高二数学平面向量与空间向量的夹角与平行

合集下载

高二数学空间向量试题答案及解析

高二数学空间向量试题答案及解析

高二数学空间向量试题答案及解析1.如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.(Ⅰ)求证:(Ⅱ)求三棱锥的体积;(Ⅲ)求二面角的余弦值.【答案】(1)见解析;(2)1;(3)【解析】(1)利用线面垂直的判断定理证明线面垂直,条件齐全.(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.(5)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(Ⅰ)连接,由已知得和是等边三角形,为的中点,又边长为2,由于,在中,,(Ⅱ),(Ⅲ)解法一:过,连接AE,,即二面角的余弦值为.解法二:以O为原点,如图建立空间直角坐标系,则显然,平面的法向量为设:平面的法向量,由,,∴二面角的余弦值为.【考点】(1)空间中线面垂直的判定;(2)三棱锥的体积公式;(3)利用空间向量证明线线垂直和求夹角.2.如图,在三棱柱中,平面,,为棱上的动点,.⑴当为的中点,求直线与平面所成角的正弦值;⑵当的值为多少时,二面角的大小是45.【答案】(1),(2).【解析】(1)此小题考查用空间向量解决线面角问题,只需找到面的法向量与线的方向向量,注意用好如下公式:,且线面角的范围为:;(2)此小题考查的是用空间向量解决面面角问题,只需找到两个面的法向量,但由于点坐标未知,可先设出,利用二面角的大小是45,求出点坐标,从而可得到的长度,则易求出其比值.试题解析:如图,以点为原点建立空间直角坐标系,依题意得,⑴因为为中点,则,设是平面的一个法向量,则,得,取,则,设直线与平面的法向量的夹角为,则,所以直线与平面所成角的正弦值为;⑵设,设是平面的一个法向量,则,取,则,是平面的一个法向量,,得,即,所以当时,二面角的大小是.【考点】运用空间向量解决线面角与面面角问题,要掌握线面角与面面角的公式,要注意合理建系.3.在空间直角坐标系中,若两点间的距离为10,则__________.【答案】.【解析】直接利用空间两点间的距离公式可得,解之得,即为所求.【考点】空间两点间的距离公式.4. A(5,-5,-6)、B(10,8,5)两点的距离等于 .【答案】.【解析】∵,,由空间中两点之间距离公式可得:.【考点】空间坐标系中两点之间距离计算.5.如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.(1)求证:平面平面;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)由已知中F为CD的中点,易判断四边形ABCD为平行四边形,进而AF∥BC,同时EF∥SC,再由面面平行的判定定理,即可得到答案.(II)取AB的中点O,连接SO,以O为原点,建立如图所示的空间坐标系,分别求出平面SAC与平面ACF的法向量,代入向量夹角公式,即可求出二面角S-AC-F的大小..(1)分别是的中点,.又,所以.,……2分四边形是平行四边形..是的中点,.……3分又,,平面平面……5分(2)取的中点,连接,则在正中,,又平面平面,平面平面,平面.…6分于是可建立如图所示的空间直角坐标系.则有,,,,,.…7分设平面的法向量为,由.取,得.……9分平面的法向量为.10分…11分而二面角的大小为钝角,二面角的余弦值为.【考点】1.用空间向量求平面间的夹角;2.平面与平面平行的判定.6.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin〈,〉的值为 ().A.B.C.D.【答案】B【解析】设正方体棱长为2,以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,则C(0,2,0),M(2,0,1),D1(0,0,2),N(2,2,1),可知=(2,-2,1),=(2,2,-1),∴•=2×2−2×2−1×1=−1,|| = 3, | |=3;∴cos<,>=,所以sin<,>=.故选B .【考点】用空间向量求平面间的夹角.7.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.【答案】(1)详见解析;(2)详见解析;(3).【解析】解法一(向量法)(I)建立如图所示的空间直角坐标系A-xyz,分别求出直线PF与FD的平行向量,然后根据两个向量的数量积为0,得到PF⊥FD;(2)求出平面PFD的法向量(含参数t),及EG的方向向量,进而根据线面平行,则两个垂直数量积为0,构造方程求出t值,得到G点位置;(3)由是平面PAD的法向量,根据PB与平面ABCD所成的角为45°,求出平面PFD的法向量,代入向量夹角公式,可得答案.解法二(几何法)(I)连接AF,由勾股定理可得DF⊥AF,由PA⊥平面ABCD,由线面垂直性质定理可得DF⊥PA,再由线面垂直的判定定理得到DF⊥平面PAF,再由线面垂直的性质定理得到PF⊥FD;(2)过点E作EH∥FD交AD于点H,则EH∥平面PFD,且有AH=AD,再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=AP,由面面平行的判定定理可得平面GEH∥平面PFD,进而由面面平行的性质得到EG∥平面PFD.从而确定G点位置;(Ⅲ)由PA⊥平面ABCD,可得∠PBA是PB与平面ABCD所成的角,即∠PBA=45°,取AD的中点M,则FM⊥AD,FM⊥平面PAD,在平面PAD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A-PD-F的平面角,解三角形MNF可得答案..试题解析:(1)证明:∵PA⊥平面ABCD,∠BAD=90°,AB=1,AD=2,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).不妨令P(0,0,t),∵=(1,1,-t),=(1,-1,0),∴=1×1+1×(-1)+(-t)×0=0,即PF⊥FD.(2)解:设平面PFD的法向量为n=(x,y,z),由得令z=1,解得:x=y=.∴n=.设G点坐标为(0,0,m),E,则,要使EG∥平面PFD,只需·n=0,即,得m=,从而满足AG=AP的点G即为所求.(3)解:∵AB⊥平面PAD,∴是平面PAD的法向量,易得=(1,0,0),又∵PA⊥平面ABCD,∴∠PBA是PB与平面ABCD所成的角,得∠PBA=45°,PA=1,平面PFD的法向量为n= .∴.故所求二面角A-PD-F的余弦值为.【考点】1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系;3.直线与平面平行的判定.8.已知三棱柱,平面,,,四边形为正方形,分别为中点.(1)求证:∥面;(2)求二面角——的余弦值.【答案】(1)见解析(2)【解析】(1)只要证出∥,由直线与平面平行的判定定理即可得证(2)建立空间直角坐标系,利用求二面角的公式求解试题解析:(1)在中、分别是、的中点∴∥又∵平面,平面∴∥平面(2)如图所示,建立空间直角坐标系,则,,,,,∴,平面的一个法向量设平面的一个法向量为则即取.∴∴二面角的余弦值是.【考点】直线与平面平行的判定定理,在空间直角坐标系中求二面角9.如图,直三棱柱(侧棱垂直于底面的棱柱),底面中,棱,分别为的中点.(1)求>的值;(2)求证:【答案】(1)>的值为;(2)证明过程详见试题解析.【解析】(1)先以C为原点建立空间坐标系,由已知易求出,进而可求>的值;(2)由(1)所建立的空间坐标系可写出、、的坐标表示,即可知,从而得证.试题解析:以C为原点,CA、CB、CC1所在的直线分别为轴、轴、轴,建立坐标系(1)依题意得,∴∴ ,∴>= 6分(2) 依题意得∴,∴,,∴ ,∴,∴∴ 12分【考点】空间坐标系、线面垂直的判定方法.10.如右图,正方体的棱长为1.应用空间向量方法求:⑴求和的夹角⑵.【答案】(1)(2)对于线线垂直的证明可以运用几何性质法也可以运用向量法来证明向量的垂直即可。

用空间向量研究直线平面的位置关系 课件第2课时高二数学同步备课(人教A版2019选修一)

用空间向量研究直线平面的位置关系 课件第2课时高二数学同步备课(人教A版2019选修一)
对(λ,μ),使得 = λ +μ1.
所以1 ∙ = λ1 ∙ + μ1 ∙ 1 = λ Ԧ + − Ԧ ∙ − Ԧ + μ Ԧ + − Ԧ ∙ Ԧ = 0,.
所以1是平面BDD1B1的法向量. 所以A1C⊥平面BDD1B1.
(三)典型例题
空间直角坐标系,设AD=a,则A(0,0,0),P(0,0,1),B(0,1,0),C(a,1,0),
1 1
1 1
于是F(0, 2 , 2).∵E在BC上,∴设E(m,1,0),∴ =(m,1,-1), = (0, 2 , 2).
∵ ∙ =0,∴PE⊥AF. ∴无论点E在边BC上何处,总有PE⊥AF.
3.空间向量证面面垂直
例3.如图,在四棱锥EABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.
求证:平面ADE⊥平面ABE.
[证明] 取BE的中点O,连接OC,则OC⊥EB,
又AB⊥平面BCE,∴以O为原点建立空间直角坐标系Oxyz,如图所示.
则由已知条件有C(1,0,0),B(0, 3,0),E(0,- 3,0),D(1,0,1),A(0, 3,2).
1.4.2用空间向量研究距离、夹角问题
所在位置
教材第26页
教材第33页
新教材内容 在向量坐标化的基础上,将空间中线线、线面、
分析
面面的位置关系,转化为向量语言,进而运用向
量的坐标表示,从而实现运用空间向量解决立体
几何问题,为学生学习立体几何提供了新的方法
和新的观点,为培养学生思维提供了更广阔的空
间。
证明:由题意得AB,BC,B1B两两垂直.以B为原点,BA,BC,BB1分别为x,y,z轴,

高中数学 3-2-1 空间向量与平行关系课件 新人教A版选修2-1

高中数学 3-2-1 空间向量与平行关系课件 新人教A版选修2-1

(3)①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0, ∴u⊥a,∴l⊂α 或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12),u=-14a, ∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0),∴u 与 a 不共 线,也不垂直,∴l 与 α 斜交.
图2
证明:方法一:以D为原点,DA,DC,DD1所在 直线分别为x,y,z轴建立如图2所示的空间直角坐标 系.
设正方体的棱长为2, 则A(2,0,0),D1(0,0,2),C(0,2,0), B(2,2,0),O1(1,1,2),
∴A→D1= (- 2, 0,2),C→D1 =(0,- 2,2), B→O1= (- 1,- 1,2), ∴B→O1=12A→D1+12C→D1, ∴B→O1与A→D1、C→D1共面, ∴B→O1∥平面 ACD1.又 BO1⊄平面 ACD1, ∴BO1∥平面 ACD1.
[点评] 用向量法证明线面平行常用三种方法:一 是证明直线上某个向量与平面内某一向量共线;二是 证明直线上的某个向量与平面内的两个不共线向量共 面,且不在平面内;三是证明直线上某个向量与平面 的法向量垂直.
迁移体验3 如图6,在长方体OAEB-O1A1E1B1中, OA=3,OB=4,OO1=2,点P在棱AA1上,且AP= 2PA1,点S在棱BB1上,且SB1=2BS,点Q、R分别是 O1B1、AE的中点,求证:PQ∥RS.
图3
解析:∵AD、AB、AS 是两两垂直的线段, ∴以 A 为原点,以射线 AD、AB、AS 所在直 线为 x 轴、y 轴、z 轴的正方向建立坐标系, 则 A(0,0,0)、D(12,0,0)、C(1,1,0),S(0,0,1), A→D=(12,0,0)是平面 SAB 的法向量,

人教B版高中数学选择性必修第一册精品课件 第一章 空间向量与立体几何 1.2.3 直线与平面的夹角

人教B版高中数学选择性必修第一册精品课件 第一章 空间向量与立体几何 1.2.3 直线与平面的夹角
A.90°
B.60° C.45°
C)
D.30°
解析 设AC和平面α所成的角为θ,
则cos 60°=cos θcos 45°,故cos θ=
1 2 3 4 5
2
√,所以θ=45°.
2
3.[2023甘肃永昌高二阶段检测]在长方体ABCD-A1B1C1D1中,AB=BC=2,
AA1=1,则直线BC1与平面BB1D1D所成角的正弦值为( D )
21
规律方法
1.利用定义法求直线与平面所成的角,首先要作出斜线和这条
斜线在平面内的射影所成的角,然后通过解三角形求出直线与平面所成的
角的大小.其基本步骤可归纳为“一作,二证,三计算”.
2.找射影的两种方法
3.本例中找出点E在平面BCD中的射影是解决问题的核心,对于几何体中缺
少棱长等数据信息,可根据几何体的特征进行假设,这样处理不影响结论.
√6
A.
3
1 2 3 4 5
√10
B.
2
√15
C.
5
√10
D.
5
解析 以D点为坐标原点,以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立
空间直角坐标系,
则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1),
∴1 =(-2,0,1), =(-2,2,0),易知 为平面 BB1D1D 的一个法向量,
θ=|cos
|CB|2 + |BA|2 + |AS| 2 = √3,
√3
φ|= 3 ,
√3
所成的角的正弦值为 3 .
∴cos<1 , >=
1 ·
|1 || |
∴直线 BC1 与平面

聚焦小题选择性必修二数学

聚焦小题选择性必修二数学

聚焦小题选择性必修二数学高二数学必修二知识点总结整理1考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。

由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

人教B版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 1.2.3 直线与平面的夹角

人教B版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 1.2.3 直线与平面的夹角

.
解析:以 D 为原点,, , 1 的方向分别为 x 轴、y 轴、z 轴正方向,建立空
间直角坐标系,如图,设正方体的棱长为 1,则
D(0,0,0),A1(1,0,1),B(1,1,0),C1(0,1,1).
∴1 =(1,0,1),=(1,1,0),1 =(-1,0,1).
得=(-1,-1,0),1 =(0,0,1),=(-1,1,m),=(-1,1,0),由 ·=0, ·1 =0,
知为平面 BB1D1D 的一个法向量.
设 AP 与平面 BB1D1D 所成的角为 θ,
则 sin θ= cos
依题意有
π
-
2
2
2+2 ×
2
=
=
|·|
角;
π
④直线与平面的夹角的范围是 0, 2 .
(2)斜线与平面所成角的性质
①如图,OA'是OA在平面α内的射影,OM⊂α,θ是OA与OM所成的角,θ1是OA
与OA'所成的角,θ2是OA'与OM所成的角,则cos θ=cos θ1cos θ2.
②平面的斜线与平面所成的角,是斜线和这个平面内所有直线所成角中最
2

5
2
在 Rt△OAE 中,∵AE= + 2 = 2 a,
AO=

2
2
+
5

2
2
6
= 2 a,

6
∴sin∠OAE= = .

6
答案:C
二、借助直线的方向向量、平面的法向量研究直线与平面所成角的关系
1.直线l是平面α的一条斜线,v是l的一个方向向量,u是平面α的一个法向
量,<v,u>和l与α所成的角θ有什么关系?

高二数学平面向量与空间向量的垂直与共线

高二数学平面向量与空间向量的垂直与共线

高二数学平面向量与空间向量的垂直与共线数学中,平面向量和空间向量是两个重要的概念。

在这篇文章中,我们将探讨平面向量与空间向量之间的垂直与共线的关系。

垂直向量是指两个向量的夹角为90度的情况。

对于平面向量来说,我们可以通过向量的点乘与零向量的判断来确定垂直关系。

设有平面向量a和b,若a·b=0,则a与b垂直。

而对于空间向量来说,我们可以通过向量的数量积与零向量的判断来确定垂直关系。

设有空间向量A和B,若A·B=0,则A与B垂直。

举个简单的例子来理解垂直向量的概念。

设有两个平面向量a=(1, 2)和b=(-2, 1),我们可以计算它们的点乘:a·b=1*(-2)+2*1=0。

因此,向量a和b是垂直的。

在数学中,共线向量是指两个或多个向量的方向相同或相反的情况。

对于平面向量来说,我们可以通过向量的叉乘和零向量的判断来确定共线关系。

设有平面向量a和b,若a×b=0,则a与b共线。

而对于空间向量来说,我们可以通过向量的叉积和零向量的判断来确定共线关系。

设有空间向量A和B,若A×B=0,则A与B共线。

举个简单的例子来理解共线向量的概念。

设有两个空间向量A=(1, 2, 3)和B=(2, 4, 6),我们可以计算它们的叉积:A×B=(2*3-4*2, 6*1-2*3, 1*4-2*2)=(0, 0, 0)。

因此,向量A和B是共线的。

在实际应用中,垂直向量和共线向量有着重要的意义。

例如在物理学中,力的合成和分解中的平行四边形法则和三角法则都是基于向量的垂直和共线性质而建立的。

总结起来,平面向量和空间向量之间的垂直与共线关系可以通过点乘和叉乘来判断。

而在实际应用中,垂直向量和共线向量有着广泛的应用,特别是在力学、物理学等领域。

通过本文的探讨,我们对于高二数学中平面向量与空间向量的垂直与共线关系有了更深入的理解。

垂直向量的判断可以通过点乘与零向量进行,而共线向量的判断则可以通过叉乘与零向量进行。

用空间向量研究直线 平面位置关系——空间直线 平面的平行 高中数学新教材人教A版

用空间向量研究直线 平面位置关系——空间直线 平面的平行 高中数学新教材人教A版

P z
△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,
E
PD,CD的中点.求证:平面EFG∥平面PBC.
A
证明:因为平面PAD⊥平面ABCD,ABCD为正方形,
△PAD是直角三角形,且PA=AD,所以AB,AP,AD两
两垂直,以A为坐标原点,AB,AD,AP所在直线分别
为x轴、y轴、z轴,建立如图所示的空间直角坐标系,
F,使得AE//CF?
解析:不存在. 在四面体ABCD中,设=a,=b, =c ,则 { a ,b , c}




构成一个基底,因为E是 BC的中点,所以 = +
设=mc(0≤m≤1),则 = − = − ,
若 ∥ ,则设 = ,
如图所示,平面PAD⊥平面ABCD,四边形ABCD为正方形,
△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,
F
E
PD,CD的中点.求证:平面EFG∥平面PBC.
A
D y
设n=(x1,y1,z1)是平面GEF的法向量,则1 ⊥ , 1 ⊥ ,
−1 = 0

,得


+


则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),
E(0,0,1),F(0,1,1),G(1,2,0).
=(1,1,−1),=(0,2,0),
所以 = (2,0, −2),=(0,−1,0)
F
D y
G
xB
C
例题精讲(面面平行)——例4
P z





  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学平面向量与空间向量的夹角与平行数学中的向量是广泛应用于各个领域的概念,其夹角和平行性是研究向量性质的重要内容。

在高中数学的学习阶段,我们首先学习了平面向量,然后逐渐引入了空间向量。

本文将讨论高二阶段数学中平面向量和空间向量之间夹角的概念和计算方法,以及向量的平行性。

一、平面向量的夹角与平行性
在平面上,我们常常遇到两个向量的夹角和平行性的问题。

夹角指的是一个向量与另一个向量之间的角度关系。

平行性则指的是两个向量的方向相同或相反。

1. 夹角的定义与计算
两个非零向量A和A在平面上的夹角可以用余弦定理来计算。

假设向量A的模为 |A|,向量A的模为 |A|,两向量的夹角为θ,则有以下公式:
A·A = |A||A|cosθ
其中,A·A表示向量的数量积或点积。

通过上述公式,我们可以求出两个向量的点积值,由点积值求解出夹角θ。

若两向量的点积为零,则它们垂直;若点积大于零,则它们夹角为锐角;若点积小于零,则它们夹角为钝角。

2. 平行与共线的判定
如果两个向量A和A的夹角为0或180度,它们即为平行向量。

要判断两向量是否平行,我们可以计算它们的方向向量,若方向向量
相等,则它们平行。

此外,两个非零向量平行的充分必要条件是它们
的数量积等于零。

二、空间向量的夹角与平行性
当我们进一步学习空间向量时,针对夹角和平行性的概念也需要进
行拓展。

1. 夹角的定义与计算
对于空间中的两个向量A和A,它们的夹角θ 满足以下公式:
cosθ = (A·A) / (|A||A|)
其中,(A·A) 表示向量的数量积或点积,|A| 和 |A| 分别表示向量的模。

通过该公式,我们可以求出两个向量的点积,从而计算出夹角的值。

同样,若点积为零,则两向量垂直;若点积大于零,则夹角为锐角;
若点积小于零,则夹角为钝角。

2. 平行与共线的判定
空间中的两个向量A和A,若满足以下条件,则它们平行或共线:
a) 两向量的方向向量相等;
b) 两向量的数量积等于零。

三、实例应用
现考虑一个具体的应用问题:已知平面上两个向量A (2, 3) 和A (4, 1),求它们的夹角和判断它们的平行性。

首先,计算两个向量的点积:
A·A = 2 × 4 + 3 × 1 = 11
然后,计算两个向量的模:
|A| = √(2² + 3²) = √13
|A| = √(4² + 1²) = √17
利用夹角计算公式,我们可以得到:
cosθ = (A·A) / (|A||A|)
cosθ = 11 / (√13 × √17)
计算得到cosθ 的值后,可以利用反余弦函数求得夹角的近似值。

接下来,可以判断两个向量的平行性。

根据公式,若两向量的点积为零,则它们垂直;若点积大于零,则夹角为锐角;若点积小于零,则夹角为钝角。

根据以上的计算和判断,我们可以得出结论:
1) 向量A和A的夹角为锐角;
2) 向量A和A不平行。

综上所述,高二数学中的平面向量和空间向量的夹角和平行性具有一定的计算规律和判定条件。

在具体问题中,我们可以根据向量的数量积和模的关系进行计算,并通过夹角的值来判断两向量的夹角类别和平行性。

对于这些概念的准确理解,有助于我们解决更复杂的向量问题,并将向量相关知识应用于实际生活和其他学科领域的问题中。

相关文档
最新文档