高考数学三角函数考点解析知识点总结
(精心整理)高中数学三角函数专题(重要知识点和经典方法大合集)

专题复习—— 三角函数(一)知识梳理1、 角度制与弧度制的互化10.01745180180157.30rad rad rad ππ⎧=≈⎪⎪⎨⎛⎫⎪=≈ ⎪⎪⎝⎭⎩2、 扇形公式22(11=22180(=360l R R lR n R l n n R αααππ⎧=⎧⎪⎪⎨⎪=⎪⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩①弧长弧度制为弧度)②扇形面积S ①弧长角度制为角度)②扇形面积S3、 同角三角函数恒等式22sin sin cos 1cos (sin tan cos cos sin ααααααααααα⎧⎧=⎪⎪⎪⎪+=⇒=⎨⎪⎪⎪±⎪⎩⎪⎪⎪=⎨⎪⎪⎧=⎪⎪⎪⎪±⎨⎪⎪⎪=⎪⎪⎩⎩①其中“”由所在象限确定)②③推论其中“”由所在象限确定)4、 诱导公式sin(2)sin sin()sin cos(2)cos cos()cos tan(2)tan tan()tan sin()sin sin()sin cos()cos cos()cos tan()tan tan()tan s k k k απαπαααπαπαααπαπααααπααααπααααπαα+=+=-⎧⎧⎪⎪+=+=-⎨⎨⎪⎪+=+=⎩⎩-=--=⎧⎧⎪⎪-=-=-⎨⎨⎪⎪-=-=-⎩⎩公式一公式二公式三公式四公式五in()cos sin()cos 22cos()sin cos()sin 2233sin()cos sin()cos 2233cos()sin cos()sin 22ππααααππααααππααααππαααα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎧⎨-=+=⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪-=+=-⎪⎪⎪⎩⎩⎪⎧⎧⎪-=-+=-⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪-=-+=⎪⎪⎩⎩⎩公式六推论1推论25、差(和)角公式cos()cos cos sin sincos()cos cos sin sinsin()sin cos cos sinsin()sin cos cos sintan tantan()1tan tantan tantan()1tan tanαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ⎧-=+⎪+=-⎪⎪-=-⎪⎪+=+⎨-⎪-=⎪+⎪+⎪+=⎪-⎩余余正正号相反正余余正号相同6、二倍角公式(倍角公式)22222221sin22sin cos sin cos sin22cos2cos sin1cos2cos212sin sin21cos2 cos22cos1cos22tantan21tanαααααααααααααααααααα⎧⎪=⇒=⎪⎪=-⎪⎪-⎪=-⇒=⎨⎪+⎪=-⇒=⎪⎪⎪=⎪-⎩7、正弦定理及推论2(sin sin sin2sin,2sin,2sinsin,sin,sin222::sin:sin:sinsin sin sin,,sin sin sina b cR R ABCA B Ca R Ab R Bc R Ca b cA B CR R Ra b c A B Ca A a Ab Bb Bc C c C⎧===∆⎪⎪===⎪⎪⎪===⎨⎪⎪=⎪⎪===⎪⎩①为外接圆的半径)②③④⑤8、余弦定理及推论222 222222 222222 2222cos cos22cos cos22cos cos2b c a a b c bc A Abca c bb ac ac B Baca b c c a b ab C Cab⎧+-=+-⇒=⎪⎪+-⎪=+-⇒=⎨⎪⎪+-=+-⇒=⎪⎩9、三角形面积公式1(21()(2111=sin sin sin222S ah aS r a b c r ABCS ab C ac B bc A⎧=⎪⎪⎪=++∆⎨⎪⎪==⎪⎩为底,h为高)为内切圆的半径)10、求最小正周期的公式sin()2= cos()tan()= y A x kTy A x ky A x k Tωϕπωϕωπωϕω⎧=++⎪=++⎪⎨⎪=++⎪⎩最小正周期为的最小正周期为11、正弦函数y=sinx[]maxmin111+2,2,22(2)3+2,2,.222()1;2(3)2() 1.2(4)((5)y sinRk k k Zk k k Zx k k Z yx k k Z yk k Z kxππππππππππππππ-⎧⎡⎤-+∈⎪⎢⎥⎪⎣⎦⎨⎡⎤⎪+∈⎢⎥⎪⎣⎦⎩⎧+∈=⎪⎪⎨⎪+∈=-⎪⎩∈≠=()定义域:,值域:,在单调递增;单调性在单调递减当且仅当=时,最值当且仅当=-时,周期性:周期为2且0),最小正周期为2.奇偶性:,;(6)2.Rx k k Zk k Zπππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧+∈⎪⎪⎨⎪⎪∈⎪⎩⎩为上的奇函数.①为轴对称图形,对称轴为=对称性②为中心对称图形,对称中心为(,0),12、余弦函数y=cosx[][][]maxmin111+2,2,(2)2,2,.2()1;(3)2() 1.(4)((5)y cos,(6)Rk k k Zk k k Zx k k Z yx k k Z yk k Z kx Rx k kππππππππππππ-⎧-∈⎪⎨+∈⎪⎩∈=⎧⎨+∈=-⎩∈≠=()定义域:,值域:,在单调递增;单调性在单调递减当且仅当=时,最值当且仅当=时,周期性:周期为2且0),最小正周期为2.奇偶性:为上的偶函数.①为轴对称图形,对称轴为=对称性;+.2Zk k Zππ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪∈⎧⎪⎪⎪⎨∈⎪⎪⎩⎩②为中心对称图形,对称中心为(,0),13、正切函数y=tanx1|,,22-+,),.22(3)(0.(4)y tan(5),0),.2x x k k Z Rk k k Zk k Z kxkk Zπππππππππ⎧⎧⎫≠+∈⎪⎨⎬⎩⎭⎪⎪+∈⎪⎪⎪∈≠⎨⎪=⎪⎪⎧⎪⎪⎨⎪∈⎪⎪⎩⎩()定义域:值域:()单调性:在开区间(单调递增周期性:周期为且),最小正周期为奇偶性:为奇函数.①不是轴对称图形;对称性②是中心对称图形,对称中心为(14、简谐运动sin()y A xωϕ=+[)2=1(0,0,0,)2xA xTπωωωπωϕϕ⎧⎪⎪⎪⎪⎪=>>∈+∞⎨⎪⎪⎪⎪⎪⎩①振幅:A②周期:T③频率:f=其中④相位:x+⑤初相:=0时的相位2222sin cos)(tan)0)sin cos)(tan)ba xb x a b xaa aa xb x a b xbωωωϕϕωωωϕϕ⎧+=++=⎪⎪⎨>⎪+=+-=⎪⎩①其中15、三角恒等变换之辅助角公式(其中②其中辅助角公式的证明如下:证明:asin xω+bcos xω22a b+22a b+sin xω22a b+cos xω),①22a b+=cosϕ22a b+=sinϕ,则asin xω+bcos xω22a b+xωcosϕ+cos xωsinϕ)22a b+xω+ϕ) (其中tanϕ=ba)② 22a a b+=sin ϕ22b a b+ϕ,则asin x ω+bcos x ω22a b +x ωsin ϕ+cos x ωcos ϕ) 22a b +x ω-ϕ),(其中tan ϕ=a b) 注:其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出;或由tan ϕ=ba和(a,b)所在的象限来确定. 例:化简32cos 2y x x =+.法一:逆用差(和)角公式3132cos 22(2cos 2)2(sin 2cos cos 2sin )2sin(2)2666y x x x x x x x πππ=+=+=+=+法二:应用辅助角公式32cos 22sin(2)6y x x x π=+=+ (其中3tan 363πϕϕ==⇒=)(二)考点剖析考点一:正、余弦定理,三角形面积公式的应用 例1: 在△ABC 中,C =2B ,AB AC =43. (1)求cos B ;(2)若BC =3,求S △ABC . 解:(1)由C =2B 和正弦定理得sin C =2sin B cos B =2·AC AB sin C ·cos B ∴cos B =AB 2AC =23 (2)设AC =3x ,则AB =4x . 由余弦定理得(3x )2=(4x )2+32-2×4x ×3cos B ,即9x 2=`16x 2+9-16x ∴7x 2-16x +9=0 解得x =1或x =97当x =1时,AC =3,AB =4 ∴S △ABC =12BA ×BC ×sin B =12×4×3×53=2 5.当x =97时,AC =277,AB =367 ∴S △ABC =12BA ×BC ×sin B =12×367×3×53=1875.考点二:利用正、余弦定理判断三角形的形状例2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求角A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1) 2a sin A =(2b +c )sin B +(2c +b )sin C由正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc ① 由余弦定理得a 2=b 2+c 2-2bc cos A12cos cos 2bc A bc A ∴-=⇒=- 又0A π<< 23A π∴=. (2)由①得sin 2A =sin 2B +sin 2C +sin B sin C 又sin B +sin C =1 ∴sin B =sin C =12又0,022B C ππ<<<<∴B =C ∴△ABC 是等腰三角形.考点三:三角恒等变换之辅助角公式:sin cos )(tan )ba xb x x aωωωϕϕ+=+=其中例3:已知函数2()2sin cos 2cos f x x x x =+,x R ∈(1) 求f(x)的最小正周期及最大值; (2) 求函数f(x)的单调递增区间; (3) 若0,2x π⎡⎤∈⎢⎥⎣⎦,求函数f(x)的值域 .解:2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++(1) f(x)的最小正周期为22T ππ==,最大值为max ()1f x =. (2) 由222,242k x k k Z πππππ-+≤+≤+∈得3,88k x k k πππππ-+≤≤+∈∴函数f(x)的单调递增区间为3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(3)02x π≤≤52444x πππ∴≤+≤sin(2)14x π≤+≤ 0)114x π∴≤++≤即0()1f x ≤≤∴函数f(x)的值域为1⎡⎤⎣⎦即时训练:已知函数22(sin cos )y x x x =++x R ∈(1) 求函数f(x)的最小正周期、最小值及单调递减区间; (2) 当02x π<<时,求函数f(x)的值域.【高考地位】三角函数式的化简和求值是高考考查的重点内容之一. 掌握化简和求值问题的解题规律和一些常用技巧,以优化我们的解题效果,做到事半功倍. 这也是解决三角函数问题的前提和出发点. 在高考中常以选择题、填空题出现,其试题难度考查不大.【方法点评】方法一 切割化弦使用情景:一般三角求值类型解题模板:第一步 利用同角三角函数的基本关系sin tan cos θθθ=,将题设中的切化成弦的形式; 第二步 计算出正弦与余弦之间的关系; 第三步 结合三角恒等变换可得所求结果.例1已知1tan()2πα+=,则sin cos 2sin cos αααα-+=( ) A .41 B .21 C .41- D .21- 【答案】C 【解析】试题分析:21tan =α,将原式上下同时除以αcos ,即411tan 21tan cos sin 2cos sin -=+-=+-αααααα,故选C.考点:同角三角函数基本关系学*科网 【变式演练1】已知2)tan(-=-απ,则=+αα2cos 2cos 1( )A .3 B. 52C.25- D.3- 【答案】C 【解析】考点:诱导公式,同角间的三角函数关系,二倍角公式.方法二 统一配凑使用情景:一类特殊三角求值类型解题模板:第一步 观察已知条件中的角和所求的角之间的联系;第二步 利用合理地拆角,结合两角和(或差)的正弦(或余弦)公式将所求的三角函数值转化为已知条件中的三角函数值;第三步 利用三角恒等变换即可得出所求结果.例2已知,31tan ,71tan ==βα则=+)2tan(βα 【答案】1 【解析】 试题分析:212tan 3tan ,tan 231tan 4ββββ===-,()13tan tan 274tan 21131tan tan 2174αβαβαβ++∴+===--⨯考点:两角和的正切公式.方法三 公式活用例3 下列式子结果为3的是( ) ①tan25tan353tan25tan35︒+︒+︒︒; ②()2sin35cos25cos35cos65︒︒+︒︒; ③1tan151tan15+︒-︒;④2tan61tan6ππ-.A. ①②B. ③C. ①②③D. ②③④ 【答案】C【高考再现】1.(2018年全国卷Ⅲ文)若,则A .B .C .D .【答案】B 【解析】 分析:由公式可得.详解:,故答案为B.点睛:本题主要考查二倍角公式,属于基础题.2. 【2016高考新课标3理数】若3tan 4α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.4.【2017山东,文4】已知3cos 4x =,则cos2x = A.14- B.14 C.18- D.18【答案】D 【解析】【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.6. 【2015高考福建,文6】若5sin13α=-,且α为第四象限角,则tanα的值等于()A.125B.125-C.512D.512-【答案】D【考点定位】同角三角函数基本关系式.【名师点睛】本题考查同角三角函数基本关系式,在sinα、cosα、tanα三个值之间,知其中的一个可以求剩余两个,但是要注意判断角α的象限,从而决定正负符号的取舍,属于基础题.6.(2018年全国卷II文)已知,则__________.【答案】.【解析】分析:利用两角差的正切公式展开,解方程可得.详解:,解方程得.学科*网点睛:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.7.【2018年全国普通高等学校招生统一考试数学(江苏卷)】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1);(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 学#科网【反馈练习】1.【山东省济南市2018届高三第一次模拟考试数学(文)试题】若72sin 410A π⎛⎫+=⎪⎝⎭, ,4A ππ⎛⎫∈ ⎪⎝⎭,则sin A 的值为( )A .35 B . 45 C . 35或45 D . 34【答案】B 【解析】5,,,4424A A πππππ⎛⎫⎛⎫∈∴+∈⎪ ⎪⎝⎭⎝⎭,所以cos 04A π⎛⎫+< ⎪⎝⎭,且22cos 1sin 4410A A ππ⎛⎫⎛⎫+=--+=- ⎪ ⎪⎝⎭⎝⎭, 所以4sin sin sin cos cos sin 4444445A A A A ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,选B. 点睛:本题主要考查同角三角函数基本关系式、两角差的正弦公式等,属于易错题.解答本题的关键是拆角,将sin A 拆成sin 44A ππ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦.2.【山西省2018年高考考前适应性测试文科数学试题】已知tan 3α=,则sin21cos2αα=+( )A . 3-B . 13-C . 13D . 3 【答案】D 【解析】222sin cos 3122sin tan cos cos αααααα===+故选D3.【江西省上饶市2018届高三下学期第二次高考模拟数学(理)试题】000sin65sin35cos30cos35-=( ) A . 3-B . 12-C . 12D . 3【答案】C 【解析】由题得()00000000sin 3530sin35cos30cos35sin301sin30cos35cos352+-===,故选C. 4.【河南省濮阳市2018届高三第一次模拟考试数学(理)试题】设()0,90α∈︒︒,若()3sin 7525α︒+=-,则()()sin 15sin 75αα︒+⋅︒-= ( )A .110 B . 2 C . 110- D . 2-【答案】B【解析】()()sin 75cos 15αα-=+, 所以原式等于()()()1sin 15cos 15sin 3022ααα++=+ 而()()()()2sin 302sin 75245sin 752cos 7522αααα⎡⎤⎡⎤+=+-=+-+⎣⎦⎣⎦ , ()75275,255α+∈ ,又因为()sin 7520α+<,所以()752180,255α+∈,可求得()4cos 7525α+=- , 那么()()()22342sin 302sin 752cos 7525510ααα⎡⎤⎛⎫⎛⎫⎡⎤+=+-+=---= ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦,那么()12sin 3022α+=,故选B. 5.【安徽省宣城市2018届高三第二次调研测试数学理试题】已知3cos 5α=, 3,22παπ⎛⎫∈⎪⎝⎭,则cos 3πα⎛⎫-= ⎪⎝⎭__________.【答案】34310- 【解析】∵3cos 5α=, 3,22παπ⎛⎫∈⎪⎝⎭∴4sin 5α=- ∴3143343cos cos cos sin sin 333525πππααα-⎛⎫⎛⎫-=+=⨯+-⨯= ⎪⎪⎝⎭⎝⎭ 故答案为343-. 三角函数的图像和性质问题【高考地位】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。
高考数学复习考点知识讲解课件22 三角函数的图象与性质

— 返回 —
— 14 —
(新教材) 高三总复习•数学
— 返回 —
[解析] 由 2x+π6≠π2+kπ(k∈Z),得 x≠π6+k2π(k∈Z),故函数 f (x)的定义域为 x|x≠π6+k2π,k∈Z.故选 D.
— 15 —
(新教材) 高三总复习•数学
— 返回 —
2.(2022·东北师大附中月考)函数 f (x)=3sin2x-π6在区间0,π2上的值域为( B )
(2)∵f (x)为偶函数, ∴-π3+φ=π2+kπ,k∈Z,得 φ=56π+kπ,k∈Z. 又 φ∈(0,π),∴φ=56π. ∴f (x)=3sin2x+π2=3cos2x. 由 2x=π2+kπ,k∈Z,得 x=π4+k2π,k∈Z, ∴f (x)图象的对称中心为π4+k2π,0,k∈Z.
— 返回 —
— 23 —
(新教材) 高三总复习•数学
— 返回 —
(1)三角函数周期的一般求法 ①公式法. ②不能用公式求周期的函数时,可考虑用图象法或定义法求周期. (2)对于可化为 f (x)=Asin(ωx+φ)(或 f (x)=Acos(ωx+φ))形式的函数,如果求 f (x)的对 称轴,只需令 ωx+φ=π2+kπ(k∈Z)(或令 ωx+φ=kπ(k∈Z)),求 x 即可;如果求 f (x)的对 称中心的横坐标,只需令 ωx+φ=kπ(k∈Z)或令ωx+φ=π2+kπk∈Z,求 x 即可.
— 9—
(新教材) 高三总复习•数学
3.函数 f (x)=cosx+π6(x∈[0,π])的单调递增区间为( C ) A.0,56π B.0,23π C.56π,π D.23π,π
— 返回 —
[解析] 由 2kπ-π≤x+π6≤2kπ,k∈Z,解得 2kπ-76π≤x≤2kπ-π6,k∈Z,∵x∈[0, π],∴56π≤x≤π,∴函数 f (x)在[0,π]的单调递增区间为56π,π,故选 C.
高考数学中的三角函数知识点概览

高考数学中的三角函数知识点概览数学是高考中的一门必修科目,而三角函数则是数学中重要的内容之一。
掌握好三角函数的知识点可以增加高考数学的成绩,本文将对高考数学中的三角函数知识点进行概览,帮助学生更好地备考。
1、三角函数的定义在平面直角坐标系中,通过将点P(x,y)沿x轴(或y轴,原点)作垂线得到点M(x,0),点P与点M的连线与x轴的夹角为θ(0≤θ≤2π),定义:(1)正弦函数(A是θ的集合):f(θ)=sinθ=y/r(2)余弦函数(B是θ的集合):f(θ)=cosθ=x/r(3)正切函数(C是θ的集合):f(θ)=tanθ=y/x其中,r是点P到原点的距离,x和y分别是点P在x轴和y轴上的坐标。
2、基本性质(1)正弦函数和余弦函数的值域都是[-1,1],而正切函数的定义域是整个实数集。
(2)正弦函数和余弦函数的图像是相似的,只是在垂直方向上有不同的偏移量。
(3)正弦函数和余弦函数的图像都是关于原点对称的。
(4)正切函数的图像是周期为π的函数,其图像是关于原点对称的。
(5)三角函数与三角恒等式有关,其中最常用的是:sin^2θ+cos^2θ=1tanθ=sinθ/cosθ3、三角函数的图像(1)正弦函数和余弦函数的图像在相同的坐标系中,画出正弦函数和余弦函数的图像,可以发现:正弦函数的图像是一条连续的波浪线,起伏在原点之上和之下。
它的周期是2π,在每个周期内,其最大值为1,在0、π、2π等点上取到;最小值为-1,在π/2、3π/2等点上取到。
余弦函数的图像与正弦函数的图像完全相似,只是在y轴上取值时,正弦函数是在原点上取到的,而余弦函数是在1和-1之间变化的。
它的周期也是2π,在每个周期内,其最大值为1,在π/2、3π/2等点上取到;最小值为-1,在0、π、2π等点上取到。
(2)正切函数的图像正切函数的图像是一条平移后的正弦函数图像。
其周期为π,其垂直渐近线为x=kπ(k∈Z),它的图像在x轴上有一个渐近点,在每个周期内,正切函数的值都在正无穷和负无穷之间变化。
高考数学之三角函数知识点总结

三角函数一、根底学问定义1 角,一条射线围着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是随意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的肯定值|α|=rL,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边及x 轴的正半轴重合,在角的终边上随意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的间隔 为r,则正弦函数s in α=ry,余弦函数co s α=rx,正切函数tan α=xy,余切函数cot α=y x ,定理1 同角三角函数的根本关系式, 倒数关系:tan α=,商数关系:tan α=;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in =co s α, co s=s in α(奇变偶不变,符号看象限)。
定理3 正弦函数的性质,依据图象可得y =s inx (x ∈R )的性质如下。
单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2π时, y 取最小值-1。
高考数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式市赛课公开课一等奖省名师

sin β=sin α=3,cos β=-cos α,因此,cos(α-β)=cos αcos β+sin αsin
β=-
2√2
3
2
+
1 2
3
7
=-9.
方法 2:由角 α 与角 β 的终边关于 y 轴对称可得 β=(2k+1)π-α,k∈Z,
1 2
7
2
则 cos(α-β)=cos[2α-(2k+1)π]=-cos 2α=2sin α-1=2×
五
六
π
π
2
-α
余弦 cos α
-sin α -sin α
-cos α cos α
sin α cos α
-cos α sin α
正切 tan α
tan α
-tan α
正弦 sin α
-tan α
口诀 函数名不变,符号看象限
2
+α
cos α
-sin α
函数名改变,
符号看象限
3/29
-4知识梳理
考点自测
3π
-
2
4
B.3
=
2
3
4
5
3
π
,且|θ|<2 ,则 tan θ= (
5
3
3
C.-4
D.4
)
关闭
∵cos
3π
2
3
- = 5,
3
π
∴sin θ=-5.又|θ|< 2 ,
4
3
∴cos θ=5,则 tan θ=-4.
关闭
C
解析
答案
6/29
-7知识梳理
考点13 三角函数定义(讲解)(解析版)-2021年高考数学复习一轮复习笔记

考点13 三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为 。
【答案】180135,k k Z ⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈, 角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是 。
A .2k π与()2k k Z ππ+∈ B .3±k ππ与()3k k Z π∈ C .()21+k π与 ()()41k k Z π±∈ D .6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍, 所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,则3±k ππ与()3k k Z π∈的终边不一定相同; 对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=-,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与 ()()41k k Z π±∈的终边相同; 对于D 选项,显然,,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是 。
三角函数知识点归纳与题型总结

三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角, 一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限,称作轴线角。
3、终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.【例1】与角1825-的终边相同,且绝对值最小的角的度数是 ,合 弧度。
(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 【例2】α的终边与6π的终边关于直线x y =对称,则α=____________。
4、α与2α的终边关系:由“两等分各象限、一二三四”确定.【例3】若α是第二象限角,则2α是第_____象限角。
5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.【例4】已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
6、任意角的三角函数的定义:、设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0yx xα=≠,cot x y α=(0)y ≠,【例5】(1)已知角α的终边经过点P(5,-12),则ααcos sin +的值为 。
高考数学三角函数知识点总结

高考数学三角函数知识点总结高中数学三角函数知识点总结:锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:帮助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),此中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/ 2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cos γ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sin γ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tan γ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-t anβ)/(1+tanα·tanβ)高中数学三角函数知识点总结:和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中数学三角函数知识点总结:积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2高中数学三角函数知识点总结:诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,标记看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]高中数学三角函数知识点总结:别的公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)敷衍恣意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该干系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C /2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3 /n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n) +……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学三角函数考点解析知识点总结
【摘要】:高三第一轮复习正如火如荼的上演,小编和大家一样希望每一位同学都
通过第一轮复习可以牢固的掌握相关知识点,为今后的复习打下良好的基础。以
下是为大家带来的高考数学三角函数考点解析 一文,希望为大家的紧张复习带来
稍许帮助,小编在这里与你一同加油!
周帅老师对历年高考真题中数学三角函数考点解析如下,希望能对广大考生有
所帮助。
周帅老师表示,在每年考试中,三角函数都是一个要考的东西,这个东西难度
虽然较低,但是还是保留下来了。就____北京卷15题来说,出题人想法是很清楚
的,在之前如果单纯考三角函数,我们知道重点是什么?一定是把这个函数化解之
后去求值域,因此有的同学看到题之后真的求值域,很多时候大家是会做题的,
但是由于我们太会做题,但是由于题目发生变化,就会出现问题,这个题问定义
域,化解完之后只求了一个正周期,连定义域都忘了。
各位,这和我们考试能力没有任何关系,完全是平时良好的答题、解题、读题
习惯,很多同学是没有看题就解题了,很多时候是跟同学强调更多的。
这个题目是定义域及最小正周期,这个题目化解完之后还挺容易,求单调递增
区间,单调递增区间是重点考的。
就三角函数而言有几个东西是重点考的,一个单调性,一个对称性,一个周期
性。
在____考前考试预测的时候,我跟北京全北京市同学都讲过,如果考试考三角
函数,它很有可能考对称性和周期性,如果大题不考对称性和周期性,求单调递
增区间一定要考,而很多同学认为求单调递增区间比较容易,没有重视,我们说
单调递增区间,应该是把我们最后求出来的三角函数,让它成为3_的增区间,然
后大家再加上周期,考前我们专门讲过这个,大家觉得比较简单,导致考试的时
候做题比较慢了,三角函数是它本身的性质,而不是它的题型。
【总结】高考数学三角函数考点解析到这里就结束了,希望大家好好复习,未
来是属于你们的。