蚁群优化算法的若干研究

合集下载

遗传-蚁群融合算法在离散型优化中的研究及实现

遗传-蚁群融合算法在离散型优化中的研究及实现

1 . 2 蚁 群 算 法 的优 缺 点
蚁群 算法 ( A n t C o l o n y O p t i m i z a t i o n ) 是 由 意 大 利 学 者 M. D o r i g o等 提 出 .近 几 年 逐 渐 发 展 起 来 的 随 机 优 化
方法 。
蚁 群 算 法 是 模 拟蚂 蚁 群 寻 觅 食 物 过 程 .通 过 每 次

中的优缺点 .并采 用 C # 语 言实现通过遗传一 蚁群融合
算 法 进 行 离 散 型数 学 模 型 的 优 化 计 算 .然 后 对 油 田增 产 措 施 方 案 优 化 的实 例 进 行 对 比分 析 .证 明 融 合 算 法
参 考 文 献

[ 1 】 陈 国良, 王熙法 , 庄镇泵等. 遗传算 法及其应用. 北京 : 北 京
衍进化 。 每次淘 汰不 满意解 , 逐步求 出满意解 。遗传算
法具有快速全局搜索 能力 . 前期收敛速度快 . 最 终 解 比
及 复杂程 度的提高 .单一算法 的计算结 果往 往不够优
化 .而 且 每种 算 法 的 局 限 性 均 会 由 于 应 用 复 杂 程 度 的 提 高 而 面 临时 间 效 率 及 优 化 性 能 的双 重 挑 战 。 基 于此 . 本 文研 究 思 想 就 是 充 分 发 挥 遗 传 算 法 的 快 速 全 局 搜 索
1 遗传 一 蚁群 算 法 融合 思 想
1 . 1 遗 传 算 法 的优 缺 点
遗传 算法 ( G e n e t i c A l g o i r t h m) 是 1 9 7 5年 美 国密 执
蚂蚁爬过后积 累下的信 息素 .使最短路径 的信 息素越 来越浓 . 最终形成一条最优路径。 它具有分布 、 并行 、 全 局收敛能力 . 后期收敛速度快 , 运算 速度快 的特点 。

蚁群算法

蚁群算法

蚁群算法报告及代码一、狼群算法狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。

算法采用基于人工狼主体的自下而上的设计方法和基于职责分工的协作式搜索路径结构。

如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。

二、布谷鸟算法布谷鸟算法布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS也采用相关的Levy飞行搜索机制蚁群算法介绍及其源代码。

具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。

应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能三、差分算法差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。

算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。

然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。

如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。

在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。

四、免疫算法免疫算法是一种具有生成+检测的迭代过程的搜索算法。

从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。

五、人工蜂群算法人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。

自适应蚁群优化算法在物流调度中的应用研究

自适应蚁群优化算法在物流调度中的应用研究
p s d A s h d l g ag r h b s d o d p ie a tc ln p i z t n i p e e t d t e ie d n mi s in n fc mp n n st r e . o e . c e u i o i m a e n a a t n oo y o t a i s r s n e o ra z y a c a sg me t o o e t o od r n l t v mi o l o s T e e p rme t e u ts o a e s ae y o d p ie a t o o yC eu e ot s d f rn o iai n o r e . n o t z d s c me h x e i n a r s l h wst t h t tg f a t ln a b s d t e t i e t mb n t f d r A pi e h e l h t r a v n c n fe c o o s mi i p s n e O t a o d r a e d l e d a n o s l , n h ae c i fo d r a e r d c d s r e td S h t r e c n b ei r s ma y a p s i e a d t e lt n y t e s ve s b me o r e c n b e u 大学信息工程学院 江苏 无锡 2 4 2 ) 1 12 ( 济南大学信息科学与工程学院 山东 济南 2 0 2 ) 50 2


供应链 中的物流过程可作为一个调度 问题进 行研究 , 物流过程 的调度是一个组合优 化问题。首先对物流过程进行分析 ,
关键 词
供 应链
物流过 程

sigmoid蚁群算法

sigmoid蚁群算法

sigmoid蚁群算法
蚁群算法,是优化算法当中的一种。

蚁群算法擅长解决组合优化问题。

蚁群算法能够有效的解决著名的旅行商问题(TSP),不止如此,在其他的一些领域也取得了一定的成效,例如工序排序问题,图着色问题,网络路由问题等等。

接下来便为大家简单介绍蚁群算法的基本思想。

蚁群算法,顾名思义就是根据蚁群觅食行为而得来的一种算法。

单只蚂蚁的觅食行为貌似是杂乱无章的,但是据昆虫学家观察,蚁群在觅食时总能够找到离食物最近的路线,这其中的原因是什么呢?其实,蚂蚁的视力并不是很好,但是他们又是凭借什么区寻找到距离食物的最短路径的呢?经过研究发现,每一只蚂蚁在觅食的过程中,会在沿途释放出一种叫做信息素的物质。

其他蚂蚁会察觉到这种物质,因此,这种物质会影响到其他蚂蚁的觅食行为。

当一些路径上经过的蚂蚁越多时,这条路径上的信息素浓度也就越高,其他蚂蚁选择这条路径的可能性也就越大,从而更增加了这条路径上的信息素浓度。

当然,一条路径上的信息素浓度也会随着时间的流逝而降低。

这种选择过程被称之为蚂蚁的自催化行为,是一种正反馈机制,也可以将整个蚁群认定为一个增强型学习系统。

蚁群算法

蚁群算法

蚁群算法综述摘要:群集智能作为一种新兴的演化计算技术已成为越来越多研究者的关注焦点, 其理论和应用得到了很大的发展。

作为群集智能的代表方法之一,蚁群算法ACO (Ant Colony Optimization, 简称ACO) 以其实现简单、正反馈、分布式的优点得到广泛的应用。

蚁群算法是由意大利学者M. Dorigo 提出的一种仿生学算法。

本文主要讨论了蚁群算法的改进及其应用。

在第一章里介绍了蚁群算法的思想起源及研究现状。

第二章详细的介绍了基本蚁群算法的原理及模型建立,并简要介绍了几种改进的蚁群优化算法。

第三章讨论了蚁群算法的最新进展和发展趋势展望。

关键词:群集智能,蚁群算法,优化问题1 引言1.1 概述人类的知识都来自于对自然界的理解和感悟,如天上的闪电,流淌的河流,挺拔的高山,汪洋的大海,人们从中学会了生存,学会了征服自然和利用自然。

自然界中也存在着很多奇特的现象,水中的鱼儿在发现食物时总能成群结队,天上的鸟儿在迁徙时也是组成很多复杂的阵型,蚂蚁在发现食物时总能找到一条最短的路径。

无论鱼儿,飞鸟或是蜜蜂,蚂蚁他们都有一个共同的特点好像有一种无形的力量将群体中的每个个体组织起来,形成一个统一的整体。

看似庞杂的种群却又有着莫大的智慧,让他们能够完成一个个体所无法完成的使命。

整个群体好像一个社会,形成一个有机整体,这个整体对单个个体要求不高,诸多个体组合起来数量庞大,却极具协调性和统一性,这就是群智能。

群智能算法是利用其个体数量上的优势来弥补单个个体的功能缺陷,使整个群体看起来拥有了个体所无法企及的能力和智慧。

单个个体在探索过程的开始都是处于一种盲目的杂乱的工作状态,因此这些个体所能找到的最优解,对于群体而言却并非是最优的而且这些解也都是无规则的,随着越来越多的个体不断探索,单个个体受到其他成员的影响,大量的个体却逐渐趋向于一个或一条最优的路线,原本杂乱的群体渐渐呈现一种一致性,这样整个群体就具有了寻找最优解的能力。

第 6 章 蚁群算法

第 6 章   蚁群算法

则,输出目前的最优解。
Hale Waihona Puke 3 目标值控制规则,给定优化问题(目标最小化)的一个下界和一个 误差值,当算法得到的目标值同下界之差小于给定的误差值时,算法 终止。
TSP应用举例
TSP应用举例
Introduction of Artificial Intelligence
Introduction of Artificial Intelligence
7
(2)鸟群行为
人们观察鸟群的群体行为发现: 当一群鸟在随机搜寻食物时,发现某个区域内有一块食物, 鸟会先后飞向食物,以及在食物最近的鸟的周围区域继续 搜寻食物。 数目庞大的鸟群在飞行中可以有形的改变方向,散开,或 者队形的重组。 科学家认为,上述行为是基于鸟类的社会行为中的两个要 素:个体经验和社会学习。 由此,创造了粒子群优化算法 (Particle Swarm optimization ,PSO)
蚁群算法的提出
人工蚁群算法
基于以上蚁群寻找食物时的最优路径选择问题,可以构造人 工蚁群,来解决最优化问题,如TSP问题。 人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的相 似之处在于都是优先选择信息素浓度大的路径。较短路径的信 息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的优 化结果。 两者的区别在于人工蚁群有一定的记忆能力,能够记忆已经 访问过的节点。同时,人工蚁群在选择下一条路径的时候是按 一定算法规律有意识地寻找最短路径,而不是盲目的。例如在 TSP问题中,可以预先知道当前城市到下一个目的地的距离。 人工蚁群 VS 自然蚁群
prey food
an obstacle is laid in the path
choosing path
the shortest path

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件
参数优化方法
采用智能优化算法,如遗传算法、粒子群算法等,对算法参数进行 优化,以寻找最优参数组合,提高算法性能。
04
蚁群算法的实现流程
问题定义与参数设定
问题定义
明确待求解的问题,将其抽象为优化 问题,并确定问题的目标函数和约束 条件。
参数设定
根据问题的特性,设定蚁群算法的参 数,如蚂蚁数量、信息素挥发速度、 信息素更新方式等。
动态调整种群规模
根据搜索进程的需要,动态调整参与搜索的蚁群规模,以保持种群 的多样性和搜索的广泛性。
自适应调整参数
参数自适应调整策略
根据搜索进程中的反馈信息,动态调整算法参数,如信息素挥发速 度、蚂蚁数量、移动概率等。
参数动态调整规则
制定参数调整规则,如基于性能指标的增量调整、基于时间序列的 周期性调整等,以保持算法性能的稳定性和持续性。
06
蚁群算法的优缺点分析
优点
高效性
鲁棒性
蚁群算法在解决组合优化问题上表现出高 效性,尤其在处理大规模问题时。
蚁群算法对噪声和异常不敏感,具有较强 的鲁棒性。
并行性
全局搜索
蚁群算法具有天然的并行性,可以充分利 用多核处理器或分布式计算资源来提高求 解速度。
蚁群算法采用正反馈机制,能够实现从局 部最优到全局最优的有效搜索。
强化学习
将蚁群算法与强化学习相结合,利用强化学习中的奖励机制指导 蚁群搜索,提高算法的探索和利用能力。
THANKS
感谢观看
蚂蚁在移动过程中会不断释放新 的信息素,更新路径上的信息素 浓度。
蚂蚁在更新信息素时,会根据路 径上的信息素浓度和自身的状态 来决定释放的信息素增量。
搜索策略与最优解的形成
搜索策略

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题4.1问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

4.2算法理论蚁群算法(AntColonyAlgorithm,ACA),最初是由意大利学者DorigoM.博士于1991年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle与Hoo给出了最大-最小蚂蚁系统(MA某-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蚁群优化算法的若干研究
蚁群优化算法是一种基于蚂蚁群体行为的启发式优化算法,它模拟了蚂蚁在寻找食物时的行为,通过不断地搜索和信息交流来寻找最优解。

近年来,蚁群优化算法在优化问题中得到了广泛应用,同时也吸引了大量的研究者进行深入探究。

本文将介绍蚁群优化算法的若干研究。

一、蚁群算法的基本原理
蚁群算法是一种基于蚂蚁群体行为的启发式优化算法,它模拟了蚂蚁在寻找食物时的行为。

在蚁群算法中,蚂蚁会不断地在搜索空间中移动,并且在移动的过程中释放信息素,这些信息素会影响其他蚂蚁的移动方向。

通过不断地搜索和信息交流,蚂蚁群体最终能够找到最优解。

二、蚁群算法的应用领域
蚁群算法在优化问题中得到了广泛应用,例如在网络路由、图像处理、机器学习、数据挖掘等领域中都有应用。

蚁群算法还可以用于解决组合优化问题,例如旅行商问题、背包问题等。

三、蚁群算法的改进
为了提高蚁群算法的性能,研究者们提出了许多改进算法。

例如,引入了多目标优化、混合优化等技术,同时还有一些改进算法,例如改进的蚁群算法、蚁群精英算法等。

四、蚁群算法的优缺点
蚁群算法具有以下优点:(1)具有全局优化能力;(2)能够处理复杂的非线性问题;(3)具有较好的鲁棒性和适应性。

但是,蚁群算法也存在一些缺点,例如算法的收敛速度较慢,需要大量的计算资源。

五、蚁群算法的未来发展
未来的研究方向包括:(1)蚁群算法的并行化和分布式计算;(2)蚁群算法与其他优化算法的结合;(3)蚁群算法在大数据和深度学习中的应用。

总之,蚁群算法是一种非常有潜力的优化算法,它在实际应用中已经取得了一定的成果,未来还有很大的发展空间。

相关文档
最新文档