高中数学导数经典题型解题技巧(运用方法)(可编辑修改word版)

合集下载

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。

下面是小编为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是: (1)先根据求导公式对函数求出函数的导数; (2)解出令函数的导数等于 0 的自变量; (3)从导数性质得出函数的单调区间; (4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是: (1)首先根据求导法则求出函数的导数; (2)令函数的导数等于 0,从而解出导函数的零点; (3)从导函数的零点个数来分区间讨论,得到函数的单调区间; (4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数 f(x)=x3+3x2+9x+a,分析 f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a 的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令 f’(x)>0,那么解得 x<-1 或者 x>3,也就是说函数在(- ∞ ,-1), (3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

高中数学导数及其应用高考常见题型(含答案)word版

高中数学导数及其应用高考常见题型(含答案)word版

高中数学导数及其应用高考常见题型1、定义在R 上的函数)(x f 满足1)4(=f ,()f x '为)(x f 的导函数,已知)('x f y =的图象如图所示,若两个正数a ,b 满足1)2(<+b a f ,则11++a b 的取值范围是( ) A .)31,51(B .1(,)(5,)3-∞+∞C .)5,31(D .)3,(-∞2、 已知函数()x f x xe =,则'()f x =___(1)x x e +_____;函数()f x 图象在点(0,(0))f 处的切线方程为____y x =___解答 1、(本小题满分14分)已知函数2(1)()a x f x x-=,其中0a >. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若直线10x y --=是曲线()y f x =的切线,求实数a 的值; (Ⅲ)设2()ln ()g x x x x f x =-,求()g x 在区间[1,e ]上的最大值.(其中e 为自然对数的底数)解:(Ⅰ)3(2)()a x f x x -'=,(0x ≠), ……………3分 在区间(,0)-∞和(2,)+∞上,()0f x '<;在区间(0,2)上,()0f x '>.所以,()f x 的单调递减区间是(,0)-∞和(2,)+∞,单调递增区间是(0,2). ………4分(Ⅱ)设切点坐标为00(,)x y ,则002000030(1)10(2)1a x y x x y a x x -⎧=⎪⎪⎪--=⎨⎪-⎪=⎪⎩ ……………7分(1个方程1分)解得01x =,1a =. ……………8分(Ⅲ)()g x =ln (1)x x a x --,则()ln 1g x x a '=+-, …………………9分 解()0g x '=,得1ea x -=,所以,在区间1(0,e )a -上,()g x 为递减函数,在区间1(e ,)a -+∞上,()g x 为递增函数. ……………10分 当1e1a -≤,即01a <≤时,在区间[1,e]上,()g x 为递增函数,所以()g x 最大值为(e)e e g a a =+-. ………………11分当1ee a -≥,即2a ≥时,在区间[1,e]上,()g x 为递减函数,所以()g x 最大值为(1)0g =. ………………12分当11<e<e a -,即12a <<时,()g x 的最大值为(e)g 和(1)g 中较大者;(e)(1)e e 0g g a a -=+->,解得ee 1a <-,所以,e1e 1a <<-时,()g x 最大值为(e)e e g a a =+-, …………………13分e2e 1a ≤<-时,()g x 最大值为(1)0g =. …………………14分 综上所述,当e0e 1a <<-时,()g x 最大值为(e)e e g a a =+-,当e e 1a ≥-时,()g x 的最大值为(1)0g =.2、 (本小题满分14分)已知函数()ln f x x x =. (Ⅰ)求函数()f x 的极值点;(Ⅱ)若直线l 过点(0,1)-,并且与曲线()y f x =相切,求直线l 的方程;(Ⅲ)设函数()()(1)g x f x a x =--,其中a R ∈,求函数()g x 在区间[1,e]上的最小值.(其中e 为自然对数的底数)解:(Ⅰ)()ln 1f x x '=+,0x >, ……………………2分由()0f x '=得1e x =, ……………………3分 所以,()f x 在区间1(0,)e 上单调递减,在区间1(,)e+∞上单调递增. ………………4分所以,1ex =是函数()f x 的极小值点,极大值点不存在. …………………5分(Ⅱ)设切点坐标为00(,)x y ,则000ln y x x =, …………………6分切线的斜率为0ln 1x +,所以,0001ln 1y x x ++=, …………………7分 解得01x =,00y =, …………………8分 所以直线l 的方程为10x y --=. …………………9分 (Ⅲ)()g x =ln (1)x x a x --,则()ln 1g x x a '=+-, …………………10分 解()0g x '=,得1ea x -=,所以,在区间1(0,e )a -上,()g x 为递减函数,在区间1(e ,)a -+∞上,()g x 为递增函数. …………………11分 当1e1a -≤,即1a ≤时,在区间[1,e]上,()g x 为递增函数,所以()g x 最小值为(1)0g =. …………………12分当11<e <e a -,即12a <<时,()g x 的最小值为11(e )e a a g a --=-. ……………13分当1ee a -≥,即2a ≥时,在区间[1,e]上,()g x 为递减函数,所以()g x 最小值为(e)e e g a a =+-. ………………14分综上,当1a ≤时,()g x 最小值为0;当12a <<时,()g x 的最小值1e a a --;当2a ≥时,()g x 的最小值为e e a a +-. 3、(本小题共13分)已知函数2()ln ,()xx f x x x g x e e==-. (Ⅰ)求函数()f x 在区间[1,3]上的最小值;(Ⅱ)证明:对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立. (Ⅰ)解:由()ln f x x x =,可得()ln 1f x x '=+.当1(0,),()0,()x f x f x e'∈<单调递减, 当1(,),()0,()x f x f x e'∈+∞>单调递增. 所以函数()f x 在区间[1,3]上单调递增, 又(1)0f =,所以函数()f x 在区间[1,3]上的最小值为0.(Ⅱ)证明:由(Ⅰ)可知()ln ((0,))f x x x x =∈+∞在1x e=时取得最小值,又11()f ee =-, 可知1()f m e ≥-.由2()x x g x e e =-,可得1'()x xg x e-=.所以当(0,1),'()0,()x g x g x ∈>单调递增, 当(1,),'()0,()x g x g x ∈+∞<单调递减. 所以函数()(0)g x x >在1x =时取得最大值,又1(1)g e=-, 可知1()g n e≤-, 所以对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立.4、(本小题共14分)已知函数32()f x x ax x c =+-+,且2'()3a f =. (Ⅰ)求a 的值;(Ⅱ)求函数)(x f 的单调区间;(Ⅲ)设函数xe x xf xg ⋅-=])([)(3,若函数)(x g 在]2,3[-∈x 上单调递增,求实数c 的取值范围.解:(Ⅰ)由32()f x x ax x c =+-+,得2'()321f x x ax =+-.当32=x 时,得22222'()3()2'()()13333a f f ==⨯+⨯-,解之,得1a =-. ……………………4分 (Ⅱ)因为32()f x x x x c =--+.从而21'()3213()(1)3f x x x x x =--=+-,列表如下:所以)(x f 的单调递增区间是)3,(--∞和),1(∞+;)(x f 的单调递减区间是)1,31(-. ……………………9分(Ⅲ)函数32()(())()x x g x f x x e x x c e =-⋅=--+⋅,有2')(21)()x x g x x e x x c e =--+--+(=2(31)x x x c e --+-, 因为函数在区间]2,3[-∈x 上单调递增,等价于2()310h x x x c =--+-≥在]2,3[-∈x 上恒成立, 只要0)2(≥h ,解得11c ≥,所以c 的取值范围是11c ≥. ……………………14分5、(本小题满分13分)已知函数2()ln 20)f x a x a x=+-> (. (Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直,求函数()y f x =的单调区间; (Ⅱ)若对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,试求a 的取值范围;(Ⅲ)记()()()g x f x x b b =+-∈R .当1a =时,函数()g x 在区间1[, ]e e -上有两个零点,求实数b 的取值范围.解: (I) 直线2y x =+的斜率为1.函数()f x 的定义域为(0,)+∞,因为22()a f x x x '=-+,所以22(1)111af '=-+=-,所以1a =. 所以2()ln 2f x x x =+-. 22()x f x x -'=.由()0f x '>解得2x >;由()0f x '<解得02x <<.所以()f x 的单调增区间是(2,)+∞,单调减区间是(0,2). ……………………4分 (II) 2222()a ax f x x x x -'=-+=, 由()0f x '>解得2x a >;由()0f x '<解得20x a <<.所以()f x 在区间2(, )a +∞上单调递增,在区间2(0, )a 上单调递减.所以当2x a =时,函数()f x 取得最小值,min 2()y f a=.因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a>-即可.则22ln 22(1)2a a a a+->-. 由2ln a a a >解得20a e <<. 所以a 的取值范围是2(0, )e. ………………………………8分(III)依题得2()ln 2g x x x b x =++--,则222()x x g x x +-'=.由()0g x '>解得1x >;由()0g x '<解得01x <<.所以函数()g x 在区间(0, 1)为减函数,在区间(1, )+∞为增函数.又因为函数()g x 在区间1[, ]e e -上有两个零点,所以1()0,()0,(1)0. g e g e g -⎧⎪⎨⎪<⎩≥≥解得211b e e<+-≤. 所以b 的取值范围是2(1, 1]e e+-. ………………………………………13分 6、(本小题共13分) 已知函数3211()(0)32f x x ax x b a =+++≥,'()f x 为函数()f x 的导函数. (Ⅰ)设函数f (x )的图象与x 轴交点为A ,曲线y =f (x )在A 点处的切线方程是33y x =-,求,a b 的值; (Ⅱ)若函数()'()axg x e f x -=⋅,求函数()g x 的单调区间.解:(Ⅰ)∵3211()(0)32f x x ax x b a =+++≥, ∴2'()1f x x ax =++. ……………………1分 ∵()f x 在(1,0)处切线方程为33y x =-,∴'(1)3(1)0f f =⎧⎨=⎩, ……………………3分∴1=a ,611-=b . (各1分) ……………………5分 (Ⅱ)'()()ax f x g x e =21axx ax e ++=()x R ∈.'()g x =22(2)(1)()ax axax x a e a x ax e e +-++2[(2)]ax x ax a e -=-+-. ……………………7分 ①当0a =时,'()2g x x =,()g x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ……………………9分②当0a >时,令'()0g x =,得0x =或2x a a=- ……………………10分(ⅰ)当20a ->,即0a <时,()g x 的单调递增区间为22(0,)a a -,单调递减区间为(,0)-∞,22(,)a a-+∞;……11分(ⅱ)当20a a-=,即a ='()g x =2220x x e -=-≤, 故()g x 在(,)-∞+∞单调递减; ……12分(ⅲ)当20a -<,即a >()g x 在22(,0)a a-上单调递增,在(0,)+∞,22(,)a a --∞上单调递 ………13分 综上所述,当0a =时,()g x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;当0a <时,()g x 的单调递增区间为22(0,)a a-,单调递减区间为(,0)-∞,当a =()g x 的单调递减区间为(,)-∞+∞;当a >()g x 的单调递增区间为22(,0)a a-,单调递减区间为(0,)+∞,22(,)a a --∞. (“综上所述”要求一定要写出来)7、(本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围. 解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f x x x =-,11()1x f x-'=-= , ………………………2分………………………3分所以()f x 在1x =处取得极小值1. (4)分(Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分(III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知 ①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0e a h a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分8、(本小题满分13分)已知函数)0(121)1ln()(2>+-++=a ax x x a x f . (Ⅰ)求函数)(x f y =在点(0,(0))f 处的切线方程; (Ⅱ)求函数)(x f y =的单调区间和极值.解:(Ⅰ)(0)1f =,/(1)()11a x x a f x x a x x -+=+-=++, ………………2分 /(0)0f =所以函数)(x f y =在点(0,(0))f 处的切线方程为1y = ………………4分(Ⅱ)函数的定义域为(1,)-+∞令()0f x '=,得(1)01x x a x -+=+解得:0,1x x a ==- …………………5分当1a >时, 列表:可知)(x f 的单调减区间是(0,1)a -,增区间是(-1,0)和(1,)a -+∞; 极大值为(0)1f =,极小值为213(1)ln 22f a a a a -=-+ …………………8分 当01a <<时, 列表:可知)(x f 的单调减区间是(1,0)a -,增区间是(1,1)a --和(0,)+∞; 极大值为213(1)ln 22f a a a a -=-+,极小值为(0)1f = …………………11分 当1a =时, ()0f x '≥可知函数)(x f 在(1,)-+∞上单增, 无极值 …………………13分9、(本小题满分13分)已知函数x x a x f ln )21()(2+-=,()a ∈R .(Ⅰ)当1=a 时,求)(x f 在区间[]1e ,上的最大值和最小值;(Ⅱ)若在区间()1+∞,上,函数)(x f 的图象恒在直线ax y 2=下方,求a 的取值范围.解:(Ⅰ)当1=a 时,x x x f ln 21)(2+=, ∴ xx x x x f 11)(2+=+='. ………2分对于∈x []e ,1,有0)(>'x f ,∴ )(x f 在区间[]e ,1上为增函数.∴ 21)()(2max e e f x f +==,21)1()(min ==f x f . ………5分(Ⅱ)令x ax x a ax x f x g ln 2)21(2)()(2+--=-=,则)(x g 的定义域为 ()+∞,0. ………6分在区间()+∞,1上,函数)(x f 的图象恒在直线ax y 2=下方等价于0)(<x g 在区间()+∞,1上恒成立. ∵ xa x a x g 12)12()(+--='xax x a 12)12(2+--=x x a x ]1)12)[(1(---=, ……8分① 若21>a ,令0)(='x g ,解得:11=x ,1212-=a x . 当112=>x x ,即112a <<时,在()+∞,2x 上有0)(>'x g ,此时)(x g 在区间()+∞,2x 上是增函数,并且在该区间上有()+∞∈),()(2x g x g ,不合题意;当112=<x x ,即1≥a ,同理可知,)(x g 在区间()+∞,1上,有()+∞∈),1()(g x g ,也不合题意; ………10分② 若21≤a 时,则有210a -≤,此时在区间()+∞,1上恒有0)(<'x g , 从而)(x g 在区间()+∞,1上是减函数;要使0)(<x g 在此区间上恒成立,只须满足021)1(≤--=a g 12a ⇒≥-,由此求得a 的范围是⎥⎦⎤⎢⎣⎡-21,21. ………12分 综合①②可知,当a ∈⎥⎦⎤⎢⎣⎡-21,21时,函数)(x f 的图象恒在直线ax y 2=下方. ……………13分10、(本小题满分13分)已知函数2()ln f x a x x=+,a ∈R .(Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线垂直于直线2y x =+,求a 的值; (Ⅱ)求函数()f x 在区间(0, e]上的最小值. 解: (Ⅰ)直线2y x =+的斜率为1.函数()y f x =的导数为22()a f x x x'=-+, 则22(1)111af '=-+=-,所以1a =. ………………………………5分 (Ⅱ)22()ax f x x-'=,x ∈(0,)+∞. ①当0a =时,在区间(0, e]上22()0f x x '=-<,此时()f x 在区间(0, e]上单调递减,则()f x 在区间(0, e]上的最小值为2(e)ef =.②当20a<,即0a <时,在区间(0, e]上()0f x '<,此时()f x 在区间(0, e]上单调递减,则()f x 在区间(0, e]上的最小值为2(e)ef a =+.③当20e a <<,即2e a >时,在区间2(0,)a 上()0f x '<,此时()f x 在区间2(0,)a 上单调递减;在区间2(,e]a 上()0f x '>,此时()f x 在区间2(,e]a 上单调递增;则()f x 在区间(0, e]上的最小值为22()ln f a a a a =+. ④ 当2e a ≥,即20ea <≤时,在区间(0, e]上()0f x ′≤,此时()f x 在区间(0, e]上为单调递减,则()f x 在区间(0, e]上的最小值为2(e)ef a =+.综上所述,当2ea ≤时,()f x 在区间(0, e]上的最小值为2e a +;当2e a >时,()f x 在区间(0, e]上的最小值为2ln a a a+. …………………………………………13分11、(本小题共14分)已知函数32()4f x x ax bx =+++在(,0)-∞上是增函数,在(0,1)上是减函数. (Ⅰ)求b 的值;(Ⅱ)当0x ≥时,曲线()y f x =总在直线24y a x =-上方,求a 的取值范围.解:(Ⅰ)∵32()4f x x ax bx =+++,∴2'()32f x x ax b =++. ……………………2分 ∵()f x 在(,0)-∞上是增函数,在(0,1)上是减函数,∴ 当0x =时,()f x 有极大值,即'(0)0f =, ……………………4分 ∴ 0b =. ……………………6分(Ⅱ)2'()32(32)f x x ax x x a =+=+,∵ ()f x 在(,0)-∞上是增函数,在(0,1)上是减函数, ∴ 213a -≥,即32a ≤-. ……………………8分 ∵曲线()y f x =在直线24y a x =-的上方,设322()(4)(4)g x x ax a x =++--, ……………………9分 ∴在[0,)x ∈+∞时,()0g x >恒成立. ∵ 22'()32(3)()g x x ax a x a x a =+-=-+, 令'()0g x =,两个根为a -,a ,且0aa <<-, ……………………10分∴ 当x a =-时,()g x 有最小值()g a -. ……………………12分 令333()(4)(4)0g a a a a -=-++--->, ∴38a >-,由32a ≤-, ∴ 322a -<≤-. ……………………14分 另解:32()4f x x ax =++,2'()32(32)f x x ax x x a =+=+当a =0时,3()4f x x =+,2'()30f x x =≥,函数()f x 在定义域上为增函数,与已知矛盾,舍;……………………7分当a >0时,由(Ⅰ)知,'()(32)f x x x a =+,函数()f x 在2(,)3a -∞-上为增函数,在2(,0)3a-上为减函数,与已知矛盾,舍; ……………………8分当a <0时,'()(32)f x x x a =+,由已知可得213a <-,∴32a ≤- ……………………9分 设322()(4)(4)g x x ax a x =++--, ……………………10分 ∴ 22'()32(3)()g x x ax a x a x a =+-=-+。

高中数学导数知识点归纳的总结及例题(word文档物超所值)

高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(

函数)(x f 有1个极大值点,1个极小值点
y。

高中数学导数题解题技巧

高中数学导数题解题技巧

高中数学导数题解题技巧导数是高中数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。

在解题过程中,熟练掌握导数的相关技巧是非常重要的。

本文将从常见的导数题型入手,介绍一些解题技巧,帮助高中学生更好地应对导数题。

1. 导数的定义首先,我们需要了解导数的定义。

导数表示函数在某一点处的变化率,可以用极限的概念表示。

对于函数y=f(x),在点x处的导数可以表示为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h这个定义可以帮助我们计算函数在某一点处的导数。

2. 导数的基本性质在解题过程中,我们需要掌握导数的一些基本性质。

首先是导数的线性性质,即对于函数f(x)和g(x),以及常数a和b,有:[f(x) + g(x)]' = f'(x) + g'(x)[a*f(x)]' = a*f'(x)[f(x)*g(x)]' = f'(x)*g(x) + f(x)*g'(x)这些性质可以帮助我们简化导数的计算过程。

3. 常见的导数题型接下来,我们将介绍一些常见的导数题型,并给出相应的解题技巧。

3.1 多项式函数的导数对于多项式函数f(x) = a_n*x^n + a_(n-1)*x^(n-1) + ... + a_1*x + a_0,其中a_i为常数,n为正整数,导数可以通过对每一项求导得到。

例如,对于函数f(x) = 3x^2 + 2x + 1,求导后得到:f'(x) = 6x + 2在求导过程中,注意常数项的导数为0。

3.2 指数函数的导数指数函数f(x) = a^x,其中a为正实数且不等于1,导数可以通过对指数部分求导得到。

例如,对于函数f(x) = 2^x,求导后得到:f'(x) = ln(2) * 2^x其中ln表示自然对数。

3.3 对数函数的导数对数函数f(x) = log_a(x),其中a为正实数且不等于1,导数可以通过对函数取导数得到。

(word完整版)导数结合洛必达法则巧解高考压轴题.doc

(word完整版)导数结合洛必达法则巧解高考压轴题.doc

导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。

2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。

则不适用,应从另外途径求极限。

洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。

(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。

x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。

x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。

高考数学题型归纳之导数题型解题方法

高考数学题型归纳之导数题型解题方法

高考数学题型归纳之导数题型解题方法高考数学题型归纳之导数题型解题方法导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

要练说,先练胆。

说话胆小是幼儿语言发展的障碍。

不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆这个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。

二是注重培养幼儿敢于当众说话的习惯。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。

高中导数题解题技巧

导数题的解题技巧【命题趋向】导数命题趋势:导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用. 【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2006年辽宁卷)与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为A.ln(1y =B.ln(1y =C. ln(1y =-D. ln(1y =-[考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力 [解答过程]2221(0)(1)x x x y e e x e y =-+≥⇒-=,0,1x x e ≥∴≥,即:1ln(1x e x ==,所以1()ln(1f x -=. 故选A.例2. ( 2006年湖南卷)设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.(2004年重庆卷)已知曲线y =31x 3+34,则过点P (2,4)的切线方程是_____________.思路启迪:求导来求得切线斜率.解答过程:y ′=x 2,当x =2时,y ′=4.∴切线的斜率为4.∴切线的方程为y -4=4(x -2),即y =4x -4. 答案:4x -y -4=0.例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= [考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8. 设y f x =()为三次函数,且图象关于原点对称,当x =12时,f x ()的极小值为-1,求出函数f x ()的解析式.思路启迪:先设f x ax bx cx d a ()()=+++≠320,再利用图象关于原点对称确定系数. 解答过程:设f x ax bx cx d a ()()=+++≠320,因为其图象关于原点对称,即f x ()-=-f x (),得ax bx cx d ax bx cx d b d f x ax cx3232300+++=-+-∴===+,,,即() 由f x ax c '()=+32,依题意,f a c '()12340=+=,f a c()121821=+=-, 解之,得a c ==-43,.故所求函数的解析式为f x x x ()=-433.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。

高中数学经典解题技巧(导数小技巧)

高中数学经典的解题技巧和方法(导数小技巧)首先,解答导数及其应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.导数概念及其几何意义 (1)了解导数概念的实际背景。

(2)理解导数的几何意义。

2.导数的运算(1)能根据导数定义求函数231(),,,,,y C C y x y x y x y y x======为常数 (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

(3)能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数。

3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。

(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。

4.生活中的优化问题 会利用导数解决某些实际问题 5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。

(2)了解微积分基本定理的含义。

好了,搞清楚了导数及其应用的基本内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线()y f x =的切线是导数的重要应用,为近几年各省市高考命题的热点。

2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。

解题技巧:1.导数的几何意义函数()y f x =在0x 处的导数()f x '的几何意义是:曲线()y f x =在点00(,())P x f x 处的切线的斜率(瞬时速度就是位移函数()s t 对时间t 的导数)。

2.求曲线切线方程的步骤:(1)求出函数()y f x =在点0x x =的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; (2)在已知切点坐标00(,())P x f x 和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

专题08 含参数的导数问题解题方法 Word版含解析

一、陷阱类型 1.导数与不等式证明 2.极值点偏移问题 3.导函数为0的替换作用 4.导数与数列不等式的证明 5.变形后求导 6.讨论参数求参数7.与三角函数有关的含参数的求导问题 8.构造函数问题 9.恒成立求参数二、陷阱类型分析及练习 1.导数与不等式证明例1. 已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明()324f x a≤--.(2)由(1)知,当a <0时,f (x )在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设g (x )=ln x -x +1,则’11g x x =-.当x ∈(0,1)时, ()0g x '>;当x ∈(1,+∞)时, ()0g x '<.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时, 11ln 1022a a -++≤,即324fx a≤--. 【放陷阱措施】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.练习1设函数()1ln x xbe f x ae x x-=+,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.(1)求,a b (2)证明: ()1f x > 【答案】(I )1,2a b ==;(II )详见解析.试题解析:(1)函数()f x 的定义域为()0,+∞,()112'ln x x x x a b bf x ae x e e e x x x--=+-+.由题意可得()12f =, ()'1f e =.故1a =, 2b =. (2)证明:由(1)知, ()12ln x x f x e x e x-=+, 从而()1f x >等价于2ln x x x xe e->-. 设函数()ln g x x x =,则()'1ln g x x =+. 所以当10,x e ⎛⎫∈ ⎪⎝⎭, ()'0g x <;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0g x >.故()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,从而()g x 在()0,+∞上的最小值为11g e e⎛⎫=- ⎪⎝⎭.设函数()2x h x xe e-=-,则()()'1xh x e x -=-. 所以当()0,1x ∈时, ()'0h x >;当()1,x ∈+∞时, ()'0h x <.故()h x 在()0,1上单调递增,在()1,+∞上单调递减,从而()h x 在()0,+∞上的最大值为()11h e=-. 综上,当0x >时, ()()g x h x >,即()1f x >. 2.极值点偏移问题例2. .函数()()2ln 1f x x m x =++ .(1)当0m >时,讨论()f x 的单调性;(2)若函数()f x 有两个极值点12,x x ,且12x x <,证明: ()21122ln2f x x x >-+ . 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(2)由题意结合函数的性质可知: 12,x x 是方程2220x x m ++=的两根,结合所给的不等式构造对称差函数()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< ,结合函数的性质和自变量的范围即可证得题中的不等式. 试题解析:函数()f x 的定义域为()()2221,,1x x mf x x++-+∞'=+,(1)令()222g x x x m =++,开口向上, 12x =-为对称轴的抛物线, 当1x >-时, ①11022g m ⎛⎫-=-+≥ ⎪⎝⎭,即12m ≥时, ()0g x ≥,即()0f x '≥在()1,-+∞上恒成立,②当102m <<时,由()222g x x x m =++,得12112112,2222m m x x --=--=-+,因为()10g m -=>,所以111211222m x --<<--<-,当12x x x <<时, ()0g x <,即()0f x '<,(2)若函数()f x 有两个极值点12,x x 且12x x <, 则必有102m <<,且121102x x -<<-<<,且()f x 在()12,x x 上递减,在()11,x -和()2,x +∞上递增, 则()()200f x f <=,因为12,x x 是方程2220x x m ++=的两根, 所以12122,2mx x x x +=-=,即12121,2,x x m x x =--=, 要证()21122ln2f x x x >-+又()()()222222122222ln 124ln 1f x x m x x x x x =++=++()()()()()222222222241ln 1121ln2121ln2x x x x x x x x =+++>--++--=+-+,即证()()()()222222241ln 1112ln20x x x x x -++-+->对2102x -<<恒成立, 设()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< 则()()()4412ln 1ln x x x eϕ=-++-' 当102x -<<时, ()4120,ln 10,ln 0x x e +>+,故()0x ϕ'>,所以()x ϕ在1,02⎛⎫-⎪⎝⎭上递增,故()()1111124ln 12ln2024222x ϕϕ⎛⎫>=⨯-⨯⨯--=⎪⎝⎭, 所以()()()()222222241ln 1112ln20x x x x x -++-+->, 所以()21122ln2f x x x >-+.【防陷阱措施】:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 练习1. 已知函数()bf x ax x=+(其中,a b R ∈)在点()()1,1f 处的切线斜率为1. (1)用a 表示b ;(2)设()()ln g x f x x =-,若()1g x ≥对定义域内的x 恒成立,求实数a 的取值范围; (3)在(2)的前提下,如果()()12g x g x =,证明: 122x x +≥. 【答案】(1)1b a =-;(2)[)1,+∞;(III )证明见解析. 【解析】试题分析:(1)由题意()11f a b '=-=即得; (2)()()1ln ln 1a g x f x x ax x x-=-=+-≥在定义域()0,+∞上恒成立,即()min 1g x ≥,由()1g x ≥恒成立,得1a ≥,再证当1a ≥时, ()()min 1g x g =即可;(3)由(2)知1a ≥,且()g x 在()0,1单调递减;在()1,+∞单调递增,当()()12g x g x =时,不妨设1201x x <≤≤,要证明122x x +≥,等价于2121x x ≥-≥,需要证明()()()1212g x g x g x -≤=,令()()()(]2,0,1G x g x g x x =--∈,可证得()G x 在(]0,1上单调递增, ()()10G x G ≤=即可证得.试题解析:(1)()2bf x a x-'=,由题意()111f a b b a =-=⇒=-' (2)()()1ln ln 1a g x f x x ax x x-=-=+-≥在定义域()0,+∞上恒成立,即()min 1g x ≥。

高中导数大题经典题型

目录第一部分构造辅助函数求解导数问题 (2)技法一:“比较法”构造函数 (2)技法二:“拆分法”构造函数 (3)技法三:“换元法”构造函数 (5)技法四:二次(甚至多次)构造函数 (8)强化训练 (10)第二部分利用导数探究含参数函数的性质 (15)技法一:利用导数研究函数的单调性 (15)技法二:利用导数研究函数的极值 (17)技法三:利用导数研究函数的最值 (20)强化训练 (23)第三部分导数的综合应用 (29)技法一:利用导数研究函数的零点或方程的根 (29)技法二:利用导数证明不等式 (32)技法三:利用导数研究不等式恒成立问题 (35)技法四:利用导数研究存在性与任意性问题 (45)技法五:利用导数研究探究性问题 (48)强化训练 (50)第一部分构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.技法一:“比较法”构造函数[典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.QQ群339444963(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f (x )≤g (x ).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0).令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0ex =1-x e 0-1-x 0e xe+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x ,则φ′(x )=-e 0x -(1-x 0)e x ,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0,∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数,∴h (x )≤h (x 0)=0,QQ 群339444963∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例]设函数f (x )=ae x ln x +bex -1x,曲线y =f (x )在点(1,f (1))处的切线为y=e (x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.[解](1)f ′(x )=ae x +be x -1x -1x 2(x >0),由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),1=2,1=e ,=2,=e ,=1,=2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x(x >0),从而f (x )>1等价于x ln x >xe -x -2e .构造函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x g′(x)<0,当x g′(x)>0,故g(x)QQ群339444963从而g(x)在(0,+∞)上的最小值为=-1 e.构造函数h(x)=xe-x-2 e,则h′(x)=e-x(1-x).所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0;故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-1 e.综上,当x>0时,g(x)>h(x),即f(x)>1.[方法点拨]对于第(2)问“ae x ln x+be x-1x>1”的证明,若直接构造函数h(x)=aex ln x+be x-1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x+be x-1x>1”合理拆分为“x ln x>xe -x-2e”,再分别对左右两边构造函数,进而达到证明原不等式的目的.[对点演练]已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)证明:当x>0,且x≠1时,f(x)>ln xx-1.解:(1)f′(x)-bx2(x>0).由于直线x+2y-3=0的斜率为-12,且过点(1,1),1=1,1=-12,1,b=-12.=1,=1.(2)证明:由(1)知f(x)=ln xx+1+1x(x>0),所以f(x)-ln xx-1=x考虑函数h(x)=2ln x-x2-1x(x>0),则h′(x)=2x-2x2-x2-1x2=-x-12x2.所以当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h(x)>0,可得11-x2h(x)>0;当x∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.从而当x>0,且x≠1时,f(x)-ln xx-1>0,即f(x)>ln xx-1.QQ群339444963技法三:“换元法”构造函数[典例]已知函数f(x)=ax2+x ln x(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(1)求实数a的值;(2)求证:当n>m>0时,ln n-ln m>mn-n m.[解](1)因为f(x)=ax2+x ln x,所以f′(x)=2ax+ln x+1,因为切线与直线x+3y=0垂直,所以切线的斜率为3,所以f′(1)=3,即2a+1=3,故a=1.(2)证明:要证ln n-ln m>mn-n m,即证ln nm>mn-nm,只需证lnnm-mn+nm>0.令nm=x,构造函数g(x)=ln x-1x+x(x≥1),则g′(x)=1x+1x2+1.因为x∈[1,+∞),所以g′(x)=1x+1x2+1>0,故g(x)在(1,+∞)上单调递增.由已知n>m>0,得nm>1,所以g(1)=0,QQ群339444963即证得ln nm-mn+nm>0成立,所以命题得证.[方法点拨]对“待证不等式”等价变形为“ln nm-mn+nm>0”后,观察可知,对“nm”进行换元,变为“ln x-1x+x>0”,构造函数“g(x)=ln x-1x+x(x≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f(x)=x2ln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s,使t=f(s);(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有25<ln g t ln t<12.解:(1)由已知,得f′(x)=2x ln x+x=x(2ln x+1)(x>0),令f′(x)=0,得x=1e.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)(2)证明:当0<x≤1时,f(x)≤0,∵t>0,∴当0<x≤1时不存在t=f(s).令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)上单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而ln g tln t=ln sln f s=ln sln s2ln s=ln s2ln s+ln ln s=u2u+ln u,QQ群339444963其中u=ln s.要使25<ln g tln t<12成立,只需0<ln u<u2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12,令F ′(u )=0,得u =2.当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0.故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.综上,当t >e 2时,有25<ln g tln t<12.技法四:二次(甚至多次)构造函数[典例](2017·广州综合测试)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2.(1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值;(2)当m ≥1时,证明:f (x )>g (x )-x 3.[解](1)因为f (x )=e x +m -x 3,所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1,所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2,所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0.当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2.要证e x +m -ln(x +1)-2>0,只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1.设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1x +12>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增.因为h e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0-12,QQ 群339444963因为h ′(x 0)=0,所以ex 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1).当x ∈(-1,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以当x =x 0时,h (x )取得最小值h (x 0),所以h (x )≥h (x 0)=ex 0+1-ln(x 0+1)-2=1x 0+1+(x 0+1)-2>0.综上可知,当m ≥1时,f (x )>g (x )-x 3.[方法点拨]本题可先进行适当放缩,m ≥1时,e x +m ≥e x +1,再两次构造函数h (x ),p (x ).[对点演练](2016·合肥一模)已知函数f (x )=ex -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围.解:(1)由f (x )=ex -x ln x ,知f ′(x )=e -ln x -1,则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1),即y =(e -1)x +1.(2)∵f (x )=ex -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -ex +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x +x -ex +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -ex +x ln xx2,则F ′(x )=xe x+ex -2e x-x ln x x3=x+e -2e xx -ln 令G (x )=e x+e -2e xx-ln x ,则G ′(x )=e x-2xe x -e x x2-1x =e xx -12+e x -xx 2>0对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx-ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].强化训练1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a ,b 的值;(2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小.解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx=xe x -1(x +2)+x (3ax +2b ),又x =-2和x =1为f (x )的极值点,所以f ′(-2)=f ′(1)=0,6a +2b =0,+3a +2b =0,=-13,=-1.(2)因为a =-13,b =-1,所以f′(x)=x(x+2)(e x-1-1),令f′(x)=0,解得x1=-2,x2=0,x3=1.因为当x∈(-∞,-2)∪(0,1)时,f′(x)<0;当x∈(-2,0)∪(1,+∞)时,f′(x)>0.所以f(x)在(-2,0)和(1,+∞)上是单调递增的;在(-∞,-2)和(0,1)上是单调递减的.(3)由(1)可知f(x)=x2e x-1-13x3-x2.故f(x)-g(x)=x2e x-1-x3=x2(e x-1-x),令h(x)=e x-1-x,则h′(x)=e x-1-1.令h′(x)=0,得x=1,因为当x∈(-∞,1]时,h′(x)≤0,所以h(x)在(-∞,1]上单调递减;故当x∈(-∞,1]时,h(x)≥h(1)=0;因为当x∈[1,+∞)时,h′(x)≥0,所以h(x)在[1,+∞)上单调递增;故x∈[1,+∞)时,h(x)≥h(1)=0.所以对任意x∈(-∞,+∞),恒有h(x)≥0;又x2≥0,因此f(x)-g(x)≥0.故对任意x∈(-∞,+∞),恒有f(x)≥g(x).2.(2015·北京高考)已知函数f(x)=ln1+x1-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>(3)设实数k使得f(x)>k x∈(0,1)恒成立,求k的最大值.解:(1)因为f(x)=ln(1+x)-ln(1-x)(-1<x<1),所以f′(x)=11+x+11-x,f′(0)=2.又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)-则g′(x)=f′(x)-2(1+x2)=2x41-x2.因为g′(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>(3)由(2)知,当k≤2时,f(x)>k x∈(0,1)恒成立.当k>2时,令h(x)=f(x)-则h′(x)=f′(x)-k(1+x2)=kx4-k+2 1-x2.所以当0<x<4k-2k时,h′(x)<0,因此h(x),故当0<x<4k-2k时,h(x)<h(0)=0,即f(x)<所以当k>2时,f(x)>k x∈(0,1)恒成立.综上可知,k的最大值为2.3.(2016·广州综合测试)已知函数f(x)=me x-ln x-1.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当m≥1时,证明:f(x)>1.解:(1)当m=1时,f(x)=e x-ln x-1,所以f′(x)=e x-1 x.所以f(1)=e-1,f′(1)=e-1.所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(e-1)=(e-1)(x-1),即y =(e-1)x.(2)证明:当m≥1时,f(x)=me x-ln x-1≥e x-ln x-1(x>0).要证明f(x)>1,只需证明e x-ln x-2>0.设g(x)=e x-ln x-2,则g′(x)=e x-1 x.设h(x)=e x-1x,则h′(x)=ex+1x2>0,所以函数h(x)=g′(x)=e x-1x在(0,+∞)上单调递增.因为g e 12-2<0,g′(1)=e-1>0,所以函数g′(x)=e x-1x在(0,+∞)上有唯一零点x0,且x0因为g′(x0)=0,所以ex0=1x0,即ln x0=-x0.当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0.所以当x=x0时,g(x)取得最小值g(x0).故g(x)≥g(x0)=ex0-ln x0-2=1x0+x0-2>0.综上可知,当m≥1时,f(x)>1.4.(2017·石家庄质检)已知函数f(x)=a x-x2e x(x>0),其中e为自然对数的底数.(1)当a=0时,判断函数y=f(x)极值点的个数;(2)若函数有两个零点x1,x2(x1<x2),设t=x2x1,证明:x1+x2随着t的增大而增大.解:(1)当a=0时,f(x)=-x2e x(x>0),f ′(x )=-2x ·e x --x 2·e xe x 2=x x -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增,所以x =2是函数的一个极小值点,无极大值点,即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=ae x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=aex 1,x 322=aex 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >12=tx 1,2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln t t -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x x -12.令u (x )=-2ln x +x -1x ,得u ′(x ).当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x∈(1,+∞),u(x)>u(1)=0,由此可得h′(x)>0,故h(x)在(1,+∞)上单调递增.因此,由①可得x1+x2随着t的增大而增大.第二部分利用导数探究含参数函数的性质技法一:利用导数研究函数的单调性[典例]已知函数g(x)=ln x+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=1 2a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<1 2a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<1 2a,若12a=1,即a=12在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,当a=12时,函数g(x)在(0,+∞)上单调递增,当a>12时,函数g(x)(1,+∞)上单调递增.[方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a=0或a>0两种情况,再比较12a和1的大小.[对点演练](2016·太原一模)已知函数f(x)=x-a ln x(a∈R).(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;(2)设函数h(x)=f(x)+1+ax,求函数h(x)的单调区间.解:(1)当a=2时,f(x)=x-2ln x,f(1)=1,即切点为(1,1),∵f′(x)=1-2x,∴f′(1)=1-2=-1,∴曲线y=f(x)在点(1,1)处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由题意知,h(x)=x-a ln x+1+ax(x>0),则h′(x)=1-ax-1+ax2=x2-ax-1+ax2=x+1[x-1+a]x2,①当a+1>0,即a>-1时,令h′(x)>0,∵x>0,∴x>1+a,令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a +1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.技法二:利用导数研究函数的极值[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+ln x).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a2+a ln a,极小值是f(1)=-1 2.②当a=1时,f′(x)=x-12x≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f(x)没有极值点,故无极值.③当a>1时,若x∈(0,1),则f′(x)>0,函数f(x)单调递增;若x∈(1,a),则f′(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f′(x)>0,函数f(x)单调递增.此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-12,极小值是f(a)=-12a2+a ln a.综上,当0<a<1时,f(x)的极大值是-12a2+a ln a,极小值是-12;当a=1时,f(x)没有极值;当a>1时f(x)的极大值是-12,极小值是-12a2+a ln a.[方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f′(x)零点的存在;(2)参数是否影响f′(x)不同零点(或零点与函数定义域中的间断点)的大小;(3)参数是否影响f′(x)在零点左右的符号(如果有影响,需要分类讨论).[对点演练](2016·山东高考)设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.解:(1)由f′(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).所以g′(x)=1x-2a=1-2axx.当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x g′(x)>0,函数g(x)单调递增,x g′(x)<0,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)(2)由(1)知,f′(1)=0.①当a≤0时,f′(x)单调递增,所以当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<12时,12a>1,由(1)知f′(x)可得当x∈(0,1)时,f′(x)<0,当x f′(x)>0.所以f(x)在(0,1)所以f(x)在x=1处取得极小值,不合题意.③当a=12时,12a=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a<1,当x f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 技法三:利用导数研究函数的最值[典例]已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[解](1)由题意,f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x ),1a ,单调递减区间为1a ,+综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x ),1a ,单调递减区间为1a,+(2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a≥2,即0<a≤12时,函数f(x)在区间[1,2]上是增函数,所以f(x)的最小值是f(1)=-a.③当1<1a<2,即12<a<1时,函数f(x)在1,1a上是增函数,在1a,2上是减函数.又f(2)-f(1)=ln2-a,所以当12<a<ln2时,最小值是f(1)=-a;当ln2≤a<1时,最小值为f(2)=ln2-2a.综上可知,当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.[方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点.[对点演练]1.若函数f(x)=xx2+a (a>0)在[1,+∞)上的最大值为33,则a的值为()A.33B.3 C.3+1D.3-1解析:选D f′(x)=x2+a-2x2x2+a2=a-x2x2+a2.令f′(x)=0,得x=a或x=-a(舍去),若a≤1,即0<a≤1时,在[1,+∞)上f′(x)<0,f(x)max=f(1)=11+a=33.解得a=3-1,符合题意.若a>1,即a>1时,在[1,a)上f′(x)>0,在(a,+∞)上f′(x)<0,所以f (x )max =f (a )=a 2a =33,解得a =34<1,不符合题意,综上知,a =3-1.2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数).(1)当a =5时,求函数y =g (x )在x =1处的切线方程;(2)求f (x )在区间[t ,t +2](t >0)上的最小值.解:(1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e .又g ′(x )=(-x 2+3x +2)e x ,故切线的斜率为g ′(1)=4e .所以切线方程为y -e =4e (x -1),即y =4ex -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥1e 时,在区间[t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间tf (x )t +2上f (x )为增函数,所以f (x )min ==-1e .综上,f (x )min t ,t ≥1e,-1e ,0<t <1e.强化训练1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0).(1)若x =2是f (x )的极值点,求a 的值;(2)求f (x )的单调区间.解:f ′(x )=x1-a -axx +1,x ∈(-1,+∞).(1)依题意,得f ′(2)=0,即21-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13.(2)令f ′(x )=0,得x 1=0,x 2=1a-1.①当0<a <1时,f (x )与f ′(x )的变化情况如下:②当a =1时,f (x )的单调减区间是(-1,+∞).③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:综上,当0<a <1时,f (x ),1a -单调减区间是(-1,0)1,+当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )1,1,1a-(0,+∞).2.已知函数f (x )x 3+x 2,x <1,ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:=23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和23,0,23上单调递增.因为f (-1)=2,=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e ]上单调递增,则f (x )在[1,e ]上的最大值为f (e )=a .综上所述,当a ≥2时,f (x )在[-1,e ]上的最大值为a ;当a <2时,f (x )在[-1,e ]上的最大值为2.3.已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f′(x)=a-1x=ax-1x(x>0).当a≤0时,f′(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,∴f(x)在(0,+∞)上没有极值点.当a>0时,由f′(x)<0,得0<x<1 a,由f′(x)>0,得x>1 a,∴f(x)即f(x)在x=1a处有极小值.∴当a≤0时,f(x)在(0,+∞)上没有极值点,当a>0时,f(x)在(0,+∞)上有一个极值点.(2)∵函数f(x)在x=1处取得极值,∴f′(1)=0,解得a=1,∴f(x)≥bx-2⇒1+1x-ln xx≥b,令g(x)=1+1x-ln xx,则g′(x)=ln x-2x2,令g′(x)=0,得x=e2.则g(x)在(0,e2)上单调递减,在(e2,+∞)上单调递增,∴g(x)min=g(e2)=1-1e2,即b≤1-1e2,故实数b ∞,1-1e2.4.已知方程f(x)·x2-2ax+f(x)-a2+1=0,其中a∈R,x∈R.(1)求函数f(x)的单调区间;(2)若函数f(x)在[0,+∞)上存在最大值和最小值,求实数a的取值范围.解:(1)由f(x)·x2-2ax+f(x)-a2+1=0得f(x)=2ax+a2-1x2+1,则f′(x)=-2x+a ax-1x2+12.①当a=0时,f′(x)=2xx2+12,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:QQ 群339444963故f (x )的单调递减区间是(-∞,-a )a ③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:所以f (x )∞(-a ,+∞),(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )以f (x )在[0,+∞)上存在最大值a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a 从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0.若f (x )在[0,+∞)上存在最小值,必有f (0)≤0,解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a<0时,由(1)得,f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增,所以f(x)在[0,+∞)上存在最小值f(-a)=-1.易知当x≥-a时,-1≤f(x)<0,所以若f(x)在[0,+∞)上存在最大值,必有f(0)≥0,解得a≥1或a≤-1.所以当a<0时,若f(x)在[0,+∞)上存在最大值和最小值,则实数a的取值范围是(-∞,-1].综上所述,实数a的取值范围是(-∞,-1]∪(0,1].5.设函数f(x)=x2-ax+b.(1)讨论函数f(sin x)-π2,有极值时求出极值;(2)记f0(x)=x2-a0x+b0,求函数|f(sin x)-f0(sin x)|在-π2,π2上的最大值D;(3)在(2)中,取a0=b0=0,求z=b-a24满足条件D≤1时的最大值.解:(1)由题意,f(sin x)=sin2x-a sin x+b=sin x(sin x-a)+b,则f′(sin x)=(2sin x-a)cos x,因为-π2<x<π2,所以cos x>0,-2<2sin x<2.①a≤-2,b∈R时,函数f(sin x)单调递增,无极值;②a≥2,b∈R时,函数f(sin x)单调递减,无极值;③对于-2<a<2-π2,x0,使得2sin x0=a.-π2<x≤x0时,函数f(sin x)单调递减;x0≤x<π2时,函数f(sin x)单调递增.因此,-2<a<2,b∈R时,函数f(sin x)在x0处有极小值f(sin x0)=b-a24.Q Q群339444963(2)当-π2≤x≤π2时,|f(sin x)-f0(sin x)|=|(a0-a)sin x+b-b0|≤|a-a0|+|b-b0|,当(a0-a)(b-b0)≥0,x=π2时等号成立,当(a0-a)(b-b0)<0时,x=-π2时等号成立.由此可知,|f(sin x)-f0(sin x)|在-π2,π2上的最大值为D=|a-a0|+|b-b0|.(3)D≤1即为|a|+|b|≤1,此时0≤a2≤1,-1≤b≤1,从而z=b-a24≤1.取a=0,b=1,则|a|+|b|≤1,并且z=b-a24=1.由此可知,z=b-a24满足条件D≤1的最大值为1.6.已知函数f(x)=x-1x,g(x)=a ln x(a∈R).(1)当a≥-2时,求F(x)=f(x)-g(x)的单调区间;(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中x1,12,求h(x1)-h(x2)的最小值.解:(1)由题意得F(x)=x-1x-a ln x(x>0),则F′(x)=x2-ax+1x2,令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=a-a2-42,x2=a+a2-42,所以F(x)的单调递增区间为F (x )综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞);当a >2时,F (x )的单调递增区间为F (x )(2)对h (x )=x -1x +a ln x ,x ∈(0,+∞)求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a ,所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-=x -1x+x x -1x -x x 1x=x x +x -1x ,即H ′(x )=x =21-x1+xln x x 2(x >0).当x ,12时,H ′(x )<0,所以H (x ),12上单调递减,又H (x 1)=h (x 1)-h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =5ln 2-3.第三部分导数的综合应用(一)技法一:利用导数研究函数的零点或方程的根[典例](2016·北京高考)设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2-3b>0是f(x)有三个不同零点的必要而不充分条件.[解](1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.因为f(0)=c,f′(0)=b,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=bx+c.(2)当a=b=4时,f(x)=x3+4x2+4x+c,所以f′(x)=3x2+8x+4.令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-2 3.f(x)与f′(x)在区间(-∞,+∞)上的情况如下:所以当c>0且c-3227<0时,存在x1∈(-4,-2),x22x3-23,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当c函数f(x)=x3+4x2+4x+c有三个不同零点.(3)证明:当Δ=4a2-12b<0时,f′(x)=3x2+2ax+b>0,x∈(-∞,+∞),此时函数f(x)在区间(-∞,+∞)上单调递增,所以f(x)不可能有三个不同零点.当Δ=4a2-12b=0时,f′(x)=3x2+2ax+b只有一个零点,记作x0.当x∈(-∞,x0)时,f′(x)>0,f(x)在区间(-∞,x0)上单调递增;当x∈(x0,+∞)时,f′(x)>0,f(x)在区间(x0,+∞)上单调递增.所以f(x)不可能有三个不同零点.综上所述,若函数f(x)有三个不同零点,则必有Δ=4a2-12b>0.故a2-3b>0是f(x)有三个不同零点的必要条件.当a=b=4,c=0时,a2-3b>0,f(x)=x3+4x2+4x=x(x+2)2只有两个不同零点,所以a2-3b>0不是f(x)有三个不同零点的充分条件.因此a2-3b>0是f(x)有三个不同零点的必要而不充分条件.[方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[对点演练]已知函数f(x)=(2-a)x-2(1+ln x)+a.(1)当a=1时,求f(x)的单调区间.(2)若函数f(x)a的最小值.解:(1)当a=1时,f(x)=x-1-2ln x,则f′(x)=1-2x,其中x∈(0,+∞).由f′(x)>0,得x>2,由f′(x)<0,得0<x<2,故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)f(x)=(2-a)x-2(1+ln x)+a=(2-a)(x-1)-2ln x,令m(x)=(2-a)(x-1),h(x)=2ln x,其中x>0,则f(x)=m(x)-h(x).①当a<2时,m(x)h(x)结合图象知,若f(x)则即(2-a 1 2,所以a≥2-4ln2,所以2-4ln2≤a<2.②当a≥2m(x)≥0,h(x)<0,所以f(x)>0,所以f(x)由①②得a≥2-4ln2,所以a min=2-4ln2.技法二:利用导数证明不等式[典例]设f(x)=e x-1.(1)当x>-1时,证明:f(x)>2x2+x-1x+1;(2)当a>ln2-1且x>0时,证明:f(x)>x2-2ax.[证明](1)当x>-1时,f(x)>2x2+x-1x+1,即e x-1>2x2+x-1x+1=2x-1,当且仅当ex>2x,即e x-2x>0恒成立时原不等式成立.令g(x)=e x-2x,则g′(x)=e x-2.令g′(x)=0,即e x-2=0,解得x=ln2.当x∈(-∞,ln2)时,g′(x)=e x-2<0,故函数g(x)在(-1,ln2)上单调递减;当x∈[ln2,+∞)时,g′(x)=e x-2≥0,故函数g(x)在[ln2,+∞)上单调递增.所以g(x)在(-1,+∞)上的最小值为g(ln2)=e ln2-2ln2=2(1-ln2)>0,所以在(-1,+∞)上有g(x)≥g(ln2)>0,即e x>2x.故当x∈(-1,+∞)时,f(x)>2x2+x-1 x+1(2)f(x)>x2-2ax,即e x-1>x2-2ax,则e x-x2+2ax-1>0.令p(x)=e x-x2+2ax-1,则p′(x)=e x-2x+2a,令h(x)=e x-2x+2a,则h′(x)=e x-2.由(1)可知,当x∈(-∞,ln2)时,h′(x)<0,函数h(x)单调递减;当x∈[ln2,+∞)时,h′(x)≥0,函数h(x)单调递增.所以h(x)的最小值为h(ln2)=e ln2-2ln2+2a=2-2ln2+2a.因为a>ln2-1,所以h(ln2)>2-2ln2+2(ln2-1)=0,即h(x)≥h(ln2)>0,所以p′(x)=h(x)>0,即p(x)在R上为增函数,故p(x)在(0,+∞)上为增函数,所以p(x)>p(0),而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln2,x2>ln2,且f(x1)=f(x2),试证明:x1+x2<2ln2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln2.所以函数y=f(x)在区间(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.(2)证明:设x>ln2,所以2ln2-x<ln2,f(2ln2-x)=e(2ln2-x)-2(2ln2-x)-1=4e x+2x-4ln2-1.令g(x)=f(x)-f(2ln2-x)=e x-4e x-4x+4ln2(x≥ln2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln2时,等号成立,所以g(x)=f(x)-f(2ln2-x)在(ln2,+∞)上单调递增.又g(ln2)=0,所以当x>ln2时,g(x)=f(x)-f(2ln2-x)>g(ln2)=0,即f(x)>f(2ln2-x),所以f(x2)>f(2ln2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln2-x2),由于x2>ln2,所以2ln2-x2<ln2,因为x1<ln2,由(1)知函数y=f(x)在区间(-∞,ln2)上单调递减,所以x1<2ln2-x2,即x1+x2<2ln2.技法三:利用导数研究不等式恒成立问题[典例]设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+a,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,e x且A(x1若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解](1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x1,x2是任意的两个实数,且x1<x2.则直线AB的斜率为k=g x2-g x1x2-x1,由已知k>m,即g x2-g x1x2-x1>m.因为x2-x1>0,所以g(x2)-g(x1)>m(x2-x1),即g(x2)-mx2>g(x1)-mx1.因为x1<x2,所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,所以m≤g′(x).而g′(x)=e x-a-a e x,又a≤-1<0,故g′(x)=e x+-ae x-a≥2ex·-ae x-a=2-a-a.而2-a-a=2-a+(-a)2=(-a+1)2-1≥3,所以m的取值范围为(-∞,3].[方法点拨]解决该类问题的关键是根据已知不等式的结构特征灵活选用相应的方法,由不等式恒成立求解参数的取值范围问题一般采用分离参数的方法.而第(2)问则巧妙地把直线的斜率与导数问题结合在一起,命题思路比较新颖,解决此类问题需将已知不等式变形为两个函数值的大小问题,进而构造相应的函数,通过导函数研究其单调性解决.[对点演练]已知f(x)=x ln x,g(x)=-x2+ax-3.(1)若对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.(2)证明:对一切x∈(0,+∞),ln x>1e x-2ex恒成立.解:(1)由题意知2x ln x≥-x2+ax-3对一切x∈(0,+∞)恒成立,则a≤2ln x+x+3 x,设h(x)=2ln x+x+3x(x>0),则h′(x)=x+3x-1x2.①当x∈(0,1)时,h′(x)<0,h(x)单调递减;②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4,即实数a的取值范围是(-∞,4].(2)问题等价于证明x ln x>xe x-2e(x>0).又f(x)=x ln x(x>0),f′(x)=ln x+1,当x f′(x)<0,f(x)单调递减;当x f′(x)>0,f(x)单调递增,所以f(x)min==-1 e.设m(x)=xe x-2e(x>0),则m′(x)=1-x e x,当x∈(0,1)时,m′(x)>0,m(x)单调递增,当x∈(1,+∞)时,m′(x)<0,m(x)单调递减,所以m(x)max=m(1)=-1e,从而对一切x∈(0,+∞),f(x)>m(x)恒成立,即x ln x>xe x-2e恒成立.即对一切x∈(0,+∞),ln x>1e x-2ex恒成立.强化训练1.设函数f(x)=ln x+ax2+x-a-1(a∈R).(1)当a=-12时,求函数f(x)的单调区间;(2)证明:当a≥0时,不等式f(x)≥x-1在[1,+∞)上恒成立.解:(1)当a=-12时,QQ群339444963f(x)=ln x-12x2+x-12,且定义域为(0,+∞),因为f′(x)=1x-x+1(x>0)当x f′(x)>0;当x f′(x)<0,所以f(x),1+52;单调减区间是1+52,+(2)证明:令g (x )=f (x )-x +1=ln x +ax 2-a ,则g ′(x )=1x +2ax =2ax 2+1x,所以当a ≥0时,g ′(x )>0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上是增函数,且g (1)=0,所以g (x )≥0在[1,+∞)上恒成立,即当a ≥0时,不等式f (x )≥x -1在[1,+∞)上恒成立.2.(2016·海口调研)已知函数f (x )=mx -m x,g (x )=3ln x .(1)当m =4时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若x ∈(1,e ](e 是自然对数的底数)时,不等式f (x )-g (x )<3恒成立,求实数m 的取值范围.解:(1)当m =4时,f (x )=4x -4x ,f ′(x )=4+4x2,f ′(2)=5,又f (2)=6,∴所求切线方程为y -6=5(x -2),即y =5x -4.(2)由题意知,x ∈(1,e ]时,mx -m x-3ln x <3恒成立,即m (x 2-1)<3x +3x ln x 恒成立,∵x ∈(1,e ],∴x 2-1>0,则m <3x +3x ln x x 2-1恒成立.令h (x )=3x +3x ln x x 2-1,x ∈(1,e ],则m <h (x )min .h ′(x )=-3x 2+1·ln x -6x 2-12=-3x 2+1·ln x +6x 2-12,∵x∈(1,e],∴h′(x)<0,即h(x)在(1,e]上是减函数.∴当x∈(1,e]时,h(x)min=h(e)=9e2e-1.∴m∞3.(2017·广西质检)设函数f(x)=c ln x+12x2+bx(b,c∈R,c≠0),且x=1为f(x)的极值点.(1)若x=1为f(x)的极大值点,求f(x)的单调区间(用c表示);(2)若f(x)=0恰有两解,求实数c的取值范围.解:f′(x)=cx+x+b=x2+bx+cx(x>0),又f′(1)=0,所以f′(x)=x-1x-cx(x>0)且c≠1,b+c+1=0.(1)因为x=1为f(x)的极大值点,所以c>1,当0<x<1时,f′(x)>0;当1<x<c时,f′(x)<0;当x>c时,f′(x)>0,所以f(x)的单调递增区间为(0,1),(c,+∞);单调递减区间为(1,c).(2)①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.f(x)=0恰有两解,则f(1)<0,即12+b<0,所以-12<c<0;②若0<c<1,则f(x)极大值=f(c)=c ln c+12c2+bc,f(x)极小值=f(1)=12+b,因为b =-1-c ,则f (x )极大值=c ln c +c 22+c (-1-c )=c ln c -c -c 22<0,f (x )极小值=-12-c <0,从而f (x )=0只有一解;③若c >1,则f (x )极小值=c ln c +c 22+c (-1-c )=c ln c -c -c 22<0,f (x )极大值=-12-c <0,则f (x )=0只有一解.综上,使f (x )=0恰有两解的c -12,4.(2017·福建省质检)已知函数f (x )=ax -ln(x +1),g (x )=e x -x -1.曲线y =f (x )与y =g (x )在原点处的切线相同.(1)求f (x )的单调区间;(2)若x ≥0时,g (x )≥kf (x ),求k 的取值范围.解:(1)因为f ′(x )=a -1x +1(x >-1),g ′(x )=e x -1,依题意,f ′(0)=g ′(0),即a -1=0,解得a =1,所以f ′(x )=1-1x +1=x x +1,当-1<x <0时,f ′(x )<0;当x >0时,f ′(x )>0.故f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)由(1)知,当x =0时,f (x )取得最小值0,所以f (x )≥0,即x ≥ln(x +1),从而e x ≥x +1.设F (x )=g (x )-kf (x )=e x +k ln(x +1)-(k +1)x -1,则F ′(x )=e x +k x +1-(k +1)≥x +1+k x +1-(k +1),(ⅰ)当k =1时,因为x ≥0,所以F ′(x )≥x +1+1x +1-2≥0(当且仅当x =0时等号成立),QQ 群339444963此时F (x )在[0,+∞)上单调递增,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学导数经典题型解题技巧(运用方 法)

高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一。因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。好了,下面就来讲解常用逻辑用语的经典解题技巧。

第一·认识导数概念和几何意义 1. 导数概念及其几何意义 (1) 了解导数概念的实际背景。 (2) 理解导数的几何意义。 2. 导数的运算 ( 1) 能 根 据 导 数 定 义 求 函 数 y  C(C为常数), y  x, y  x2 , y  x3, y  1 , y x 的导数。

(2) 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

(3) 能求简单的复合函数(仅限于形如 f (ax  b) 的复合函数) 的导数。

3. 导数在研究函数中的应用 (1) 了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。

(2) 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。

4. 生活中的优化问题 会利用导数解决某些实际问题 5. 定积分与微积分基本定理 (1) 了解定积分的实际背景,了解定积分的基本思想,了解定

x 积分的概念。 (2) 了解微积分基本定理的含义。 总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧!

第二·导数运用和解题方法 一、利用导数研究曲线的切线 考情聚焦:1.利用导数研究曲线 y  f (x) 的切线是导数的重要应 用,为近几年各省市高考命题的热点。 2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。 解题技巧:1.导数的几何意义 函数 y f (x) 在 x0 处的导数 f (x) 的几何意义是:曲线 y f (x) 在点 P(x0 , f (x0 )) 处的切线的斜率(瞬时速度就是位移函数s(t) 对时间t 的导数)。

2.求曲线切线方程的步骤: (1) 求出函数 y f (x) 在点 x  x0 的导数,即曲线 y f (x) 在点 P(x0 , f (x0 )) 处切线的斜率;

(2)在已知切点坐标P(x0 , f (x0 )) 和切线斜率的条件下,求得切线 方程为 y  y0  f (x0 )(x  x0 ) 。

注:①当曲线 y f (x) 在点P(x0 , f (x0 )) 处的切线平行于 y 轴(此时 导数不存在)时,由切线定义可知,切线方程为x  x0 ;

②当切点坐标未知时,应首先设出切点坐标,再求解。 例 1:(2010 ·海南高考·理科 T3)曲线 y 

的切线方程为( )

x x  2 在点1, 1 处

( A) y  2x 1 ( B) y  2x 1 ( C) y  2x  3 ( D) y  2x  2

【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运 算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.

【 规 范 解 答 】 选 A.因 为 y 2 (x  2)2 , 所 以 , 在 点 1, 1 处 的 切 线 斜 率

k  yx1 2 (1 2)2  2

,所以,切线方程为 y 1  2(x 1) ,即 y  2x 1,故选 A.

二、利用导数研究导数的单调性 考情聚焦:1.导数是研究函数单调性有力的工具,近几年各省 市高考中的单调性问题,几乎均用它解决。 2.常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式或指、对数式结构,多以解答题形式考查, 属中高档题目。 解题技巧:利用导数研究函数单调性的一般步骤。 (1) 确定函数的定义域; (2) 求导数 f (x) ; (3) ①若求单调区间(或证明单调性),只需在函数 f (x) 的定义域内解(或证明)不等式 f (x) >0 或 f (x) <0。

②若已知 f (x) 的单调性,则转化为不等式 f (x) ≥0 或 f (x) ≤0 在单调区间上恒成立问题求解。

例 2: ( 2010· 山 东 高 考 文 科 · T 21) 已 知 函 数 f (x)  ln x  ax  1 a 1(a  R) x

(1) 当a  1 时,求曲线 y  f (x) 在点(2, f (2)) 处的切线方程; (2) 当a  1 时,讨论 f (x) 的单调性. 2

【命题立意】本题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力.考查分类讨论思想、数形结合思想和等价变换思想. 【思路点拨】(1)根据导数的几何意义求出曲线 y  f (x) 在点 (2, f (2)) 处的切线的斜率;(2)直接利用函数与导数的关系讨论函数的单调性,同时应注意分类标准的选择.

【规范解答】(1) 当 a  1 时,f (x)  ln x  x  2  1, x  (0,), 所以 x

f  x 

x2  x  2

x2

因此, f 2  1 ,即曲线

y  f (x)在点(2,f (2))处的切线斜率为1,.

又 f (2)  ln 2  2, 所 以 曲 线 y  f (x)在点(2,f (2)) 处的切线方程为 y  (ln 2  2)  x  2,

即 x  y  ln 2  0. (2)因为 f (x)  ln x  ax 

1  a

x  1,所以 f '(x)  1  a 

x

a  1

x 2   ax 2  x  1  a

x 2

x  (0,) ,令g(x)  ax 2  x  1  a, x  (0,),

(1)当a  0 时, g(x)  x 1, x 0, , 所以 当x 0,1 时, g  x >0,此时 f  x  0 ,函数 f  x 单调递减; 当x 1,  时, g  x <0,此时 f  x  0 ,函数 f  x 单调递增. (2)当a  0 时,由 f  x  0 ,即 ax2  x 1 a  0 ,解得x  1, x  1 1

.

1 2 a

① 当a  1 时, x  x

2 1 2 , g  x  0 恒成立,此时 f  x  0 ,函数 f  x

在(0,+∞)上单调递减; ② 当0  a  1 时, 1 1  1  0 , 2 a

x 0,1 时, g  x  0 ,此时 f  x  0 ,函数 f  x 单调递减

x 1, 1 1 时, g  x <0,此时 f  x  0 ,函数 f  x 单调递增  a 

 

x  1 1,  时, g  x  0 ,此时 f  x  0 ,函数 f  x 单调递减  a 

 

③ 当a  0 时,由于 1 1  0 , a

x 0,1 时, g  x  0 ,此时 f  x  0 ,函数 f  x 单调递减:

x 1,  时, g  x <0,此时 f  x  0 ,函数 f  x 单调递增.

综上所述: 当a  0 时,函数 f  x 在0,1 上单调递减;函数 f  x 在1,  上单调递增

当a  1 时,函数 f  x 在0,  上单调递减2

当0  a  1 时,函数 f  x 在0,1 上单调递减;函数 f  x 在1, 1 1 上 2  a 

 单调递增;

函数 f  x 在 1 1,  上单调递减.  a 

 

相关文档
最新文档