 二、换样品过程: 1、先打开真空显示仪,检查溅射室是否处于真空状态,若处于真空状态,首先要放气,室内的大气压与外界的大气压平衡,打开溅射室内的照明灯,看看机械手是否放在靶档板下面,定位锁是否已经抽出时(拔起),才能决定把屏蔽罩升起。 2、按动进步电机升开关,让屏蔽罩缓缓升起,到合适位置为止,当屏蔽罩升到最高位置时,进步电机升开关将不起作用。 3、换样品(靶材)时:松动螺丝,用清洗干净的镊子小心取出靶材,把靶材放到干净的容器内,以防污染;用纱布沾高纯酒精把溅射室清洗干净;放靶材时,一定要让靶材和靶面接触(即靶材必须是一平面,不平者勿用),把靶材放在中心(与靶的边界相距2-3mm.一定要用万用表来测量靶材(正极与靶外壁(负极)要断开,否则将要烧坏;然后把基片放在上面的样品架上(松动螺丝,把基片放在样品架上,然后上紧螺丝)。把样品架卡在转盘上。 4、按动进步电机降开关,让屏蔽罩缓缓下降,当下降到接近溅射室时,一定要把定位仪贴在屏蔽罩壁上,可以用左手按进步电机降开关,右手推动屏蔽罩使其安全降下来,注意千万不要使溅射室上真空圈损坏,一旦真空圈损坏,整个溅射室就无法抽真空,仪器不能正常工作。 三、抽真空过程 1、换好样品后,磁控溅射室、进样室、和分子泵都处于大气状态,插板阀G2

射频磁控溅射详细操作流程与真空系统

磁控溅射操作流程 1、开循环水(总阀、分子泵),放气(两个小金属片打开;旁抽阀;V6)放完气后关闭; 2、开总电源,开腔装样品,开机械泵,抽到10pa以下; 3、开电磁阀,抽到10pa以下,开分子泵(按下绿色start按钮,分子泵加速,显示为400) 时,关旁抽阀,再打开高阀;开溅射室烘烤,将电压调节至75V,烘烤时间为1h; 4、抽到1·10-4pa后,抽管道(缓慢打开V1截止阀,V2阀);打开质量流量计电源,待示 数稳定后,将阀开关拨至“阀控”位置,再将设定旋钮向右调节至最大,待示数变为“0” 时,将阀门开关拨至“关闭”,同时将设定旋钮设定为0; 5、开气瓶(一定要确定阀开关处于“关闭”位置,调节分压阀数值约为0.1mp;待质量流 量计示数稳定后,将阀开关拨至“阀控”位置,调节到所需设定值,如20sccm; 6、开A靶、水冷盘、其他靶的循环水; 7、慢慢讲高阀回调,调节气压至1~3pa,起辉(开总控制电源、A靶射频电源、A靶),调 节功率至60w,(A靶处的tune、load先处于WN状态,要进行调节时,应调节至Auto),调节tune为50%,Load值为10%~20之间(调节后需调回WN状态);再按R.F起辉; 8、将高阀门调至最外,待气压稳定之后预溅射15分钟,在此期间要对齿轮挡板进行定位(先 将小刚圈上提右转放下,然后向外旋转“马达”旁边的齿轮,直到听到“啪”的一声,最后左转上提小刚圈); 9、打开电脑后面右边的三个电源开关,开电脑; 10、实验。调节好实验所需压强、功率、气体等,设置“样品位置”,“样品编号”,“挡板位 置”(样品位置以A靶为标准,样品编号即为此时位于A靶上方样品的编号,挡靶位置在装挡板时就已位于B靶处,所以挡板默认为B靶所在位置,所有参数、位置设定好后即可开始镀膜; 11、每次镀膜完,要对其参数进行设定—应用—运行,待齿轮旋转不动时,用机械手推动挡 板至B靶所在位置(上中下三孔对齐),—确定—两个360°—样品放在E靶—挡板放在B靶—开始。 12、镀膜结束。先关闭电脑,然后关闭R.F,将功率调节至0,依次关闭三个电源(最后关 总溅射电源),关闭气瓶总阀,调节气体质量流量计至最大,待其示数变小为零;关闭分压阀,待流量计示数变为零,关闭质量流量计,依次关闭V2、V1阀,随后关闭高阀,按分子泵Stop键,待其示数降为零,再关闭分子泵电源; 13、依次关闭电磁阀、溅射室机械泵、设备总电源,关闭所有循环水。

磁控溅射技术研究进展

磁控溅射技术研究进展 薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。 1 磁控溅射技术原理 溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。图1所示为平面圆形靶磁控溅射原理。 磁控溅射技术得以广泛的应用是由该技术的特点所决定的。可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。随着磁控溅射技术的发展,发展起了反应磁控

磁控溅射操作流程及注意事项

磁控溅射操作流程及注意事项 一、打开冷却水箱电源()注:水箱电源是设备的总电源。,水压控制器是否起作 用。0.1MPa)检查水压是否足够大(二、放气 2.1 确认磁控溅射室内部温度已经冷却到室温; 2.2 检查所有阀门是否全部处于关闭状态; 2.3 磁控溅射室的放气阀是V2,放气时旋钮缓慢打开,这可以保证进入气流不会太大; 2.4 放气完毕将气阀关紧。 三、装卸试样与靶材 3.1 打开B柜总电源(在B9面板上),电源三相指示灯全亮为正常。 3.2 提升或降落(B4“升”或“降“)样品台要注意点动操作,不要连续操作。 3.3 装卸试样与靶材要戴一次性薄膜手套,避免油污、灰尘等污染。 3.4 磁控靶屏蔽罩与阴极间距为2-3毫米,屏蔽罩与阴极应该为断路状态。 3.5 装载试样要注意试验所用样品座位置与档板上溅射孔的对应,并记录样品座的编号及目前所对应的靶位。 3.6 降落样品台时要注意样品台与溅射室的吻合,并用工业酒精擦洗干净样品台与溅射室的配合面。 四、抽真空 4.1 确认D面板“热电偶测量选择”指示“Ⅰ”时; 4.2 确认闸板阀G2、G4已经关闭; 4.3 打开B4上“机械泵Ⅰ”,再打开气阀V1,开始抽低真空。 4.4 打开B3面板的电源开关,同时关闭“复合”键。可以从B3-1处观察低真空度。(低真空测量下限为0.1Pa)。当真空度小于5Pa可以开始抽高真空。 4.5 关闭气阀V1,打开B4上“电磁阀Ⅰ”(确认听到响声表示电磁阀已开) 4.6 打开B8面板的磁控室分子泵电源,按下“START”键,按下FUNC/DA TA键,数字开始逐步上升,等大于H100.0后打开闸板阀G1,随后分子泵速上升并稳定到H400.0。 4.7 磁控室的高真空度在B2面板显示,不要一直开着高真空的测量,也不要频繁开关, 通常每隔1-2小时可打开观察一次,等示数稳定后再关闭(一般不超过3分钟)。 五、充气 5.1确认高真空度达到了-4、-5的数量级,在充气之前必须关闭高真空计; 5.2 打开A1面板上MFC电源,预热3分钟; 5.3 稍关闭闸板阀G1到一定程度,但不要完全关紧 5.4 打开V4、V6(若是二路进气,V5应和V6同时打开)阀门 5.5 将控制阀扳到“阀控“位置 5.6 打开气瓶阀门,稍旋紧减压阀至压力示数为0.1MPa即可; 5.7 调节MFC阀控的设定(一般在30左右),再进一步关紧闸板阀使得低真空(B3-1)读数接近所需的溅射压强,然后通过微调MFC阀控得到所需的溅射压强。

反应磁控溅射技术的发展情况及趋势

书山有路勤为径,学海无涯苦作舟 反应磁控溅射技术的发展情况及趋势 综述了反应磁控溅射技术的发展情况。分析了模拟反应磁控溅射的Berg 经典模型;详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理及过程;分析了消除迟滞效应和打火现象的各种方法并提出个人的观点;展望了反应磁控溅射技术的发展趋势。 反应磁控溅射是具有一定能量的离子(Ar+)溅射金属或合金靶表面,被溅射出的金属原子和反应气体发生化学反应在基体上形成化合物薄膜。反应磁控溅射技术是目前科研和生产中制备化合物薄膜最常用的方法,能沉积不同种类的化合物,如:氧化物、氮化物、碳化物、氟化物和砷化物等。反应磁控溅射技术的优点是:借助精密的监控设备能快速沉积所需化学配比的化合物薄膜;金靶容易提纯和加工,因此靶材的成本低且所得薄膜的纯度高;金属靶具有良好的热传导性,因此靶的冷却效果较好,即靶能承受较高功率的溅射;反应磁控溅射沉积薄膜时,基体的温度较低(小于3e)。理想的反应溅射应该是在基体上沉积化合物,但是在实际溅射过程中,不仅在基体上沉积了化合物薄膜,同时靶材表面也会和反应气体发生化合反应形成化合物覆盖层,即所说的靶中毒。如反应溅射过程中的不稳定性是较复杂的非线性关系,为了预知和减少前期工艺优化的工作量,于1987 年由Berg 带头的课题组提出了一个依反应气体平衡为依据的模拟反应溅射过程的模型。该模型简单可靠,后来Berg 课题组还有其他国家的研究人员对该模型进行了深入的研究和发展,使模拟结果更趋近于实际的溅射过程。本文详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理,分析了消除迟滞效应和打火现象的各种方法并提出个人的观点,分析了Berg 模型,展望了反应磁控溅射技术的发展趋势。

相关文档
最新文档