磁控溅射

合集下载

磁控溅射

磁控溅射

磁控溅射仪1.磁控溅射原理;磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。

在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似一条摆线。

若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。

随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。

由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。

磁控溅射是入射粒子和靶的碰撞过程。

入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。

在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

2.磁控溅射构造磁控溅射薄膜沉积系统包括:气路、真空系统、循环水冷却系统、控制系统。

其中(1) 气路系统:与PECVD系统类似,磁控溅射系统应包括一套完整的气路系统。

但是,与PECVD 系统不同的是,PECVD系统中,气路中为反应气体的通道。

而磁控溅射系统气路中一般为Ar、N2等气体。

这些气体并不参与成膜,而是通过发生辉光放电现象将靶材原子轰击下来,使靶材原子获得能量沉积到衬底上成膜。

(2) 真空系统:与PECVD系统类似,磁控溅射沉积薄膜前需要将真空腔室抽至高真空。

因此,其真空系统也包括机械泵、分子泵这一高真空系统。

(3) 循环水冷却系统:工作过程中,一些易发热部件(如分子泵)需要使用循环水带走热量进行冷却,以防止部件损坏。

磁控溅射原理详细介绍课件

磁控溅射原理详细介绍课件
种材料的溅射。
氮气(N2)
常与氩气混合使用,用于增加 薄膜的硬度和抗氧化性。
氧气(O2)
用于形成氧化物薄膜,如TiO2 和Al2O3。
选择原则
根据被溅射材料和所需薄膜性 质选择合适的工作气体。
溅射功率与控制
01
02
03
溅射功率
指用于产生溅射的功率, 通常以辉光放电的形式提 供。
控制方法
通过调节辉光放电的电流 或电压来控制溅射功率。
03
放电的物理过程
放电过程中,气体分子在电场中被电离,产生带电粒子,这些带电粒子
在电场中加速运动,与气体分子发生碰撞,使气体分子激发和电离,形
成电子和离子的雪崩效应。
粒子运动与碰撞
带电粒子的运动
在电场中,带电粒子受到电场力 的作用,沿着电场线方向加速运
动。
粒子的碰撞
带电粒子在运动过程中与气体分 子发生碰撞,将动能传递给气体 分子,使气体分子获得足够的能 量以克服束缚力,从原子或分子
磁控溅射原理详细介绍课件
目录
• 磁控溅射原理概述 • 磁控溅射装置与工作原理 • 磁控溅射的物理基础 • 磁控溅射技术参数与控制 • 磁控溅射沉积薄膜性能优化 • 磁控溅射研究前沿与展望
01
磁控溅射原理概述
定义与特性
定义
磁控溅射是一种物理气相沉积技术,通过在真空环境下利用磁场控制电子运动 ,实现高速离子轰击靶材表面,将靶材原子溅射出来并沉积在基材表面形成薄 膜。
工作气体
选择适当的工作气体,如氩气、氮气等,以 获得所需的薄膜性能。
薄膜结构与性能表征
成分分析
通过光谱分析技术确定薄膜的元素组 成。
晶体结构
采用X射线衍射技术分析薄膜的晶体 结构。

磁控溅射原理课件

磁控溅射原理课件

适用材料广泛
磁控溅射可以用于多种金属、非金属 材料的镀膜,满足不同应用需求。
03
磁控溅射过程与机制
磁控溅射过程的物理机制
磁场控制电子运动
在磁控溅射过程中,磁场对电子的运动轨迹起到控制作用,使电子在靶材表面附近区域做回旋运动,延长了电子与气 体分子的碰撞时间,提高了离化率。
高速运动的电子与气体分子碰撞
04
磁控溅射技术的研究与发 展
磁控溅射技术的研究现状
国内外研究概况
磁控溅射技术在国内外的科研机构和 大学中得到了广泛的研究和应用,涉 及材料科学、电子学、光学等领域。
实验研究与理论模拟
当前的研究主要集中在实验研究和理 论模拟两个方面,通过实验验证理论 的预测,同时通过理论模拟指导实验 设计和优化。
阳极
通常为金属材料,与阴极相对 ,用于吸引真空室内的电子。
电源系统
提供直流或交流电,以驱动阴 极和阳极之间的电场。
磁控溅射系统的原理
01
02
03
气体放电
在真空室内,通过电源系 统产生电场,使得气体分 子被电离成带电离子和电 子。
离子加速
带电离子在电场作用下加 速飞向阴极靶材,与靶材 表面原子碰撞并使其溅射 出来。
磁控溅射技术的发展趋势
高效能与环保
随着环保意识的提高和能源的日益紧张,磁控溅射技术正朝着高效能和环保的 方向发展,寻求更低的能耗和更少的废弃物排放。
多功能化
为了满足多样化的需求,磁控溅射技术正朝着多功能化的方向发展,如开发出 适用于不同材料、不同工艺的多功能磁控溅射设备。
磁控溅射技术的前沿问题
新型材料的制备
优良的附着力
由于靶材原子以一定的能量沉积在基片表面,与基片表面 产生较好的附着力。

磁控溅射

磁控溅射

中文名称:磁控溅射英文名称:magnetron sputtering定义:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。

百科名片: 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。

通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。

工作原理:磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。

在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于磁控溅射一条摆线。

若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。

随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。

由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。

磁控溅射是入射粒子和靶的碰撞过程。

入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。

在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

种类磁控溅射包括很多种类。

各有不同工作原理和应用对象。

但有一共同点:利用磁场与电场交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。

所产生的离子在电场作用下撞向靶面从而溅射出靶材。

靶源分平衡和非平衡式,平衡式靶源镀膜均匀,非平衡式靶源镀膜膜层和基体结合力强。

磁控溅射的名词解释

磁控溅射的名词解释

磁控溅射的名词解释磁控溅射是一种现代先进的薄膜制备技术,它利用离子化的金属原子或分子沉积在材料表面形成均匀而致密的薄膜。

这项技术的应用领域广泛,包括电子元件、太阳能电池、显示器、传感器等,具有优异的薄膜质量和高度可控的成膜过程。

磁控溅射的工艺过程如下:首先,将待沉积的金属或合金样品(称为目标材料)放置在真空室中,并设定适当的工艺参数,如沉积速率、温度等。

然后,通过将真空室抽成一定的真空度,以便在真空中进行溅射。

接下来,施加一定强度的磁场,并在目标素材表面附近放置一个靶极。

这样,当氩离子加速到一定能量后,撞击目标材料表面,使得它释放出离子化的金属原子或分子。

最后,这些离子化的金属原子在磁场的作用下,被引导到基板材料表面,形成一层薄膜。

磁控溅射的独特之处在于其高度可控的薄膜成膜过程。

通过调节工艺参数,例如沉积时间、温度、压力和靶极材料等,可以获得不同的薄膜性质,如厚度、硬度、晶粒度等。

此外,磁场的存在使得目标材料释放出的离子在沉积过程中更易定向,使薄膜成膜更加均匀。

这种可控性不仅能够满足各种应用需求,还可以优化薄膜的功能和性能。

磁控溅射技术具有重要意义的一个方面是其在电子工业中的广泛应用。

在集成电路和芯片制造过程中,磁控溅射可以制备金属导线、电极和隔离层等薄膜元件,用于电路的连接和保护。

此外,磁控溅射还可以制备透明导电膜,用于触摸屏、液晶显示器和光伏电池等光电器件。

这些应用不仅要求薄膜成膜的高质量和可控性,还需要满足特定的电学、光学和机械性能标准。

在太阳能电池领域,磁控溅射可以利用其高度可控的薄膜成膜技术制备多层结构的太阳能电池薄膜。

这种薄膜可以有效吸收和转换太阳光的能量,并将其转化为电能。

磁控溅射技术的应用使得太阳能电池具有更高的光电转换效率和更长的寿命,为可再生能源的发展提供了有力支持。

磁控溅射技术也在光学镀膜领域得到广泛应用。

通过沉积抗反射膜、反射膜和分光镜片等薄膜,可以优化光的传输和反射等特性,提高光学设备的性能和效率。

磁控溅射工作原理

磁控溅射工作原理

磁控溅射工作原理
磁控溅射是一种常用的薄膜沉积技术,它利用磁场控制等离子
体中的离子运动,从而实现对靶材的溅射和沉积。

磁控溅射工作原
理主要包括离子轰击、溅射、沉积等过程。

下面将详细介绍磁控溅
射的工作原理。

首先,当工作气体(通常是惰性气体,如氩气)被加热并注入
到真空室中时,气体分子会与电子发生碰撞,从而产生等离子体。

接着,通过在靶材表面施加负电压,离子在电场的作用下加速并轰
击靶材表面,使得靶材表面的原子被击出。

这个过程称为离子轰击。

随后,通过在真空室中设置磁场,可以将离子束聚集并限制在
靶材表面附近,从而增加溅射效率。

在磁场的作用下,离子的轨迹
会呈螺旋状,这样可以使得离子更多地击中靶材表面,并提高溅射
效率。

同时,磁场还可以帮助维持等离子体的稳定性,防止等离子
体扩散到其他区域。

最后,被击出的靶材原子在气体的作用下沉积到基板表面,形
成薄膜。

在沉积过程中,通过控制基板的温度和离子轰击的能量,
可以调控薄膜的结构和性能。

此外,通过改变靶材的成分和形状,
还可以实现对薄膜成分和形貌的调控。

总的来说,磁控溅射工作原理是通过控制离子轰击和溅射过程,实现对薄膜沉积的精确控制。

磁场的作用使得离子束聚集并稳定,
从而提高了溅射效率和沉积质量。

因此,磁控溅射在材料科学和工
程领域有着广泛的应用前景,可以制备出具有特定结构和性能的功
能薄膜材料。

磁控溅射

磁控溅射

磁控反应溅射。

就是用金属靶,加入氩气和反应气体如氮气或氧气。

当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。

若磁铁静止,其磁场特性决定一般靶材利用率小于30%。

为增大靶材利用率,可采用旋转磁场。

但旋转磁场需要旋转机构,同时溅射速率要减小。

冷却水管。

旋转磁场多用于大型或贵重靶。

如半导体膜溅射。

用磁控靶源溅射金属和合金很容易,点火和溅射很方便。

这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。

但若溅射绝缘体如陶瓷则回路断了。

于是人们采用高频电源,回路中加入很强的电容。

这样在绝缘回路中靶材成了一个电容。

但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。

为解决此问题,发明了磁控溅射磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。

通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。

磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。

在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。

若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。

随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。

由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。

磁控溅射是入射粒子和靶的碰撞过程。

入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。

磁控溅射

磁控溅射

溅射镀膜表面工程是将材料表面与基体一起作为一个系统进行设计,利用表面改性技术、处理技术和涂覆技术,使材料表面获得材料本身没有而又希望具有的性能的系统工程。

表面工程师改善机械零件、电子电器元件基质材料表面性能的一门科学和技术。

对于机械零件,表面工程主要用于提高零件表面的耐磨性、耐蚀性、耐热性、抗疲劳强度等力学性能,以保证现代机械在高速、高温、高压、重载以及强腐蚀介质工况下可靠而持续地进行;对于电子电器元件,表面工程主要用于提高元器件表面的电、磁、声、光等特殊物理性能,以保证现代电子产品容量大、传输快、体积小、高转换率、高可靠性;对于机电产品的包装及工艺品,表面工程主要用于提高表面的耐蚀性和美观性,以实现机电产品优异性能、艺术造型与炫丽外表的完美结合;对生物医学材料,表面工程主要用于提高人造骨骼等人体植入物的耐磨性、耐蚀性,尤其是生物相容性,以保证患者的健康并提高生活质量。

表面工程以各种表面技术为基础。

通常表面工程技术分三类,即表面改性、表面处理和表面涂覆技术。

随着表面工程技术的发展,又出现了复合表面工程技术和纳米表面工程技术。

本文将着重介绍溅射镀膜技术。

溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上,即溅射离子都来源于气体放电。

不同的溅射技术所采用的辉光放电方式有所不同。

直流二极溅射利用的是直流辉光放电;三极溅射是利用热阴极支持的辉光放电;射频溅射是利用射频辉光放电;磁控溅射是利用环状磁场控制下的辉光放电。

溅射是在辉光放电中产生的,因此,辉光放电是溅射的基础。

辉光放电是在真空度约为10-1 Pa的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。

在一定气压下,当阴阳极间所加交流电压的频率增高到射频频率时,即可产生稳定的射频辉光放电。

一般,在5-30 MHz的射频溅射频率下,将产生射频放电。

射频辉光放电有两个重要的特征:第一,在辉光放电空间产生的电子获得了足够的能量,足以产生碰撞电离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁控溅射1、磁控溅射磁控溅射是一个磁控运行模式的二极溅射。

它与二~四极溅射的主要不同点:一是,在溅射的阴极靶后面设置了永久磁钢或电磁铁。

在靶面上产生水平分量的磁场或垂直分量的磁场(例如对向靶),由气体放电产生的电子被束缚在靶面附近的等离子区内的特定轨道内运转;受电场力和磁场力的复合作用,沿一定的跑道作旋轮转圈。

靶面磁场对荷电粒子具有约束作用,磁场愈强束缚的愈紧。

由于电磁场对电子的束缚和加速,电子在到达基片和阳极前,其运动的路径也大为延长,使局部Ar气的碰撞电离几率大大增加,氩离子Ar+在电场作用下加速,轰击作为阴极的靶材。

把靶材表面的分子、原子及离子及电子等溅射出来,提高了靶材的飞溅脱离率。

被溅射出来的粒子带有一定的动能,沿着一定的方向射向基体,最后沉积在基体上成膜。

经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶电源阳极上。

工作气体电离几率的增加和靶材离化率的提高,使真空气体放电时内阻减小,故磁控靶发生溅射沉积时的工作电压较低(多数在4-600V之间),有的工作电压略高(例如>700V),有的工作电压较低(例如300V左右)。

磁控溅射发生时,其溅射工作电压主要降落在磁控靶的阴极位降区上。

由于磁控溅射沉积的膜层均匀、致密、针孔少,纯度高,附着力强,可以在低温、低损伤的条件下实现高速沉积各种材料薄膜,已经成为当今真空镀膜中的一种成熟技术与工业化的生产方式。

磁控溅射技术在科学研究与各行业工业化生产中得到了迅速发展和广泛应用。

总之,磁控溅射技术就是利用电磁场来控制真空腔体内气体“异常辉光放电”中离子、电子的运动轨迹及分布状况的溅射镀膜的工艺过程。

2、产生磁控溅射的三个条件磁控气体放电进而引起溅射,必须满足三个必要而充分的条件:(1)第一,具有合适的放电气体压强P:直流或脉冲中频磁控放电,大约在0. 1 Pa~10Pa 左右),典型值为5×10-1Pa;射频磁控放电大约在10-1~10-2Pa。

(2)第二,磁控靶面具有一定的水平(或等效水平)磁场强度B(大约10mT~100mT),典型值为30~50mT,最低也要达到10~20 mT(100~200高斯)。

(3)第三,真空腔体内,具有与磁场正交(或等效正交)的电场V,典型值500~700V。

我们通称以上三条为P-B-V条件。

3、磁控溅射离子镀(1)在基体和工件上是否施加(直流或脉冲)负偏压,利用负偏压对离子的吸引和加速作用,是离子镀与其它镀膜类型的一个主要区别。

蒸发镀时基体和工件上加有负偏压就是蒸发离子镀;多弧镀时基体和工件上加有负偏压就是多弧离子镀;磁控溅射时基体和工件上加有负偏压就是磁控溅射离子镀,这是磁控溅射离子镀技术的一个重要特点。

(2)磁控溅射离子镀是把磁控溅射和离子镀结合起来的技术。

在同一个真空腔体内既可实现氩离子对磁控靶材的稳定溅射,又实现了高能靶材离子在基片负偏压作用下到达基片进行轰击、溅射、注入及沉积作用过程。

整个镀膜过程都存在离子对基片和工件表面的轰击,可有效清除基片和工件表面的气体和污物;使成膜过程中,膜层表面始终保持清洁状态。

(3) 磁控溅射离子镀可以在膜-基界面上形成明显的混合过渡层(伪扩散层),提高膜层附着强度;可以使膜层与工件形成金属间化合物和固熔体,实现材料表面合金化,甚至出现新的晶相结构。

(4)磁控溅射离子镀形成膜层的膜基结合力好、膜层的绕镀性好、膜层组织可控参数多、膜层粒子总体能量高,容易进行反应沉积,可以在较低温度下获得化合物膜层。

(5)磁控溅射离子镀可以消除膜层拄状晶结构,生成均匀的颗粒状晶结构。

4、磁控溅射偏置电压(1)偏置电压的类别:根据磁控溅射基片即工件偏置电压的不同作用,可分为直流负偏压、脉冲负偏压、交流偏压、零偏压与悬浮偏压五个类别。

(2)偏置电压的不同作用在基片上加负偏压后,基-阳极间可产生更大的电场力,可使等离子体中的正离子获得更大的能量和加速度轰击基片和工件;可对从靶材表面被溅射出来的原子或分子团等带电粒子进行某种程度的导向和沉积,绕镀性好;在基片和工件上施加不同的负偏压可以消除基片和工件膜层表面在不同的真空度条件下形成的锥状晶和拄状晶;在工件上施加交流偏压,可以中和绝缘膜层上积累的正电荷,减少和消除工件表面打弧;在工件上施加脉冲偏压,因其占空比可连续调节,可以在一定程度上调节工件表面温升。

基片电位直接影响入射的电子流或离子流。

基片有目的地选择与施加不同的偏压、选择合适的幅值或“占空比”、使其按电的极性接收电子或正离子,不仅可以净化基片,增强薄膜附着力,而且还可以改变薄膜的结晶结构。

基片选用和施加何种偏置电压对溅射、沉积及镀膜的工艺过程和薄膜质量可以产生严重影响。

如果偏压的类别和参数(电流、电压与占空比)选择合适,膜层的品质和性能可以大为改善。

①直流负偏压在基片上加直流负偏压,在基-阳极间可产生更大的电场力,使等离子体中的正离子获得更大的能量和加速度轰击基片和工件;另外,还可以对从靶材表面被溅射出来的原子或分子团等带电离子进行某种程度的导向和沉积。

由于直流负偏压连续无中断,故对基片有一定的加热升温作用。

②脉冲负偏压在基片上加中频脉冲直流负偏压可以改变基片与工件沉积离子束流大小;可以减少基片与工件表面打弧,优化膜层结构,提高膜层附着力;由于占空比可连续调节,可以在一定程度上调节或改变工件表面膜层的温度和加热时间;加中频脉冲负偏压还可以提高各个单脉冲的幅值,提高工件反溅射清洗和镀膜的效果。

加中频脉冲负偏压有利于降低等离子体的内阻,使工作气体离化几率有一定程度的提高。

另外,通过改变中频脉冲直流负偏压数值和占空比大小可以对反应磁控溅射化合物薄膜的颜色及颜色深浅产生影响。

③交流偏压交流偏压分为中频对称双极脉冲偏压、非对称双极脉冲偏压和射频偏置电压几种;因正弦波不存在占空比可调的问题,故正弦波中频偏压与双极矩形脉冲偏压相比优势不明显,实际使用较少。

在工件上施加交流偏压,偏压正负极性来回变换互倒,可以中和绝缘膜层上积累的正电荷,减少和消除工件表面打弧;由于占空比连续可调,可以在一定程度上调节和降低工件表面膜层的温升;特别适合于溅射沉积介质膜层和高品质膜层。

若工件和基体接射频偏置电压,13.56MHZ的高频交流偏压可将工作气体的离花率提高到一个比较高的水平,最后导致靶材离化率的上升和溅射沉积速率的提高;工件和基体接射频偏置电压,可以使溅射沉积膜层光华致密。

但是,如果射频偏置电压过大,轰击靶材离子能量过大,容易造成膜层较大的内应力,导致薄膜的开裂和脱落。

④零偏压与悬浮偏压根据镀膜不同工艺需要,工件和基体可接负极性的直流偏置电压和脉冲直流偏置电压,也可接交流偏置电压(双极脉冲和射频);既可接零电位,也可以悬浮不接(这时基片处于等离子体中自感应偏压值为负十几伏)。

这里需要注意的是两点:第一,零偏置电压,不是没有偏压,不是无的概念;第二,基片悬浮不接任何偏置电压,既不是无偏置电压的概念,又不是零偏置电压的概念。

一般允许耐受温度较低的工件在磁控溅射镀膜时,为了防止工件变形,可以选用“零偏置电压”、“悬浮偏置电压”或选用小占空比低幅值偏置电压。

(3)偏压的两个基本特性不同类别的偏压在镀膜设备的实际使用时,还受到“靶-基距”的共同制约与影响:①恒流型偏压当靶—基距较大,基片位于距靶面较远的弱等离子区内。

其特点是:最初偏流是随负偏压而上升,当负偏压上升到一定程度以后,偏流基本上饱和,处于恒流状态,称为恒流型偏压。

②恒压型偏压“靶-基距”较小,基片位于距靶面较近的强等离子区内;偏流为受正电荷空间分布限制的离子电流。

其特点是:偏流始终随负偏压的上升而上升。

当负偏压上升到一定程度,例如200多伏以后,基本处于恒稳状态,称为恒压型偏压(偏压具体数值与设备的真空条件有关)。

由于“靶-基距”较小,造成基片附近有较高的电子密度,撞击加热基片和工件,致使镀件表面膜层的温度较高。

5、基片与工件的“反溅清洗”(1)将真空金属腔体外壳接地同时接偏压电源输出正极,将基片和工件接偏压电源输出负极,当偏压电源输出的负偏压值足够高,到达的高能离子会将基片和工件表面的原子溅射下来,这种将基材原子溅射下来的过程称为“反溅射”。

反溅射可以在镀件表面形成“伪扩散层”。

可以清除基片和工件表面的氧化层、加工毛刺、油渍和污物,故又称为基片和工件的“反溅清洗”。

(2)基片和工件的“反溅清洗”可以选用500V~1KV左右的直流或单极脉冲电压;反溅完毕,应该将电压改为正常溅射工艺值,达到低温磁控溅射的要求。

(3)除用基片正偏压来轰击清洗真空腔体内的接地构件外,正常溅射镀膜时基片和工件应该避免使用正的偏置电压。

6、基片架设计要求(1)由于基片需要加偏压,一般采用导电金属材料制成。

如果待镀膜的工件是导电材料,只要与基片上的偏压能够连接导电就行了,对基片的机械几何形状无特殊要求。

(2)若待镀膜的工件是玻璃、陶瓷等不导电的绝缘材料,基片架的机械几何形状设计,除了需考虑导电和悬挂、固定工件外,还应考虑如何发挥偏压对金属离子的某种吸引导向作用,兼顾偏压对绝缘材料工件表面薄膜均匀性的影响。

(3)为了兼顾工件表面薄膜的均匀性和多工件镀膜可以一次完成,通常整个基片架设计成旋转式(公转),各圆拄面或立体面工件局部设计成自旋转(自转)结构。

7、反应磁控溅射以金属、合金、低价金属化合物或半导体材料作为靶阴极,在溅射过程中或在基片表面沉积成膜过程中与通入的少量反应气体( 氧、氮、碳氢化合物等)反应生成化合物薄膜和绝缘薄膜(如氧化物或氮化物),沉积在工件表面,这就是反应磁控溅射。

可以通过调节反应磁控溅射中的工艺参数来调控薄膜特性。

反应磁控溅射分为直流反应磁控溅射和交流反应磁控溅射两种。

如果溅射采用的是直流(包括纯直流和脉冲直流)靶电源,这就是直流反应磁控溅射;若溅射采用的是交流(对称或非对称双极脉冲、正弦波或射频)靶电源的,就是交流反应磁控溅射;交流反应磁控溅射电压的频率处于10~80KHZ范围的,称为中频反应磁控溅射;若反应磁控溅射电压的频率为工业射频(如13.56MHZ)的,我们称为射频反应磁控溅射。

射频反应磁控溅射一般不反应溅射沉积绝缘薄膜;绝缘材料可用射频靶电源直接溅射,缺点是靶材的溅射沉积速率较低。

在直流反应磁控溅射镀制绝缘薄膜过程中,反应气体容易在磁控靶面和真空金属腔体内壁反应覆盖一层高阻绝缘介质膜层,造成“阳极消失”和“靶中毒”。

阴极靶面的电荷积累,容易引发弧光放电,导致等离子体放电的不稳定和溅射沉积速率的降低,进而影响薄膜的均匀性及重复性,甚至可能造成磁控靶损坏和工件报废。

直流反应磁控溅射除了会产生“靶中毒”、“阳极消失”现象外,还会出现溅射速率与反应气体流量之间“迟滞现象”。

在直流反应磁控溅射中,可以利用等离子发射光谱监测等离子体中的被溅金属粒子含量,调节反应气体流量使等离子体放电电压或电流稳定,从而使溅射沉积稳定进行。

相关文档
最新文档